ebook img

High-field transport properties of a P-doped BaFe2As2 film on technical substrate PDF

0.89 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-field transport properties of a P-doped BaFe2As2 film on technical substrate

High-fieldtransport properties ofa P-doped BaFe As film ontechnical substrate 2 2 KazumasaIida,1,∗ HikaruSato,2 ChiaraTarantini,3 JensHa¨nisch,4 JanJaroszynski,3 HidenoriHiramatsu,2,5 BernhardHolzapfel,4 and HideoHosono2,5 1Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan 2Laboratory forMaterials and Structures, Instituteof Innovative Research, Tokyo Institute of Technology, Mailbox R3-1, 7 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 1 3AppliedSuperconductivity Center, National HighMagnetic FieldLaboratory, 0 Florida State University, Tallahassee FL 32310, USA 2 4Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany n a 5Materials Research Center for Element Strategy, J Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 6 (Dated:January17,2017) 1 ] High temperature (high-Tc) superconductorslikecuprates have superior critical current propertiesin n magneticfieldsoverothersuperconductors. However, superconductingwiresforhigh-field-magnetap- o plicationsarestilldominatedbylow-Tc Nb3Sndueprobablytocostandprocessingissues. Therecent c discoveryofasecondclassofhigh-Tcmaterials,Fe-basedsuperconductors,mayprovideanotheroption r- for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of p thebestcandidatesforhigh-field-magnetapplicationsbecauseofitshighuppercriticalfield,Hc2,mod- u erateHc2 anisotropy, andintermediateTc. Herewereportonin-fieldtransportpropertiesofP-doped s BaFe2As2 (Ba-122)thinfilmsgrownontechnicalsubstrates(i.e.,biaxiallytexturedoxidestemplateson . metaltapes)bypulsedlaserdeposition.TheP-dopedBa-122coatedconductorsampleexceedsatransport t a Jcof105A/cm2at15Tforbothmajorcrystallographicdirectionsoftheappliedmagneticfield,whichis m favourableforpracticalapplications.OurP-dopedBa-122coatedconductorsshowasuperiorin-fieldJc - overMgB2 andNbTi,andacomparableleveltoNb3Snabove20T.ByanalysingtheE−J curvesfor d determiningJc,anon-Ohmiclineardifferentialsignatureisobservedatlowfieldduetofluxflowalong n thegrainboundaries. However, grainboundariesworkasfluxpinningcentresasdemonstratedbythe o pinningforceanalysis. c [ 1 v 4 5 1 4 0 . 1 0 7 1 : v i X r a Introduction The discoveryof Fe-based superconductors(FBS) by Kamihara et al.,[1] broughta hugeimpact to thephysicscommunity,sincethecompoundconsistsofferromagneticFe,whichhadbeenbelievedtobe inevitablydetrimentaltotheformationofCooperpairs. Todate,fundamentalquestions,suchasmecha- nismofCooperpairingandorderparametersymmetry,arestillunderdebate[2]. Ontheotherhand,this materialclass isattractiveforapplications. Forinstance, AEFe As (AE: Alkaliearthelements, AE- 2 2 122)andFe(Se,Te)possesshighuppercriticalfields(H )exceeding50TandalowH anisotropyclose c2 c2 to1atlowtemperature[3,4],whichisfavourableforhigh-field-magnetapplications. Furthermore,Ba- 122showslessdeteriorationofcriticalcurrentacrossgrainboundaries(GBs)[5,6]thanYBa2Cu3O7−δ (YBCO)andBi-basedcuprates. ForCo-dopedBa-122,thecriticalGBmisorientationangle(θ ),where c J startstofalloffexponentially,hasbeenreportedtobe6◦−9◦[5,7]. EvenhighangleGBsdonotim- c pedethecurrentflowverymuchinsinteredK-dopedBa-122wiresandbulks,ifcleanandwell-connected GBs are realised[8, 9]. Additionally, Co-doped Ba-122 exhibitsa high tolerance for large densities of fluxpinningcentresinthesuperconductingmatrix,whichleadstosignificantincreaseincriticalcurrent density(J )andirreversibilityfield(H )[10]. c irr Another advantageof Ba-122, in particularP-doped Ba-122, is its inherentlyhigh J . Putzke et al. c havereportedontheenhancementofthevortexcoreenergyofthefluxlinesatthequantumcriticalpoint (QCP)oftheantiferromagneticphase[11]. Indeed,evenmicrostructurallycleanandoptimallyP-doped Ba-122epitaxialthinfilms,whichwerepreparedbymolecularbeamepitaxy(MBE),exhibitahighself- fieldJ ofover6MA/cm2 at4.2K[12]. AlthoughexcessmagneticFehasbeenfoundtobeharmfulto c superconductivityinFe(Se,Te)[13],Fe-richP-dopedBa-122thinfilmsshowedahigherself-fieldJ of c over10MA/cm2 at4.2K, which is the highestvalue everreportedfor FBS[6]. Whereasin the former case Fe is incorporatedinterstitially[14], in the latter case the Fe may form Fe-containing particles or regions with differing P-content, both acting as pinning centres[6]. Furthermore, the high J and low c anisotropyP-dopedBa-122thinfilmscanbefabricatedbytuningtheprocessingconditionsonly,without anymodificationofthetargetmaterialusedinpulsedlaserdeposition(PLD)[15]. The aforementioned advantages of P-doped Ba-122 are very suitable for high-field-magnetapplica- tions. Indeed,P-dopedBa-122thinfilmsontechnicalsubstrateshavebeendemonstratedasFBScoated conductors[16,17]. Todate,twokindsoftechnicalsubstrateshavebeenemployedforFBScoatedcon- ductors: Thecube-texturedmetaltapeswithbufferlayers(i.e.,RABiTS)[18]andtheHastelloytapeon whichbiaxiallytexturedbufferlayersarepreparedbyion-beam-assisted-deposition(IBAD)[19]. IncontrasttoFe(Se,Te)coatedconductors[20,21],transportpropertiesofP-dopedBa-122coatedcon- ductorsin the presence of extremely high magnetic fields have not yet been reported. Here, we report on in-field transport properties of a P-doped Ba-122 thin film grown by PLD on metal substrate with biaxially textured MgO template (IBAD-MgO) in a wide range of temperature and DC magnetic field upto35T.WeemployIBAD-MgOtemplatewitharelativelylargein-planefullwidthathalfmaximum (FWHM)value(∆φ =8◦),sinceithasbeendemonstratedbyx-raydiffraction(XRD)andtransmis- MgO sionelectronmicroscopy(TEM)thatthetextureofMgOistransferredtotheoverlyingP-dopedBa-122 film, generatingdislocationnetworks[17]. Suchdislocationnetworksenhancethevortexpinningin P- dopedBa-122[17],sinceθ islessthan9◦[5]. Indeed,in-fieldJ propertiesofourP-dopedBa-122on c c IBAD-MgOwith∆φ =8◦ weresuperiortothoseofthefilmonatemplatewith∆φ =4◦[17]. MgO MgO AhighdensityofthreadingdislocationsisveryeffectiveforimprovingJ forH k cinawiderangeof c temperatureandmagneticfieldevenclosetoH .Despitetherelativelylargeθ of6◦−9◦forBa-122,J irr c c ofourP-dopedBa-122coatedconductorwithsharpFWHMvaluesofbothin-plane,∆φBa−122 = 5.7◦, andout-of-planemisorientaion,∆ωBa−122 = 1.2◦ (seeSupplementalFig.S1)is limitedbytheGBs in the low field regime. However, at high field, it exceeds a transport J of 105A/cm2 at 15T for field c appliedin both main crystallographicdirections. Our P-dopedBa-122coated conductorsample shows superiorin-fieldJ propertiesoverMgB andNbTi,andacomparableleveltoNb Snabove20T. c 2 3 2 Results Resistivitymeasurements The normal-state resistivity ρ (Fig.1a) can be approximatedby ρ = ρ +ATn with an exponent n n 0 n-value of 1.28, ρ = 3.32×10−2mΩ·cm and A = 8.22×10−5mΩ·cm/K1.28 in the range of 30 < 0 T < 150K in accord with Ref.22. Shibauchiet al. have reportedthat the exponentn is unity at the quantumcriticalpoint(QCP)oftheantiferromagneticphase,wherethemaximumT isobservedat33% c ofPcontentforbulksinglecrystals[23]. Based onthoseresults, weinferthatthePcontentofourBa- 122 thin film on IBAD-MgO is different from the optimal level. Chemical analysis by electron probe microanalysis revealed a P content of 0.31, high enough to induce superconductivitywith an onset T c of 30K for Ba-122single crystal[22]. Thelower T (28.3K) of the P-dopedBa-122coated conductor c maybeaconsequenceofepitaxialstrain,sinceMgOsinglecrystallinesubstratesinducein-planetensile straintoBa-122filmsduetothelatticemismatch[24,25]. ThelatticeparametersaandcofourP-doped Ba-122coatedconductorsarelocatedbetweenthesinglecrystalsandthinfilmsdepositedonMgOsingle crystallinesubstrates(Fig.1b).ThecrystallinequalityofIBAD-MgOaffectsmainly∆φ ratherthan Ba122 ∆ω [17],changingtheamountofthein-planestrainandhenceT . Ba122 c ThelinearityoftheArrheniusplotsofρ(T,H)forbothmajorcrystallographicdirectionsatacertain magneticfield(Figs.2aand2b)revealsthermallyactivatedfluxmotionundertheassumptionofalinear T-dependenceoftheactivationenergy,U (H)[26](Seethemethodsection). ItcanbeseenfromFig.2c 0 thatU (H)forbothH kcandkabarewelldescribedbyHα(1−H/H∗)β above10T,whichhasbeen 0 used for analysing polycrystallineMgB samples by Thompsonet al[27]. H∗ is a characteristic field 2 representingtheirreversibilityfieldat0K[27,28]. TheevaluatedvaluesforH k candk abare48.9T and59.7T,respectively(forH kcandkabα=0.68and0.64,andβ =1.1and0.94). Alinearfitforlnρ(H)versusU (H)usinglnρ (H)=lnρ +U (H)/T ,whereρ istheprefactor, 0 0 0f 0 c 0f yieldsT of26.9KforH k cand27.2KforH k ab,respectively(seeSupplementalFig.S2a). TheT c c valuesevaluatedbythis methodare slightlylower thanthe T (see Fig.1a). A plausibleexplanation c,90 forthisdifferenceistheincreasedtransitionwidth∆T dueto thereducedtexturequalitycomparedto c filmsonsinglecrystalsubstratesorsinglecrystalsamples. H (T) was evaluated from the linear presentationsof Figs.2a and 2b (see SupplementaryFig.S2b c2 andS2c)applyingaρ = 0.9ρ resistivitycriterion,whereρ isthenormalstateresistivityρ at n,0.9 n n,0.9 n 28.5K.ShowninFig.2disH forH k candk ab. ThedottedlineinFig.2disthefittingcurveusing c2 (1−T/T )k. An exponentk of0.9was obtainedforH k ab, whichis farfromthe expectedvalueof c 0.5forlayeredcompoundslimitedbyPaulipairbreakingatgivenT closetothedimensionalcrossover temperature[29–31],whichconfirmsthatP-dopedBa-122isa3Dsuperconductor.Becauseofthelackof lowtemperaturedata,itisnotpossibletofittheH (T)(andH (θ),shownlaterunambiguously)with c2 c2 apropermodelforFBS[32,33]. Thetemperaturedependenceoftheirreversibilityfield,H (T)(Fig.2e)wasevaluatedfromρ(T,H) irr measurements using a resistivity criterion of ρ = E /J = 1.0−8Ω·cm, where E is the elec- c c c,100 c tric field criterion(1µV/cm) fordeterminingJ fromE −J measurementsandJ is the criterion c c,100 (100A/cm2) for determining H from J (H) measurements (see Supplementary Fig.S2d and S2e). irr c TheH dataat0KareestimatedfromtheArrheniusplotsandtheyappeartomatchthelowtempera- irr turelimitoftheH datadirectlydeterminedfromtheρ(T,H)usingtheρ criterion. Forcomparison, irr c H (T)determinedfromJ (H)isalsoplottedinFig.2eshowingsomedifferenceswiththevalueses- irr c timated from ρ(T,H). A plausible reason is a differentfrequencyof the applied currentused in those investigations[34]. TheangulardependenceofH at20K,whichwasderivedfromρ(H)curvesatconstantangleswith c2 ρ (Fig.3a)showsaminimumatθ =90◦(H kc)andamaximumatθ =180◦(H kab),asshownin n,0.9 Fig.3b.Thesingle-bandanisotropicGinzburg-Landau(AGL)theory[35],H (θ)=H (90◦)(sin2(θ)+ c2 c2 3 cos2(θ)/γ2)−0.5 with γ = H (180◦)/H (90◦) (dottedlinein Fig.3b), cannotdescribethemeasured c2 c2 H (θ)duetothemulti-bandnatureofthismaterial,similarlytoCo-dopedBa-122[28]. A fairlygood c2 descriptionofthedatais,however,achievedbytheempiricalformulae[28], −1 δ δ cosθ H (θ)=H (90◦)×ǫ(θ,γ,δ), ǫ(θ,γ,δ)= |sinθ|δ+ (1) c2 c2 γ (cid:12) (cid:12) ! (cid:12) (cid:12) (cid:12) (cid:12) withδ = 1.47andγ = 1.62(solidline). Theparameterγ istheH anisot(cid:12)ropy,(cid:12)whereasδ isameasure c2 for the ab-peakwidth whose physicalmeaningis still unclear. These two values will be used later for scalingtheangulardependenceofJ (θ)data. c TheangulardependenceofH at20Kderivedusingthesameresistivitycriterionρ =1.0−8Ω·cm irr c showsalmostthesametrendasH (θ). UnliketheangulardependenceofJ (seenextsection),noclear c2 c peakatθ =90◦(H kc)isobservedinH (θ). irr In-fieldcriticalcurrentdensityJc(T,H,θ) The E −J curves of the P-doped Ba-122 coated conductor sample at 4.2K (Fig.4) show different behaviour at high and low magnetic fields for both major field directions. Up to 10T they exhibit a non-Ohmiclineardifferential(NOLD)signature(i.e., E islinearlychangingwithJ in linearscale, see SupplementalFig.S3),indicativeofJ limitationbyGBs[36]. HereNOLDbehaviourisduetoviscous c fluxflowalongtheGBs[37]. Ontheotherhand,NOLDsignatureisalmostabsentabove12.5T,suggest- ing thatJ is limitedby intra-graindepinningof fluxlines. Thispinningcrossoverfield is observedto c decreasewithincreasingtemperature(notshown),whichisconsistentwiththecuprateYBCO reported inRef.38and39. Figure5a comparesJ (H)forP-dopedBa-122onIBAD-MgOforH k c at4.2K withP-dopedBa- c 122onMgOsinglecrystallinesubstrate[15],Fe(Se,Te)onRABiTS[21],YBCOcoatedconductor[40], MgB [41],NbTi[42,43],andNb Sn[44,45].Pinning-improvedYBCO2nd-generation(2G)tapeshows 2 3 thehighestJ atentiremagneticfields;however,awelltexturedtemplateisnecessary. TheP-dopedBa- c 122coatedconductorexceedsaself-fieldJ of4MA/cm2andmaintainsahighJ valueof50kA/cm2at c c 20T.Fortheentirefieldrange,J ofP-dopedBa-122coatedconductorsampleislargerthanforMgB c 2 and NbTi. Above 20T, the P-doped Ba-122 coated conductor sample shows comparable properties to Nb Sn. Although lower-field J of P-doped Ba-122 on IBAD-MgO is higher than that of Fe(Se,Te) 3 c on RABiTS, the latter shows the better performanceat mediumand highfields. Figure5b summarises J (H)forP-dopedBa-122onIBAD-MgOforbothcrystallographicdirectionsatvarioustemperatures. c At intermediate fields J for the two directions is comparable, indicative of the presence of correlated c pinningalongthec-axis. ByanalysingthepinningforcedensityF =µ H×J ,informationonvortexpinningcanbeobtained. p 0 c In general, the normalised pinning force, f = F /F , is plotted as a function of reduced field p p p,max h = H/H atagiventemperatureforhigh-T superconductors. However,weplotf asafunctionof 1 irr c p h = H/H ,whereH isthefieldatwhichF showsthemaximum[46–49],sinceJ couldnotbe max max p c measureduptoH atalltemperatures.AscanbeseeninFig.5c,thef curvesatdifferenttemperatures irr p forH kcalmostfallontoamastercurveintherangeof0<h<3describedby 25 h f = h0.5(1− )2 (2) p 16 5 Thisformulaisanalogoustohp(1−h )q (p = 0.5andq = 2)foundbyDew-Hughes[50]forpinning 1 1 4 byplanardefectssuchasGBandtwinboundaries,andbyKramerforlinedefectarrays[51]. Inhigh-T c superconductorswithextremelyshortcoherencelengthsξ,afurtherclassificationofthedefectsizewith respecttoξisnecessary.IthasbeenrecentlyfoundbyPaturietal.thattheexponentpis0.5irrespective ofq fora defectsizeoftheorderofξ andespeciallyfordislocationsinundopedYBCO films[49]. On thecontrary,pincreasestowards1withincreasingdefectsize. Thisconfirmsthefindingthatpinningin oursampleisdominatedbythedislocationswithnano-size.Here,itshouldbenotedthatasignofNOLD signature does not contradictGB pinning. In fact it has been reported for YBCO that the dislocations inGBscanworkasvortexpinningcentres[52,53]. Thefluxpreferentiallyflowsacrossthedislocation coresintheGBplane,whichexplainstheE−J curveswithNOLDsign. Abrikosov-Josephsonvortices(AJV)arepresentinlow-angleGBsinbothYBCO[54]andFBS.Unlike Josephsonvortices(JV),AJV have normalcoresandcan be trappedbyflux pinning. Furthermore,the presence of an interaction betweenAbrikosovvortices(AV) in the grainand AJV at the GBs has been experimentallyfoundinRef.55: anincreaseinpinningpotentialforAVleadstotheenhancementofthe pinningpotentialforAJV. ForH k ab thef curvesat both10and 15K followwellthe GBpinningline (redsolidline) upto p 16T (correspondingto h = 2 and 3.2 in Fig.5d, respectively). In contrast, f at 20K neither follows p theGBpinningnorpoint-likepinning(redsolidandbluedashedlines,respectively)inhighfieldregime, althoughthef curveliesontheGBpinninglinebelowh < 2. Similarly,thef curveat4.2Kfollows p p theGBpinningcurveuptoh < 1.5andthenapproachesthepoint-likepinningcurvebeyondh > 1.5. Hence, differentlyfrom the H k c case, the dominantpinningmechanism for H k ab is varyingwith temperatureandfieldstrength. The angular dependence of the critical current density, J (θ) (Fig6a-d), shows two distinct peaks: c a relatively sharp peak at H k ab and a broad maximum at H k c, which arises from the network of threading dislocations comprising the low-angle GBs[17]. Surprisingly, the c-axis peaks [J (90◦)] c remainvisibleevenclosetoH atalltemperatures.Unlikesinglebandsuperconductors,theanisotropy irr ofcoherencelength,γ =ξ /ξ ,andpenetrationdepth,γ =λ /λ ,ofFBSexhibitoppositebehaviour ξ ab c λ c ab withtemperature[56]. ForanoptimallydopedBa-122system,γ > γ holdsatalltemperature. Inthis λ ξ caseevenoccasionaluncorrelateddefectsslightlylargerthanξyieldastrongc-axispinning[57].Suchan effectincombinationwiththreadingdislocationsalongthec-axismayenhanceenormouslytheaverage pinningpotentialforappliedfieldsparalleltothec-axis. ShowninFig.6eisthescalingbehaviourofJ (θ)asafunctionoftheeffectivefield[i.e.,ǫ(θ,γ,δ)× c µ H]at20K.Hereδ = 1.47andγ = 1.62wereusedasobtainedbytheH (θ)fit. Ascanbeseen,all 0 c2 J (θ)curvescollapseontoamastercurveinawideangularrangearoundH k ab. Differencesbetween c the master curve and the measured J (H) for H k c are correlated pinning contributions. Here we c emphasisethattheJ peakatθ = 180◦ isfullydeterminedbytheelectronicanisotropyat20Kandno c intrinsicpinningorpinningbyplanardefectsisobserved. Discussionsandconclusions InordertorealiseFBScoatedconductors,highJ valueswithlowanisotropyinhighfieldsareneces- c sary. J ofourP-dopedBa-122coatedconductornearlyreachedthepracticallevelof∼0.1MA/cm2 at c 15Tforanyappliedfielddirectionsat4.2K[seeFig.5a)],whichshowssuperiorpropertiesoverMgB 2 and NbTi. Above 20T the level of J is comparable to Nb Sn. Additionally, the intrinsic anisotropy c 3 estimatedat20KfromtheH dataisbelow2. Moreover,thecorrelateddefectsincreaseJ forH k c c2 c substantiallysuppressingtheeffectiveJ anisotropy. c Asstatedabove,theinequalityofξ andλanisotropyincombinationwithalargedensityofthreading dislocationsalongthec-axissignificantlyenhancestheaveragepinningpotential. Itisworthmentioning thatthepopulationofthreadingdislocationscanbecontrolledbytheprocessingconditionsonly,without 5 anymodificationofthePLDtarget[15]. Compared to optimally P-doped Ba-122 films on MgO single crystal substrates by MBE[12] and PLD[15], the level of J of the P-doped Ba-122 coated conductor still needs to be improved. Film c stoichiometryespeciallyforPcontentshouldbecontrolledprecisely. Asstatedbefore,thePcontentof ourBa-122filmslightlydiffersfromtheoptimallevel,wheretheQCPcausesasharpmaximumforthe vortexcoreenergy[11]. As a consequence,the slightdeviationfromthe optimalPlevelin oursample resultsinalowervortexcoreenergy,whichdirectlyreducesJ . c Unlike in electron and hole dopedBa-122 systems, aliovalentdisorderthat contributesto pinningin the Co or K cases is absent in P-doped Ba-122. However, J can be further enhanced by introducing c growth defects (e.g. intragrain dislocations since the PLD processing conditions strongly affect their density[15]) andartificial structures(e.g. nanoparticles). Moreover,the thermalconductivityof single crystalline MgO is different from that of IBAD-MgO template, which infers the optimum deposition temperaturemaychange. TheintroductionofartificialpinningcentresiseffectiveforfurtherimprovementofJ . Infact,Miura c etal.havereportedtheintroductionofBaZrO intoP-dopedBa-122matrix[58]inanalogytotheaddi- 3 tionofBaZrO toYBCO.Hence,acombinationoftheintroductionofartificialpinningcentresandthe 3 precisecontrolofPcontentwillyieldbetterperformingP-dopedBa-122coatedconductors. AnattempttofabricatealonglengthP-dopedBa-122coatedconductorhasstartedquiterecently. As a result, a 15cm long P-doped Ba-122 coated conductorhas been realised by PLD using a reel-to-reel system[16]. AlbeittheresultantP-dopedBa-122showedasmallself-fieldI of0.47mA(corresponding c toaJ of4.7×104A/cm2)at4.2K,animprovementofI isforeseenbyapplyingtheaforementioned c c methods. Insummary,wehaveinvestigatedin-fieldtransportpropertiesofaP-dopedBa-122thinfilmgrownby PLDontechnicalsubstrateinawiderangeoftemperatureandDCmagneticfieldupto35T.TheP-doped Ba-122 coated conductor exceeds a transport J of 105A/cm2 at 15T for both major crystallographic c directionsoftheappliedfield. Additionally,theJ peaksforH k cremainvisibleevenclosetoH at c irr alltemperaturesbytheenhancedvortexpinningduetothecombinationoflargepopulationofthreading dislocationsandtheinequalityofξ andλanisotropy. ThisleadstoalowerJ anisotropy. Byanalysing c pinningforcedensities,weestablishedthattheGBpinningcontributionisdominantforH k c,whereas forH k ab, thedominantpinningisvaryingwithtemperature. Theresultsobtainedthroughthisstudy areconsideredpromisingforfuturehigh-field-magnetapplicationsofAE-122systems. METHODS GrowthoftheP-dopedBa-122filmandstructuralcharacterisation TheP-dopedBa-122thinfilmof185 nmthicknesswasgrownbypulsedlaserdepositiononanIBAD- MgOHastelloymetal-tapesubstratesuppliedbyiBeamMaterials,Inc[59]. Thestackingstructureofthe IBAD-MgOsubstrateasshowninref.17consistsoffirstaplanarisingbottombed-layeramorphousY O 2 3 ontheHastelloy,secondabiaxiallytexturedMgOlayerformedbyIBAD,andatophomoepitaxialMgO layer.TheIBAD-MgOsubstratewithalargein-planedistributionangleof∆φ =8◦wasinvestigated MgO becausehigherJ with isotropicpropertiescan beachievedcomparedto the film onthe well in-plane- c aligned IBAD-MgO metal-tapes(i.e., ∆φ = 4◦)[17]. A polycrystallineBaFe (As P ) disk MgO 2 0.65 0.35 2 wasusedasthePLDtarget.Weemployedahighergrowthtemperatureof1200◦CthanforoptimisedP- dopedBa-122filmsonMgOsingle-crystalsubstrates(1050◦C)[15],sincethePconcentrationincreases with increasinggrowthtemperaturefora giventargetcomposition. As expected,a higherPconcentra- tion closer to the optimum P concentration than in previous studies was achieved[15, 17]. The other growthparameters[e.g.,theexcitationsourceandthelaserfluenceofthesecondharmonics(wavelength: 6 532nm)ofaNd-dopedyttrium-aluminum-garnetpulsedlaser and3J/cm2, respectively]werethesame asreportedinRef.15. To determine the crystalline phases, ω-coupled 2θ scan X-ray diffraction measurements were per- formed. The asymmetric 103 diffraction of the P-doped Ba-122 film was measured to confirm the in- planecrystallographicfour-foldsymmetrywithoutin-planerotationaldomains. Thecrystallinityofthe filmwascharacterisedonthebasisofthefullwidthsathalfmaximum(FWHMs)oftheout-of-plane004 (∆ω)andthein-plane200rockingcurves(∆φ). TheresultsofthoseXRDmeasurementscanbefoundin SupplementaryInformationFig.S1. Thechemicalcompositionwas determinedwith anelectron-probe microanalyser.TheaccelerationvoltageoftheelectronbeamwasoptimisedwhilemonitoringtheNiKα spectrumtoavoidthematrixeffectfromtheNi-containingHastelloymetal-tapes. In-planetransportmeasurements A small bridge of 15µm width and 500µm length was patterned by photolithography, followed by ion-beametching. Auelectrodeswith50nmthicknesswereformedbysputteringandlift-off. Transport propertiesusingtheresultantbridgeweremeasuredbyastandardfour-probemethod. ThetemperaturedependenceoftheresistivityoftheP-dopedBa-122coatedconductorshowsaT c,90 of28.3K(Fig.1a), whichisabout3KlowerthanthatoftheoptimallyP-dopedBa-122singlecrystals. T is defined as the intersection between the steepest slope of the superconducting transition and a c,90 90% reduction of the fit of the normalstate resistivity using ρ = ρ +ATn. On the other hand, the n 0 onsetT isdefinedastheintersectionbetweenthefitcurveasstatedaboveandthesteepestslopeofthe c superconductingtransition.ThedifferencebetweenT andtheonsetT isnegligible. c,90 c TheactivationenergyU (H) forvortexmotionwas evaluatedbythetemperaturedependenceofthe 0 resistivity measurementsin various field strengths up to DC 35T at the National High Magnetic Field Laboratory,Tallahassee,FL,USA.Accordingtothemodelofthermallyactivatedfluxflow[26],theslope oflinearfityieldsthepinningpotentialforvortexmotionatgivenfields(Fig.2c).Ontheassumptionthat U(T,H) = U (H)(1 −T/T ), both equations, lnρ(T,H) = lnρ (H)− U (H)/T and lnρ (H) = 0 c 0 0 0 lnρ +U (H)/T ,areobtained,whereρ isaprefactor. 0f 0 c 0f InordertofurtherunderstandtheH anisotropyforaP-dopedBa-122coatedconductorsample,the c2 angulardependenceof the magnetoresistivitywas measuredat 20K. Using the same constantcriterion ρ forevaluatingH ,theangulardependentuppercriticalfield[H (θ)]wasderived(Fig.3b). n,0.9 c2 c2 Acriterionof1µV/cmwasemployedforevaluatingJ . InJ measurement,themagneticfieldwas c c always appliedin the maximumLorentzforceconfiguration. Low-fieldmeasurementswere performed inaQuantumDesignphysicalpropertymeasurementsystem(PPMS)inmagneticfieldsupto16T.For highfieldmeasurementsuptoDC35T,theexperimentswereconductedattheNationalHighMagnetic FieldLaboratory,Tallahassee,FL,USA. Acknowledgement A portion of this work was performed at the National High Magnetic Field Laboratory, which was supportedbyNationalScienceFoundationCooperativeAgreementNo. DMR-1157490,andtheStateof Florida.TheworkatTokyoInstituteofTechnologywassupportedbytheMinistryofEducation,Culture, Sports, Science and Technology (MEXT) through Element Strategy Initiative to Form Core Research Center. K.I.acknowledgessupportbytheJapanSocietyforthePromotionofScience(JSPS) Grant-in- AidforScientificResearch(B)GrantNumber16H04646. H.HiwasalsosupportedbyJSPSforYoung Scientists(A)GrantNumber25709058,JSPSGrant-in-AidforScientificResearchonInnovativeAreas Nano Informatics(GrantNumber 25106007),and Supportfor TokyotechAdvancedResearch (STAR). 7 We acknowledge support by Deutsche Forschungsgemeinschaftand Open Access Publishing Fund of KarlsruheInstituteofTechnology. Authorscontribution K.I., C.T., J.H., H.S. and H.Hi. designed the study and wrote the manuscripttogether with J.J. and H.Ho. Thinfilmspreparation,structuralcharacterisationsandmicrobridgefabricationswerecarriedout byH.S.andH.Hi. K.I.,C.T.,J.H.andJ.J.conductedhighfieldtransportmeasurements. C.T.,H.S.and H.Hi. performedlowfieldtransportmeasurements. K.I.,C.T.,H.Hi,andH.Ho. supervisedtheprojects. Allauthorsdiscussedtheresultsandimplicationsandcommentedonthemanuscriptatallstages. ADDITIONALINFORMATION Theauthorsdeclarenocompetingfinancialinterests.Correspondenceandrequestsformaterialsshould beaddressedtoK.I. ∗ Correspondenceto:[email protected] [1] Kamihara,Y.etal. Iron-BasedLayeredSuperconductorLa[O1−xFx]FeAs(x = 0.05−0.12)withTc=26K. J.Am.Chem.Soc.130,3296-3297(2008). [2] Hirschfeld,P.J.UsinggapsymmetryandstructuretorevealthepairingmechanisminFe-basedsuperconductors. C.R.Physique17,197-231(2016). [3] Yamamoto,A.etal. Smallanisotropy,weakthermalfluctuations,andhighfieldsuperconductivityinCo-doped ironpnictideBa(Fe1−xCox)2As2. Appl.Phys.Lett.94,062511(2009). [4] Lei,H.etal. Pauli-limiteduppercriticalfieldofFe1+yTe1−xSex. Phys.Rev.B81,094518(2010). [5] Katase,T.etal. Advantageousgrainboundariesinironpnictidesuperconductors. Nat.Commun.2,409(2011). [6] Sakagami,T.etal. CriticalcurrentdensityandgrainboundarypropertyofBaFe (As,P) thinfilms. PhysicaC 2 2 494,181-184(2013). [7] Lee,S.etal. Weak-linkbehaviorofgrainboundariesinsuperconductingBa(Fe1−xCox)2As2 bicrystals. Appl. Phys.Lett.95,212505(2009). [8] Weiss,J.D.etal. Highintergraincriticalcurrentdensityinfine-grain(Ba K )Fe As wiresandbulks. Nat. 0.6 0.4 2 2 Mater.11,682-685(2012). [9] Weiss,J.D.etal. Demonstrationofaniron-pnictidebulksuperconductingmagnetcapableoftrappingover1T. Supercond.Sci.Technol.28,112001(2015). [10] Tarantini,C.etal. DevelopmentofveryhighJcinBa(Fe1−xCox)2As2thinfilmsgrownonCaF2. Sci.Rep.4, 7305(2014). [11] Putzke,C.etal. Anomalouscriticalfieldsinquantumcriticalsuperconductors. Nat.Commun.5,5679(2014). [12] Kurth,F.etal. UnusuallyhighcriticalcurrentofcleanP-dopedBaFe As singlecrystallinethinfilm. Appl. 2 2 Phys.Lett.106,072602(2015). [13] Bendele,M.etal. TuningthesuperconductingandmagneticpropertiesofFe Se Te byvaryingtheiron y 0.25 0.75 content. Phys.Rev.B82,212504(2010). [14] Sun,Y.,etal. DynamicsandmechanismofoxygenannealinginFe Te Se singlecrystal. Sci.Rep.4, 1+y 0.6 0.4 4585(2014). [15] Sato, H., Hiramatsu, H., Kamiya, T. & Hosono, H. High critical-current density with less anisotropy in BaFe2(As,P)2 epitaxial films: Effect of intentionally grown c-axis vortex-pinning centers. Appl. Phys. Lett. 104,182603(2014). [16] Hosono, H.etal. Explorationofnewsuperconductorsandfunctionalmaterials,andfabricationofsupercon- ductingtapesandwiresofironpnictides. Sci.Technol.Adv.Mater.16,033503(2015). [17] Sato,H.,Hiramatsu,H.,Kamiya,T.&Hosono,H. Enhancedcritical-currentinP-dopedBaFe As thinfilms 2 2 onmetalsubstratesarisingfrompoorlyalignedgrainboundaries. Sci.Rep.6,36828(2016). 8 [18] Norton,D.P.etal.EpitaxialYBa Cu O onBiaxiallyTexturedNickel(001):AnApproachtoSuperconducting 2 3 7 TapeswithHighCriticalCurrentDensity. Science274,755-757(1996). [19] Iijima,Y.Tanabe,N.,Kohno,O.&Ikeno,Y.In-planealignedYBa2Cu3O7−xthinfilmsdepositedonpolycrys- tallinemetallicsubstrates. Appl.Phys.Lett.60,769-771(1992). [20] Si,W.etal. Iron-chalcogenide FeSe Te coatedsuperconducting tapesforhighfieldapplications. Appl. 0.5 0.5 Phys.Lett.98,262509(2011). [21] Si,W.etal. Highcurrentsuperconductivity inFeSe Te -coatedconductorsat30tesla. Nat.Commun.4, 0.5 0.5 1347(2013). [22] Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2. Phys.Rev.B81,184519(2010). [23] Shibauchi, T., Carrington, A.&Matsuda, Y. A Quantum CriticalPoint LyingBeneath theSuperconducting DomeinIronPnictides. Annu.Rev.Condens.MatterPhys.5,113-135(2014). [24] Kawaguchi,T.etal. ThestraineffectonthesuperconductingpropertiesofBaFe (As,P) thinfilmsgrownby 2 2 molecularbeamepitaxy. Supercond.Sci.Technol.27,065005(2014). [25] Iida,K.etal. Hall-plotofthephasediagramforBa(Fe1−xCox)2As2. Sci.Rep.6,28390(2016). [26] Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F. & Waszczak, J. V. Thermally Activated Dissipation in Bi Sr Ca Cu O . Phys.Rev.Lett.61,1662-1665(1988). 2.2 2 0.8 2 8+δ [27] Thompson, J.R.etal. Vortexpinning and slowcreep inhigh-Jc MgB2 thinfilms: amagneticand transport study. Supercond.Sci.Technol.18,970-976(2005). [28] Ha¨nisch,J.etal. HighfieldsuperconductingpropertiesofBa(Fe1−xCox)2As2 thinfilms. Sci.Rep.5,17363 (2015). [29] Uher,C.,Cohn,J.L.,&Schuller,I.K.Uppercriticalfieldinanisotropicsuperconductors. Phys.Rev.B34,4906 (1986). [30] Klemm,R.A.,Luther,A.,&Beasley,M.R. Theoryoftheuppercriticalfieldinlayeredsuperconductors. Phys. Rev.B12,877-891(1975). [31] Tarantini,C.etal.Significantenhancementofuppercriticalfieldsbydopingandstraininiron-basedsupercon- ductors. Phys.Rev.B84,184522(2011). [32] Gurevich, A. UppercriticalfieldandtheFulde-Ferrel-Larkin-Ovchinnikovtransitioninmultibandsupercon- ductors. Phys.Rev.B82,184504(2010). [33] Gurevich,A. Iron-basedsuperconductorsathighmagneticfields. Rep.Prog.Phys.74,124501(2011). [34] Pan,A.V.,Golovchanskiy,I.A.,&Fedoseev,S.A. Criticalcurrentdensity:Measurementsvs.reality. EPL103, 17006(2013). [35] Tinkham,M. IntroductiontoSuperconductivity. DoverPublication,NewYork,320(2004). [36] Verebelyi,D.T.etal. Lowanglegrainboundary transportinYBa2Cu2O7−δ coatedconductors. Appl.Phys. Lett.76,1755-1757(2000). [37] D´ıaz,A.,Mechin,L.,Berghuis,P.,&Evetts,J.E.ObservationofviscousfluxflowinYBa2Cu3O7−δlow-angle grainboundaries. Phys.Rev.B58,R2960-R2963(1998). [38] Daniels,G.A.,Gurevich, A.,&Larbalestier,D.C. Improvedstrongmagneticfieldperformanceoflowangle grainboundariesofcalciumandoxygenoverdopedYBa Cu O . Appl.Phys.Lett.77,3251-3253(2000). 2 3 x [39] Ferna´ndez,L.etal.InfluenceofthegrainboundarynetworkonthecriticalcurrentofYBa Cu O filmsgrown 2 3 7 onbiaxiallytexturedmetallicsubstrates. Phys.Rev.B67,052503(2003). [40] Xu,A.etal.AngulardependenceofJcforYBCOcoatedconductorsatlowtemperatureandveryhighmagnetic fields. Supercond.Sci.Technol.23,014003(2010). [41] Li, G.Z. et al. Effects of carbon concentration and filament number on advanced internal Mg infiltration- processedMgB strands. Supercond.Sci.Technol.26,095007(2013). 2 [42] Boutboul,T.etal. CriticalCurrentDensityinSuperconductingNb-TiStrandsinthe100mTto11TApplied FieldRange. IEEETrans.Appl.Supercond.16,1184-1187(2006). [43] Kanithi,H.etal. ProductionResultsof11.75TeslaIseult/INUMACMRIConductoratLuvata. IEEETrans. Appl.Supercond.24,6000504(2014). [44] Parrell J.A. et al. High field Nb Sn conductor development at Oxford Superconducting Technology. IEEE 3 Trans.Appl.Supercond.13,3470-3473(2003). [45] Parrell J.A., Field, M.B., Zhang, Y., & Hong, S. Nb Sn Conductor Development for Fusion and Particle 3 AcceleratorApplications. AIPConf.Proc.711,369(2005). [46] Civale,L.etal. ScalingofthehystereticmagneticbehaviorinYBa Cu O singlecrystals. Phys.Rev.B43, 2 3 7 13732-13735(1991). 9 [47] Qin,M.J.etal.ParamagnetismandscalingbehaviorofvolumefluxpinningforcedensityinaGdBa Cu O 2 3 6+x thinfilm. J.Appl.Phys.78,3287-3292(1995). [48] Higuchi,T.,Yoo,S.I.,&Murakami,M. Comparativestudyofcriticalcurrentdensitiesandfluxpinningamong aflux-grownNdBa Cu O singlecrystal,melt-texturedNd-Ba-Cu-O,andY-Ba-Cu-Obulks. Phys.Rev.B59, 2 3 y 1514-1527(1999). [49] Paturi, P., Malmivirta, M., Palonen, H., & Huhtinen, H. Dopant Diameter Dependence of Jc(B) in Doped YBCOFilms. IEEETrans.Appl.Supercond. 26,8000705(2016). [50] Dew-Hughes,D. FluxpinningmechanismintypeIIsuperconductors. Philos.Mag.30,293-305(1974). [51] Kramer,E.J. Scalinglawsforfluxpinninginhardsuperconductors. J.Appl.Phys.44,1360-1370(1973). [52] D´ıaz,A.,Mechin,L.,Berghuis,P.,&Evetts,J.E.EvidenceforVortexPinningbyDislocationsinYBa2Cu3O7−δ Low-AngleGrainBoundaries. Phys.Rev.Lett.80,3855-3858(1998). [53] Heinig,N.F.,Redwing, R.D.,Nordman, J.E.,&Larbalestier,D.C. Strongtoweakcouplingtransitioninlow misorientationanglethinfilmYBa2Cu3O7−xbicrystals. Phys.Rev.B60,1409-1417(1999). [54] Gurevich,A.etal. FluxFlowofAbrikosov-JosephsonVorticesalongGrainBoundariesinHigh-Temperature Superconductors. Phys.Rev.Lett.88,097001(2002). [55] Palau,A.etal. Correlationbetweengrainandgrain-boundarycriticalcurrentdensitiesinexsitucoatedcon- ductorswithvariableYBa2Cu3O7−δ layerthickness. Appl.Phys.Lett.88,122502(2006). [56] Kon´czykowski,M.,etal. Anisotropyofthecoherencelengthfromcriticalcurrentsinthestoichiometricsuper- conductorLiFeAs. Phys.Rev.B84,180514(2011). [57] vanderBeek,C.J.,Kon´czykowski, M.,&Prozorov,R. Anisotropyofstrongpinninginmulti-bandsupercon- ductors. Supercond.Sci.Technol.25,084010(2012). [58] Miura,M.,etal.Stronglyenhancedfluxpinninginone-stepdepositionofBaFe (As P ) superconductor 2 0.66 0.33 2 filmswithuniformlydispersedBaZrO nanoparticles. Nat.Commun.4,2499(2013). 3 [59] Sheehan, C.et al. Solutiondeposition planarization of long-length flexiblesubstrates. Appl.Phys. Lett.98, 071907(2011). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.