High-fieldtransport properties ofa P-doped BaFe As film ontechnical substrate 2 2 KazumasaIida,1,∗ HikaruSato,2 ChiaraTarantini,3 JensHa¨nisch,4 JanJaroszynski,3 HidenoriHiramatsu,2,5 BernhardHolzapfel,4 and HideoHosono2,5 1Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan 2Laboratory forMaterials and Structures, Instituteof Innovative Research, Tokyo Institute of Technology, Mailbox R3-1, 7 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 1 3AppliedSuperconductivity Center, National HighMagnetic FieldLaboratory, 0 Florida State University, Tallahassee FL 32310, USA 2 4Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany n a 5Materials Research Center for Element Strategy, J Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 6 (Dated:January17,2017) 1 ] High temperature (high-Tc) superconductorslikecuprates have superior critical current propertiesin n magneticfieldsoverothersuperconductors. However, superconductingwiresforhigh-field-magnetap- o plicationsarestilldominatedbylow-Tc Nb3Sndueprobablytocostandprocessingissues. Therecent c discoveryofasecondclassofhigh-Tcmaterials,Fe-basedsuperconductors,mayprovideanotheroption r- for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of p thebestcandidatesforhigh-field-magnetapplicationsbecauseofitshighuppercriticalfield,Hc2,mod- u erateHc2 anisotropy, andintermediateTc. Herewereportonin-fieldtransportpropertiesofP-doped s BaFe2As2 (Ba-122)thinfilmsgrownontechnicalsubstrates(i.e.,biaxiallytexturedoxidestemplateson . metaltapes)bypulsedlaserdeposition.TheP-dopedBa-122coatedconductorsampleexceedsatransport t a Jcof105A/cm2at15Tforbothmajorcrystallographicdirectionsoftheappliedmagneticfield,whichis m favourableforpracticalapplications.OurP-dopedBa-122coatedconductorsshowasuperiorin-fieldJc - overMgB2 andNbTi,andacomparableleveltoNb3Snabove20T.ByanalysingtheE−J curvesfor d determiningJc,anon-Ohmiclineardifferentialsignatureisobservedatlowfieldduetofluxflowalong n thegrainboundaries. However, grainboundariesworkasfluxpinningcentresasdemonstratedbythe o pinningforceanalysis. c [ 1 v 4 5 1 4 0 . 1 0 7 1 : v i X r a Introduction The discoveryof Fe-based superconductors(FBS) by Kamihara et al.,[1] broughta hugeimpact to thephysicscommunity,sincethecompoundconsistsofferromagneticFe,whichhadbeenbelievedtobe inevitablydetrimentaltotheformationofCooperpairs. Todate,fundamentalquestions,suchasmecha- nismofCooperpairingandorderparametersymmetry,arestillunderdebate[2]. Ontheotherhand,this materialclass isattractiveforapplications. Forinstance, AEFe As (AE: Alkaliearthelements, AE- 2 2 122)andFe(Se,Te)possesshighuppercriticalfields(H )exceeding50TandalowH anisotropyclose c2 c2 to1atlowtemperature[3,4],whichisfavourableforhigh-field-magnetapplications. Furthermore,Ba- 122showslessdeteriorationofcriticalcurrentacrossgrainboundaries(GBs)[5,6]thanYBa2Cu3O7−δ (YBCO)andBi-basedcuprates. ForCo-dopedBa-122,thecriticalGBmisorientationangle(θ ),where c J startstofalloffexponentially,hasbeenreportedtobe6◦−9◦[5,7]. EvenhighangleGBsdonotim- c pedethecurrentflowverymuchinsinteredK-dopedBa-122wiresandbulks,ifcleanandwell-connected GBs are realised[8, 9]. Additionally, Co-doped Ba-122 exhibitsa high tolerance for large densities of fluxpinningcentresinthesuperconductingmatrix,whichleadstosignificantincreaseincriticalcurrent density(J )andirreversibilityfield(H )[10]. c irr Another advantageof Ba-122, in particularP-doped Ba-122, is its inherentlyhigh J . Putzke et al. c havereportedontheenhancementofthevortexcoreenergyofthefluxlinesatthequantumcriticalpoint (QCP)oftheantiferromagneticphase[11]. Indeed,evenmicrostructurallycleanandoptimallyP-doped Ba-122epitaxialthinfilms,whichwerepreparedbymolecularbeamepitaxy(MBE),exhibitahighself- fieldJ ofover6MA/cm2 at4.2K[12]. AlthoughexcessmagneticFehasbeenfoundtobeharmfulto c superconductivityinFe(Se,Te)[13],Fe-richP-dopedBa-122thinfilmsshowedahigherself-fieldJ of c over10MA/cm2 at4.2K, which is the highestvalue everreportedfor FBS[6]. Whereasin the former case Fe is incorporatedinterstitially[14], in the latter case the Fe may form Fe-containing particles or regions with differing P-content, both acting as pinning centres[6]. Furthermore, the high J and low c anisotropyP-dopedBa-122thinfilmscanbefabricatedbytuningtheprocessingconditionsonly,without anymodificationofthetargetmaterialusedinpulsedlaserdeposition(PLD)[15]. The aforementioned advantages of P-doped Ba-122 are very suitable for high-field-magnetapplica- tions. Indeed,P-dopedBa-122thinfilmsontechnicalsubstrateshavebeendemonstratedasFBScoated conductors[16,17]. Todate,twokindsoftechnicalsubstrateshavebeenemployedforFBScoatedcon- ductors: Thecube-texturedmetaltapeswithbufferlayers(i.e.,RABiTS)[18]andtheHastelloytapeon whichbiaxiallytexturedbufferlayersarepreparedbyion-beam-assisted-deposition(IBAD)[19]. IncontrasttoFe(Se,Te)coatedconductors[20,21],transportpropertiesofP-dopedBa-122coatedcon- ductorsin the presence of extremely high magnetic fields have not yet been reported. Here, we report on in-field transport properties of a P-doped Ba-122 thin film grown by PLD on metal substrate with biaxially textured MgO template (IBAD-MgO) in a wide range of temperature and DC magnetic field upto35T.WeemployIBAD-MgOtemplatewitharelativelylargein-planefullwidthathalfmaximum (FWHM)value(∆φ =8◦),sinceithasbeendemonstratedbyx-raydiffraction(XRD)andtransmis- MgO sionelectronmicroscopy(TEM)thatthetextureofMgOistransferredtotheoverlyingP-dopedBa-122 film, generatingdislocationnetworks[17]. Suchdislocationnetworksenhancethevortexpinningin P- dopedBa-122[17],sinceθ islessthan9◦[5]. Indeed,in-fieldJ propertiesofourP-dopedBa-122on c c IBAD-MgOwith∆φ =8◦ weresuperiortothoseofthefilmonatemplatewith∆φ =4◦[17]. MgO MgO AhighdensityofthreadingdislocationsisveryeffectiveforimprovingJ forH k cinawiderangeof c temperatureandmagneticfieldevenclosetoH .Despitetherelativelylargeθ of6◦−9◦forBa-122,J irr c c ofourP-dopedBa-122coatedconductorwithsharpFWHMvaluesofbothin-plane,∆φBa−122 = 5.7◦, andout-of-planemisorientaion,∆ωBa−122 = 1.2◦ (seeSupplementalFig.S1)is limitedbytheGBs in the low field regime. However, at high field, it exceeds a transport J of 105A/cm2 at 15T for field c appliedin both main crystallographicdirections. Our P-dopedBa-122coated conductorsample shows superiorin-fieldJ propertiesoverMgB andNbTi,andacomparableleveltoNb Snabove20T. c 2 3 2 Results Resistivitymeasurements The normal-state resistivity ρ (Fig.1a) can be approximatedby ρ = ρ +ATn with an exponent n n 0 n-value of 1.28, ρ = 3.32×10−2mΩ·cm and A = 8.22×10−5mΩ·cm/K1.28 in the range of 30 < 0 T < 150K in accord with Ref.22. Shibauchiet al. have reportedthat the exponentn is unity at the quantumcriticalpoint(QCP)oftheantiferromagneticphase,wherethemaximumT isobservedat33% c ofPcontentforbulksinglecrystals[23]. Based onthoseresults, weinferthatthePcontentofourBa- 122 thin film on IBAD-MgO is different from the optimal level. Chemical analysis by electron probe microanalysis revealed a P content of 0.31, high enough to induce superconductivitywith an onset T c of 30K for Ba-122single crystal[22]. Thelower T (28.3K) of the P-dopedBa-122coated conductor c maybeaconsequenceofepitaxialstrain,sinceMgOsinglecrystallinesubstratesinducein-planetensile straintoBa-122filmsduetothelatticemismatch[24,25]. ThelatticeparametersaandcofourP-doped Ba-122coatedconductorsarelocatedbetweenthesinglecrystalsandthinfilmsdepositedonMgOsingle crystallinesubstrates(Fig.1b).ThecrystallinequalityofIBAD-MgOaffectsmainly∆φ ratherthan Ba122 ∆ω [17],changingtheamountofthein-planestrainandhenceT . Ba122 c ThelinearityoftheArrheniusplotsofρ(T,H)forbothmajorcrystallographicdirectionsatacertain magneticfield(Figs.2aand2b)revealsthermallyactivatedfluxmotionundertheassumptionofalinear T-dependenceoftheactivationenergy,U (H)[26](Seethemethodsection). ItcanbeseenfromFig.2c 0 thatU (H)forbothH kcandkabarewelldescribedbyHα(1−H/H∗)β above10T,whichhasbeen 0 used for analysing polycrystallineMgB samples by Thompsonet al[27]. H∗ is a characteristic field 2 representingtheirreversibilityfieldat0K[27,28]. TheevaluatedvaluesforH k candk abare48.9T and59.7T,respectively(forH kcandkabα=0.68and0.64,andβ =1.1and0.94). Alinearfitforlnρ(H)versusU (H)usinglnρ (H)=lnρ +U (H)/T ,whereρ istheprefactor, 0 0 0f 0 c 0f yieldsT of26.9KforH k cand27.2KforH k ab,respectively(seeSupplementalFig.S2a). TheT c c valuesevaluatedbythis methodare slightlylower thanthe T (see Fig.1a). A plausibleexplanation c,90 forthisdifferenceistheincreasedtransitionwidth∆T dueto thereducedtexturequalitycomparedto c filmsonsinglecrystalsubstratesorsinglecrystalsamples. H (T) was evaluated from the linear presentationsof Figs.2a and 2b (see SupplementaryFig.S2b c2 andS2c)applyingaρ = 0.9ρ resistivitycriterion,whereρ isthenormalstateresistivityρ at n,0.9 n n,0.9 n 28.5K.ShowninFig.2disH forH k candk ab. ThedottedlineinFig.2disthefittingcurveusing c2 (1−T/T )k. An exponentk of0.9was obtainedforH k ab, whichis farfromthe expectedvalueof c 0.5forlayeredcompoundslimitedbyPaulipairbreakingatgivenT closetothedimensionalcrossover temperature[29–31],whichconfirmsthatP-dopedBa-122isa3Dsuperconductor.Becauseofthelackof lowtemperaturedata,itisnotpossibletofittheH (T)(andH (θ),shownlaterunambiguously)with c2 c2 apropermodelforFBS[32,33]. Thetemperaturedependenceoftheirreversibilityfield,H (T)(Fig.2e)wasevaluatedfromρ(T,H) irr measurements using a resistivity criterion of ρ = E /J = 1.0−8Ω·cm, where E is the elec- c c c,100 c tric field criterion(1µV/cm) fordeterminingJ fromE −J measurementsandJ is the criterion c c,100 (100A/cm2) for determining H from J (H) measurements (see Supplementary Fig.S2d and S2e). irr c TheH dataat0KareestimatedfromtheArrheniusplotsandtheyappeartomatchthelowtempera- irr turelimitoftheH datadirectlydeterminedfromtheρ(T,H)usingtheρ criterion. Forcomparison, irr c H (T)determinedfromJ (H)isalsoplottedinFig.2eshowingsomedifferenceswiththevalueses- irr c timated from ρ(T,H). A plausible reason is a differentfrequencyof the applied currentused in those investigations[34]. TheangulardependenceofH at20K,whichwasderivedfromρ(H)curvesatconstantangleswith c2 ρ (Fig.3a)showsaminimumatθ =90◦(H kc)andamaximumatθ =180◦(H kab),asshownin n,0.9 Fig.3b.Thesingle-bandanisotropicGinzburg-Landau(AGL)theory[35],H (θ)=H (90◦)(sin2(θ)+ c2 c2 3 cos2(θ)/γ2)−0.5 with γ = H (180◦)/H (90◦) (dottedlinein Fig.3b), cannotdescribethemeasured c2 c2 H (θ)duetothemulti-bandnatureofthismaterial,similarlytoCo-dopedBa-122[28]. A fairlygood c2 descriptionofthedatais,however,achievedbytheempiricalformulae[28], −1 δ δ cosθ H (θ)=H (90◦)×ǫ(θ,γ,δ), ǫ(θ,γ,δ)= |sinθ|δ+ (1) c2 c2 γ (cid:12) (cid:12) ! (cid:12) (cid:12) (cid:12) (cid:12) withδ = 1.47andγ = 1.62(solidline). Theparameterγ istheH anisot(cid:12)ropy,(cid:12)whereasδ isameasure c2 for the ab-peakwidth whose physicalmeaningis still unclear. These two values will be used later for scalingtheangulardependenceofJ (θ)data. c TheangulardependenceofH at20Kderivedusingthesameresistivitycriterionρ =1.0−8Ω·cm irr c showsalmostthesametrendasH (θ). UnliketheangulardependenceofJ (seenextsection),noclear c2 c peakatθ =90◦(H kc)isobservedinH (θ). irr In-fieldcriticalcurrentdensityJc(T,H,θ) The E −J curves of the P-doped Ba-122 coated conductor sample at 4.2K (Fig.4) show different behaviour at high and low magnetic fields for both major field directions. Up to 10T they exhibit a non-Ohmiclineardifferential(NOLD)signature(i.e., E islinearlychangingwithJ in linearscale, see SupplementalFig.S3),indicativeofJ limitationbyGBs[36]. HereNOLDbehaviourisduetoviscous c fluxflowalongtheGBs[37]. Ontheotherhand,NOLDsignatureisalmostabsentabove12.5T,suggest- ing thatJ is limitedby intra-graindepinningof fluxlines. Thispinningcrossoverfield is observedto c decreasewithincreasingtemperature(notshown),whichisconsistentwiththecuprateYBCO reported inRef.38and39. Figure5a comparesJ (H)forP-dopedBa-122onIBAD-MgOforH k c at4.2K withP-dopedBa- c 122onMgOsinglecrystallinesubstrate[15],Fe(Se,Te)onRABiTS[21],YBCOcoatedconductor[40], MgB [41],NbTi[42,43],andNb Sn[44,45].Pinning-improvedYBCO2nd-generation(2G)tapeshows 2 3 thehighestJ atentiremagneticfields;however,awelltexturedtemplateisnecessary. TheP-dopedBa- c 122coatedconductorexceedsaself-fieldJ of4MA/cm2andmaintainsahighJ valueof50kA/cm2at c c 20T.Fortheentirefieldrange,J ofP-dopedBa-122coatedconductorsampleislargerthanforMgB c 2 and NbTi. Above 20T, the P-doped Ba-122 coated conductor sample shows comparable properties to Nb Sn. Although lower-field J of P-doped Ba-122 on IBAD-MgO is higher than that of Fe(Se,Te) 3 c on RABiTS, the latter shows the better performanceat mediumand highfields. Figure5b summarises J (H)forP-dopedBa-122onIBAD-MgOforbothcrystallographicdirectionsatvarioustemperatures. c At intermediate fields J for the two directions is comparable, indicative of the presence of correlated c pinningalongthec-axis. ByanalysingthepinningforcedensityF =µ H×J ,informationonvortexpinningcanbeobtained. p 0 c In general, the normalised pinning force, f = F /F , is plotted as a function of reduced field p p p,max h = H/H atagiventemperatureforhigh-T superconductors. However,weplotf asafunctionof 1 irr c p h = H/H ,whereH isthefieldatwhichF showsthemaximum[46–49],sinceJ couldnotbe max max p c measureduptoH atalltemperatures.AscanbeseeninFig.5c,thef curvesatdifferenttemperatures irr p forH kcalmostfallontoamastercurveintherangeof0<h<3describedby 25 h f = h0.5(1− )2 (2) p 16 5 Thisformulaisanalogoustohp(1−h )q (p = 0.5andq = 2)foundbyDew-Hughes[50]forpinning 1 1 4 byplanardefectssuchasGBandtwinboundaries,andbyKramerforlinedefectarrays[51]. Inhigh-T c superconductorswithextremelyshortcoherencelengthsξ,afurtherclassificationofthedefectsizewith respecttoξisnecessary.IthasbeenrecentlyfoundbyPaturietal.thattheexponentpis0.5irrespective ofq fora defectsizeoftheorderofξ andespeciallyfordislocationsinundopedYBCO films[49]. On thecontrary,pincreasestowards1withincreasingdefectsize. Thisconfirmsthefindingthatpinningin oursampleisdominatedbythedislocationswithnano-size.Here,itshouldbenotedthatasignofNOLD signature does not contradictGB pinning. In fact it has been reported for YBCO that the dislocations inGBscanworkasvortexpinningcentres[52,53]. Thefluxpreferentiallyflowsacrossthedislocation coresintheGBplane,whichexplainstheE−J curveswithNOLDsign. Abrikosov-Josephsonvortices(AJV)arepresentinlow-angleGBsinbothYBCO[54]andFBS.Unlike Josephsonvortices(JV),AJV have normalcoresandcan be trappedbyflux pinning. Furthermore,the presence of an interaction betweenAbrikosovvortices(AV) in the grainand AJV at the GBs has been experimentallyfoundinRef.55: anincreaseinpinningpotentialforAVleadstotheenhancementofthe pinningpotentialforAJV. ForH k ab thef curvesat both10and 15K followwellthe GBpinningline (redsolidline) upto p 16T (correspondingto h = 2 and 3.2 in Fig.5d, respectively). In contrast, f at 20K neither follows p theGBpinningnorpoint-likepinning(redsolidandbluedashedlines,respectively)inhighfieldregime, althoughthef curveliesontheGBpinninglinebelowh < 2. Similarly,thef curveat4.2Kfollows p p theGBpinningcurveuptoh < 1.5andthenapproachesthepoint-likepinningcurvebeyondh > 1.5. Hence, differentlyfrom the H k c case, the dominantpinningmechanism for H k ab is varyingwith temperatureandfieldstrength. The angular dependence of the critical current density, J (θ) (Fig6a-d), shows two distinct peaks: c a relatively sharp peak at H k ab and a broad maximum at H k c, which arises from the network of threading dislocations comprising the low-angle GBs[17]. Surprisingly, the c-axis peaks [J (90◦)] c remainvisibleevenclosetoH atalltemperatures.Unlikesinglebandsuperconductors,theanisotropy irr ofcoherencelength,γ =ξ /ξ ,andpenetrationdepth,γ =λ /λ ,ofFBSexhibitoppositebehaviour ξ ab c λ c ab withtemperature[56]. ForanoptimallydopedBa-122system,γ > γ holdsatalltemperature. Inthis λ ξ caseevenoccasionaluncorrelateddefectsslightlylargerthanξyieldastrongc-axispinning[57].Suchan effectincombinationwiththreadingdislocationsalongthec-axismayenhanceenormouslytheaverage pinningpotentialforappliedfieldsparalleltothec-axis. ShowninFig.6eisthescalingbehaviourofJ (θ)asafunctionoftheeffectivefield[i.e.,ǫ(θ,γ,δ)× c µ H]at20K.Hereδ = 1.47andγ = 1.62wereusedasobtainedbytheH (θ)fit. Ascanbeseen,all 0 c2 J (θ)curvescollapseontoamastercurveinawideangularrangearoundH k ab. Differencesbetween c the master curve and the measured J (H) for H k c are correlated pinning contributions. Here we c emphasisethattheJ peakatθ = 180◦ isfullydeterminedbytheelectronicanisotropyat20Kandno c intrinsicpinningorpinningbyplanardefectsisobserved. Discussionsandconclusions InordertorealiseFBScoatedconductors,highJ valueswithlowanisotropyinhighfieldsareneces- c sary. J ofourP-dopedBa-122coatedconductornearlyreachedthepracticallevelof∼0.1MA/cm2 at c 15Tforanyappliedfielddirectionsat4.2K[seeFig.5a)],whichshowssuperiorpropertiesoverMgB 2 and NbTi. Above 20T the level of J is comparable to Nb Sn. Additionally, the intrinsic anisotropy c 3 estimatedat20KfromtheH dataisbelow2. Moreover,thecorrelateddefectsincreaseJ forH k c c2 c substantiallysuppressingtheeffectiveJ anisotropy. c Asstatedabove,theinequalityofξ andλanisotropyincombinationwithalargedensityofthreading dislocationsalongthec-axissignificantlyenhancestheaveragepinningpotential. Itisworthmentioning thatthepopulationofthreadingdislocationscanbecontrolledbytheprocessingconditionsonly,without 5 anymodificationofthePLDtarget[15]. Compared to optimally P-doped Ba-122 films on MgO single crystal substrates by MBE[12] and PLD[15], the level of J of the P-doped Ba-122 coated conductor still needs to be improved. Film c stoichiometryespeciallyforPcontentshouldbecontrolledprecisely. Asstatedbefore,thePcontentof ourBa-122filmslightlydiffersfromtheoptimallevel,wheretheQCPcausesasharpmaximumforthe vortexcoreenergy[11]. As a consequence,the slightdeviationfromthe optimalPlevelin oursample resultsinalowervortexcoreenergy,whichdirectlyreducesJ . c Unlike in electron and hole dopedBa-122 systems, aliovalentdisorderthat contributesto pinningin the Co or K cases is absent in P-doped Ba-122. However, J can be further enhanced by introducing c growth defects (e.g. intragrain dislocations since the PLD processing conditions strongly affect their density[15]) andartificial structures(e.g. nanoparticles). Moreover,the thermalconductivityof single crystalline MgO is different from that of IBAD-MgO template, which infers the optimum deposition temperaturemaychange. TheintroductionofartificialpinningcentresiseffectiveforfurtherimprovementofJ . Infact,Miura c etal.havereportedtheintroductionofBaZrO intoP-dopedBa-122matrix[58]inanalogytotheaddi- 3 tionofBaZrO toYBCO.Hence,acombinationoftheintroductionofartificialpinningcentresandthe 3 precisecontrolofPcontentwillyieldbetterperformingP-dopedBa-122coatedconductors. AnattempttofabricatealonglengthP-dopedBa-122coatedconductorhasstartedquiterecently. As a result, a 15cm long P-doped Ba-122 coated conductorhas been realised by PLD using a reel-to-reel system[16]. AlbeittheresultantP-dopedBa-122showedasmallself-fieldI of0.47mA(corresponding c toaJ of4.7×104A/cm2)at4.2K,animprovementofI isforeseenbyapplyingtheaforementioned c c methods. Insummary,wehaveinvestigatedin-fieldtransportpropertiesofaP-dopedBa-122thinfilmgrownby PLDontechnicalsubstrateinawiderangeoftemperatureandDCmagneticfieldupto35T.TheP-doped Ba-122 coated conductor exceeds a transport J of 105A/cm2 at 15T for both major crystallographic c directionsoftheappliedfield. Additionally,theJ peaksforH k cremainvisibleevenclosetoH at c irr alltemperaturesbytheenhancedvortexpinningduetothecombinationoflargepopulationofthreading dislocationsandtheinequalityofξ andλanisotropy. ThisleadstoalowerJ anisotropy. Byanalysing c pinningforcedensities,weestablishedthattheGBpinningcontributionisdominantforH k c,whereas forH k ab, thedominantpinningisvaryingwithtemperature. Theresultsobtainedthroughthisstudy areconsideredpromisingforfuturehigh-field-magnetapplicationsofAE-122systems. METHODS GrowthoftheP-dopedBa-122filmandstructuralcharacterisation TheP-dopedBa-122thinfilmof185 nmthicknesswasgrownbypulsedlaserdepositiononanIBAD- MgOHastelloymetal-tapesubstratesuppliedbyiBeamMaterials,Inc[59]. Thestackingstructureofthe IBAD-MgOsubstrateasshowninref.17consistsoffirstaplanarisingbottombed-layeramorphousY O 2 3 ontheHastelloy,secondabiaxiallytexturedMgOlayerformedbyIBAD,andatophomoepitaxialMgO layer.TheIBAD-MgOsubstratewithalargein-planedistributionangleof∆φ =8◦wasinvestigated MgO becausehigherJ with isotropicpropertiescan beachievedcomparedto the film onthe well in-plane- c aligned IBAD-MgO metal-tapes(i.e., ∆φ = 4◦)[17]. A polycrystallineBaFe (As P ) disk MgO 2 0.65 0.35 2 wasusedasthePLDtarget.Weemployedahighergrowthtemperatureof1200◦CthanforoptimisedP- dopedBa-122filmsonMgOsingle-crystalsubstrates(1050◦C)[15],sincethePconcentrationincreases with increasinggrowthtemperaturefora giventargetcomposition. As expected,a higherPconcentra- tion closer to the optimum P concentration than in previous studies was achieved[15, 17]. The other growthparameters[e.g.,theexcitationsourceandthelaserfluenceofthesecondharmonics(wavelength: 6 532nm)ofaNd-dopedyttrium-aluminum-garnetpulsedlaser and3J/cm2, respectively]werethesame asreportedinRef.15. To determine the crystalline phases, ω-coupled 2θ scan X-ray diffraction measurements were per- formed. The asymmetric 103 diffraction of the P-doped Ba-122 film was measured to confirm the in- planecrystallographicfour-foldsymmetrywithoutin-planerotationaldomains. Thecrystallinityofthe filmwascharacterisedonthebasisofthefullwidthsathalfmaximum(FWHMs)oftheout-of-plane004 (∆ω)andthein-plane200rockingcurves(∆φ). TheresultsofthoseXRDmeasurementscanbefoundin SupplementaryInformationFig.S1. Thechemicalcompositionwas determinedwith anelectron-probe microanalyser.TheaccelerationvoltageoftheelectronbeamwasoptimisedwhilemonitoringtheNiKα spectrumtoavoidthematrixeffectfromtheNi-containingHastelloymetal-tapes. In-planetransportmeasurements A small bridge of 15µm width and 500µm length was patterned by photolithography, followed by ion-beametching. Auelectrodeswith50nmthicknesswereformedbysputteringandlift-off. Transport propertiesusingtheresultantbridgeweremeasuredbyastandardfour-probemethod. ThetemperaturedependenceoftheresistivityoftheP-dopedBa-122coatedconductorshowsaT c,90 of28.3K(Fig.1a), whichisabout3KlowerthanthatoftheoptimallyP-dopedBa-122singlecrystals. T is defined as the intersection between the steepest slope of the superconducting transition and a c,90 90% reduction of the fit of the normalstate resistivity using ρ = ρ +ATn. On the other hand, the n 0 onsetT isdefinedastheintersectionbetweenthefitcurveasstatedaboveandthesteepestslopeofthe c superconductingtransition.ThedifferencebetweenT andtheonsetT isnegligible. c,90 c TheactivationenergyU (H) forvortexmotionwas evaluatedbythetemperaturedependenceofthe 0 resistivity measurementsin various field strengths up to DC 35T at the National High Magnetic Field Laboratory,Tallahassee,FL,USA.Accordingtothemodelofthermallyactivatedfluxflow[26],theslope oflinearfityieldsthepinningpotentialforvortexmotionatgivenfields(Fig.2c).Ontheassumptionthat U(T,H) = U (H)(1 −T/T ), both equations, lnρ(T,H) = lnρ (H)− U (H)/T and lnρ (H) = 0 c 0 0 0 lnρ +U (H)/T ,areobtained,whereρ isaprefactor. 0f 0 c 0f InordertofurtherunderstandtheH anisotropyforaP-dopedBa-122coatedconductorsample,the c2 angulardependenceof the magnetoresistivitywas measuredat 20K. Using the same constantcriterion ρ forevaluatingH ,theangulardependentuppercriticalfield[H (θ)]wasderived(Fig.3b). n,0.9 c2 c2 Acriterionof1µV/cmwasemployedforevaluatingJ . InJ measurement,themagneticfieldwas c c always appliedin the maximumLorentzforceconfiguration. Low-fieldmeasurementswere performed inaQuantumDesignphysicalpropertymeasurementsystem(PPMS)inmagneticfieldsupto16T.For highfieldmeasurementsuptoDC35T,theexperimentswereconductedattheNationalHighMagnetic FieldLaboratory,Tallahassee,FL,USA. Acknowledgement A portion of this work was performed at the National High Magnetic Field Laboratory, which was supportedbyNationalScienceFoundationCooperativeAgreementNo. DMR-1157490,andtheStateof Florida.TheworkatTokyoInstituteofTechnologywassupportedbytheMinistryofEducation,Culture, Sports, Science and Technology (MEXT) through Element Strategy Initiative to Form Core Research Center. K.I.acknowledgessupportbytheJapanSocietyforthePromotionofScience(JSPS) Grant-in- AidforScientificResearch(B)GrantNumber16H04646. H.HiwasalsosupportedbyJSPSforYoung Scientists(A)GrantNumber25709058,JSPSGrant-in-AidforScientificResearchonInnovativeAreas Nano Informatics(GrantNumber 25106007),and Supportfor TokyotechAdvancedResearch (STAR). 7 We acknowledge support by Deutsche Forschungsgemeinschaftand Open Access Publishing Fund of KarlsruheInstituteofTechnology. Authorscontribution K.I., C.T., J.H., H.S. and H.Hi. designed the study and wrote the manuscripttogether with J.J. and H.Ho. Thinfilmspreparation,structuralcharacterisationsandmicrobridgefabricationswerecarriedout byH.S.andH.Hi. K.I.,C.T.,J.H.andJ.J.conductedhighfieldtransportmeasurements. C.T.,H.S.and H.Hi. performedlowfieldtransportmeasurements. K.I.,C.T.,H.Hi,andH.Ho. supervisedtheprojects. Allauthorsdiscussedtheresultsandimplicationsandcommentedonthemanuscriptatallstages. ADDITIONALINFORMATION Theauthorsdeclarenocompetingfinancialinterests.Correspondenceandrequestsformaterialsshould beaddressedtoK.I. ∗ Correspondenceto:[email protected] [1] Kamihara,Y.etal. Iron-BasedLayeredSuperconductorLa[O1−xFx]FeAs(x = 0.05−0.12)withTc=26K. J.Am.Chem.Soc.130,3296-3297(2008). [2] Hirschfeld,P.J.UsinggapsymmetryandstructuretorevealthepairingmechanisminFe-basedsuperconductors. C.R.Physique17,197-231(2016). [3] Yamamoto,A.etal. Smallanisotropy,weakthermalfluctuations,andhighfieldsuperconductivityinCo-doped ironpnictideBa(Fe1−xCox)2As2. Appl.Phys.Lett.94,062511(2009). [4] Lei,H.etal. Pauli-limiteduppercriticalfieldofFe1+yTe1−xSex. Phys.Rev.B81,094518(2010). [5] Katase,T.etal. Advantageousgrainboundariesinironpnictidesuperconductors. Nat.Commun.2,409(2011). [6] Sakagami,T.etal. CriticalcurrentdensityandgrainboundarypropertyofBaFe (As,P) thinfilms. PhysicaC 2 2 494,181-184(2013). [7] Lee,S.etal. Weak-linkbehaviorofgrainboundariesinsuperconductingBa(Fe1−xCox)2As2 bicrystals. Appl. Phys.Lett.95,212505(2009). [8] Weiss,J.D.etal. Highintergraincriticalcurrentdensityinfine-grain(Ba K )Fe As wiresandbulks. Nat. 0.6 0.4 2 2 Mater.11,682-685(2012). [9] Weiss,J.D.etal. Demonstrationofaniron-pnictidebulksuperconductingmagnetcapableoftrappingover1T. Supercond.Sci.Technol.28,112001(2015). [10] Tarantini,C.etal. DevelopmentofveryhighJcinBa(Fe1−xCox)2As2thinfilmsgrownonCaF2. Sci.Rep.4, 7305(2014). [11] Putzke,C.etal. Anomalouscriticalfieldsinquantumcriticalsuperconductors. Nat.Commun.5,5679(2014). [12] Kurth,F.etal. UnusuallyhighcriticalcurrentofcleanP-dopedBaFe As singlecrystallinethinfilm. Appl. 2 2 Phys.Lett.106,072602(2015). [13] Bendele,M.etal. TuningthesuperconductingandmagneticpropertiesofFe Se Te byvaryingtheiron y 0.25 0.75 content. Phys.Rev.B82,212504(2010). [14] Sun,Y.,etal. DynamicsandmechanismofoxygenannealinginFe Te Se singlecrystal. Sci.Rep.4, 1+y 0.6 0.4 4585(2014). [15] Sato, H., Hiramatsu, H., Kamiya, T. & Hosono, H. High critical-current density with less anisotropy in BaFe2(As,P)2 epitaxial films: Effect of intentionally grown c-axis vortex-pinning centers. Appl. Phys. Lett. 104,182603(2014). [16] Hosono, H.etal. Explorationofnewsuperconductorsandfunctionalmaterials,andfabricationofsupercon- ductingtapesandwiresofironpnictides. Sci.Technol.Adv.Mater.16,033503(2015). [17] Sato,H.,Hiramatsu,H.,Kamiya,T.&Hosono,H. Enhancedcritical-currentinP-dopedBaFe As thinfilms 2 2 onmetalsubstratesarisingfrompoorlyalignedgrainboundaries. Sci.Rep.6,36828(2016). 8 [18] Norton,D.P.etal.EpitaxialYBa Cu O onBiaxiallyTexturedNickel(001):AnApproachtoSuperconducting 2 3 7 TapeswithHighCriticalCurrentDensity. Science274,755-757(1996). [19] Iijima,Y.Tanabe,N.,Kohno,O.&Ikeno,Y.In-planealignedYBa2Cu3O7−xthinfilmsdepositedonpolycrys- tallinemetallicsubstrates. Appl.Phys.Lett.60,769-771(1992). [20] Si,W.etal. Iron-chalcogenide FeSe Te coatedsuperconducting tapesforhighfieldapplications. Appl. 0.5 0.5 Phys.Lett.98,262509(2011). [21] Si,W.etal. Highcurrentsuperconductivity inFeSe Te -coatedconductorsat30tesla. Nat.Commun.4, 0.5 0.5 1347(2013). [22] Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2. Phys.Rev.B81,184519(2010). [23] Shibauchi, T., Carrington, A.&Matsuda, Y. A Quantum CriticalPoint LyingBeneath theSuperconducting DomeinIronPnictides. Annu.Rev.Condens.MatterPhys.5,113-135(2014). [24] Kawaguchi,T.etal. ThestraineffectonthesuperconductingpropertiesofBaFe (As,P) thinfilmsgrownby 2 2 molecularbeamepitaxy. Supercond.Sci.Technol.27,065005(2014). [25] Iida,K.etal. Hall-plotofthephasediagramforBa(Fe1−xCox)2As2. Sci.Rep.6,28390(2016). [26] Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F. & Waszczak, J. V. Thermally Activated Dissipation in Bi Sr Ca Cu O . Phys.Rev.Lett.61,1662-1665(1988). 2.2 2 0.8 2 8+δ [27] Thompson, J.R.etal. Vortexpinning and slowcreep inhigh-Jc MgB2 thinfilms: amagneticand transport study. Supercond.Sci.Technol.18,970-976(2005). [28] Ha¨nisch,J.etal. HighfieldsuperconductingpropertiesofBa(Fe1−xCox)2As2 thinfilms. Sci.Rep.5,17363 (2015). [29] Uher,C.,Cohn,J.L.,&Schuller,I.K.Uppercriticalfieldinanisotropicsuperconductors. Phys.Rev.B34,4906 (1986). [30] Klemm,R.A.,Luther,A.,&Beasley,M.R. Theoryoftheuppercriticalfieldinlayeredsuperconductors. Phys. Rev.B12,877-891(1975). [31] Tarantini,C.etal.Significantenhancementofuppercriticalfieldsbydopingandstraininiron-basedsupercon- ductors. Phys.Rev.B84,184522(2011). [32] Gurevich, A. UppercriticalfieldandtheFulde-Ferrel-Larkin-Ovchinnikovtransitioninmultibandsupercon- ductors. Phys.Rev.B82,184504(2010). [33] Gurevich,A. Iron-basedsuperconductorsathighmagneticfields. Rep.Prog.Phys.74,124501(2011). [34] Pan,A.V.,Golovchanskiy,I.A.,&Fedoseev,S.A. Criticalcurrentdensity:Measurementsvs.reality. EPL103, 17006(2013). [35] Tinkham,M. IntroductiontoSuperconductivity. DoverPublication,NewYork,320(2004). [36] Verebelyi,D.T.etal. Lowanglegrainboundary transportinYBa2Cu2O7−δ coatedconductors. Appl.Phys. Lett.76,1755-1757(2000). [37] D´ıaz,A.,Mechin,L.,Berghuis,P.,&Evetts,J.E.ObservationofviscousfluxflowinYBa2Cu3O7−δlow-angle grainboundaries. Phys.Rev.B58,R2960-R2963(1998). [38] Daniels,G.A.,Gurevich, A.,&Larbalestier,D.C. Improvedstrongmagneticfieldperformanceoflowangle grainboundariesofcalciumandoxygenoverdopedYBa Cu O . Appl.Phys.Lett.77,3251-3253(2000). 2 3 x [39] Ferna´ndez,L.etal.InfluenceofthegrainboundarynetworkonthecriticalcurrentofYBa Cu O filmsgrown 2 3 7 onbiaxiallytexturedmetallicsubstrates. Phys.Rev.B67,052503(2003). [40] Xu,A.etal.AngulardependenceofJcforYBCOcoatedconductorsatlowtemperatureandveryhighmagnetic fields. Supercond.Sci.Technol.23,014003(2010). [41] Li, G.Z. et al. Effects of carbon concentration and filament number on advanced internal Mg infiltration- processedMgB strands. Supercond.Sci.Technol.26,095007(2013). 2 [42] Boutboul,T.etal. CriticalCurrentDensityinSuperconductingNb-TiStrandsinthe100mTto11TApplied FieldRange. IEEETrans.Appl.Supercond.16,1184-1187(2006). [43] Kanithi,H.etal. ProductionResultsof11.75TeslaIseult/INUMACMRIConductoratLuvata. IEEETrans. Appl.Supercond.24,6000504(2014). [44] Parrell J.A. et al. High field Nb Sn conductor development at Oxford Superconducting Technology. IEEE 3 Trans.Appl.Supercond.13,3470-3473(2003). [45] Parrell J.A., Field, M.B., Zhang, Y., & Hong, S. Nb Sn Conductor Development for Fusion and Particle 3 AcceleratorApplications. AIPConf.Proc.711,369(2005). [46] Civale,L.etal. ScalingofthehystereticmagneticbehaviorinYBa Cu O singlecrystals. Phys.Rev.B43, 2 3 7 13732-13735(1991). 9 [47] Qin,M.J.etal.ParamagnetismandscalingbehaviorofvolumefluxpinningforcedensityinaGdBa Cu O 2 3 6+x thinfilm. J.Appl.Phys.78,3287-3292(1995). [48] Higuchi,T.,Yoo,S.I.,&Murakami,M. Comparativestudyofcriticalcurrentdensitiesandfluxpinningamong aflux-grownNdBa Cu O singlecrystal,melt-texturedNd-Ba-Cu-O,andY-Ba-Cu-Obulks. Phys.Rev.B59, 2 3 y 1514-1527(1999). [49] Paturi, P., Malmivirta, M., Palonen, H., & Huhtinen, H. Dopant Diameter Dependence of Jc(B) in Doped YBCOFilms. IEEETrans.Appl.Supercond. 26,8000705(2016). [50] Dew-Hughes,D. FluxpinningmechanismintypeIIsuperconductors. Philos.Mag.30,293-305(1974). [51] Kramer,E.J. Scalinglawsforfluxpinninginhardsuperconductors. J.Appl.Phys.44,1360-1370(1973). [52] D´ıaz,A.,Mechin,L.,Berghuis,P.,&Evetts,J.E.EvidenceforVortexPinningbyDislocationsinYBa2Cu3O7−δ Low-AngleGrainBoundaries. Phys.Rev.Lett.80,3855-3858(1998). [53] Heinig,N.F.,Redwing, R.D.,Nordman, J.E.,&Larbalestier,D.C. Strongtoweakcouplingtransitioninlow misorientationanglethinfilmYBa2Cu3O7−xbicrystals. Phys.Rev.B60,1409-1417(1999). [54] Gurevich,A.etal. FluxFlowofAbrikosov-JosephsonVorticesalongGrainBoundariesinHigh-Temperature Superconductors. Phys.Rev.Lett.88,097001(2002). [55] Palau,A.etal. Correlationbetweengrainandgrain-boundarycriticalcurrentdensitiesinexsitucoatedcon- ductorswithvariableYBa2Cu3O7−δ layerthickness. Appl.Phys.Lett.88,122502(2006). [56] Kon´czykowski,M.,etal. Anisotropyofthecoherencelengthfromcriticalcurrentsinthestoichiometricsuper- conductorLiFeAs. Phys.Rev.B84,180514(2011). [57] vanderBeek,C.J.,Kon´czykowski, M.,&Prozorov,R. Anisotropyofstrongpinninginmulti-bandsupercon- ductors. Supercond.Sci.Technol.25,084010(2012). [58] Miura,M.,etal.Stronglyenhancedfluxpinninginone-stepdepositionofBaFe (As P ) superconductor 2 0.66 0.33 2 filmswithuniformlydispersedBaZrO nanoparticles. Nat.Commun.4,2499(2013). 3 [59] Sheehan, C.et al. Solutiondeposition planarization of long-length flexiblesubstrates. Appl.Phys. Lett.98, 071907(2011). 10