JournalofFluidsandStructures42(2013)166–186 ContentslistsavailableatScienceDirect Journal of Fluids and Structures journal homepage: www.elsevier.com/locate/jfs High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion Meilin Yua,n, Z.J. Wanga, Hui Hub aDepartmentofAerospaceEngineering,TheUniversityofKansas,Lawrence,KS66045,USA bDepartmentofAerospaceEngineering,IowaStateUniversity,Ames,IA50011,USA a r t i c l e i n f o a b s t r a c t Articlehistory: High-fidelitynumericalsimulationswiththespectraldifference(SD)methodarecarried Received8October2012 outtoinvestigatetheunsteadyflowoveraseriesofoscillatingNACA4-digitairfoils.Airfoil Accepted2June2013 thicknessandkinematicseffectsonthe flapping airfoil propulsion arehighlighted.Itis Availableonline17July2013 confirmedthattheaerodynamicperformanceofairfoilswithdifferentthicknesscanbe Keywords: very different under the same kinematics. Distinct evolutionary patterns of vortical Flappingairfoil structures are analyzed to unveil the underlying flow physics behind the diverse flow Airfoilthickness phenomena associated with different airfoil thickness and kinematics and reveal the Kinematics synthetic effects of airfoil thickness and kinematics on the propulsive performance. HighorderNavier–Stokessimulations ThicknesseffectsatvariousreducedfrequenciesandStrouhalnumbersforthesamechord Spectraldifference lengthbasedReynoldsnumber(¼1200)arethendiscussedindetail.Itisfoundthatat relatively small Strouhal number (¼0.3), for all types of airfoils with the combined pitchingandplungingmotion(pitchangle201,thepitchaxislocatedatonethirdofchord lengthfromtheleadingedge,pitchleadingplungeby751),lowreducedfrequency(¼1)is conduciveforboththethrustproductionandpropulsiveefficiency.Moreover,relatively thinairfoils(e.g.NACA0006)cangeneratelargerthrustandmaintainhigherpropulsive efficiencythanthickairfoils(e.g.NACA0030).However,withthesamekinematicsbutat relativelylargeStrouhalnumber(¼0.45),itisfoundthatairfoilswithdifferentthickness exhibitdiverse trendonthrust production and propulsiveefficiency,especiallyat large reducedfrequency(¼3.5).ResultsoneffectsofairfoilthicknessbasedReynoldsnumbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction betweentheleadingandtrailingedgevorticesplaykeyrolesinflappingairfoilpropulsive performance. &2013ElsevierLtd.Allrightsreserved. 1. Introduction Unsteady flapping-wing aerodynamics has witnessedgreatprosperity in the last three decades. Thisprosperityis not onlydrivenbythepowerofconsistentcuriosityabouttheeffectivepropulsionexhibitedbynaturalflyers,butalsodueto theincreasinginterestinthedesignofMicroAirVehicles(MAVs),whichhavebeenconsideredtohavegreatpotentialto open up new opportunities for surveillance-like missions in the near future. A large amount of experimental and computational research has been carried out to reveal flapping-wing aerodynamics and many comprehensive reviews nCorrespondingauthor.Tel.:+17858644267. E-mailaddress:[email protected](M.Yu). 0889-9746/$-seefrontmatter&2013ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.jfluidstructs.2013.06.001 M.Yuetal./JournalofFluidsandStructures42(2013)166–186 167 Nomenclature C chordlength,m CP pressurecoefficient,ðp−p∞Þ=ð0:5ρU2∞Þ R C〈CTpow〉 ttihmruestavceoreafgfiecdiepnot,wTehrrucsote=fðf0ic:5ieρnUt2∞,−CðÞ1=TRÞ tt00þT½LiftðtÞy_ðtÞþMomentðtÞθ_ðtÞ(cid:2)dt=ð0:5ρU3∞CÞ 〈C 〉 timeaveragedthrustcoefficient,ð1=TÞ t0þTC ðtÞdt 〈CT 〉 timeaveragedthrustcoefficientcalculatt0edfroTmthepressureforce T_P 〈C 〉 timeaveragedthrustcoefficientcalculatedfromtheviscousforce T_v f oscillationfrequency,Hz H ,y plungeamplitudeandplungepositionofairfoil,m 0 k reducedfrequency,2πfC/U∞ Ma Machnumber ReC Reynoldsnumberbasedonthechordlength,ρU∞C/μ ReT Reynoldsnumberbasedontheairfoilthickness,ρU∞αC/μ St Strouhalnumber,2fH0=U∞ R ΔP averagedpressuredifferencesinthestreamwisedirection, ∂ΩpdS/FrontalArea α thicknessratio(i.e.theratiobetweentheairfoilthicknessandthechordlength) η propulsiveefficiency,〈C 〉=〈C 〉 pow T pow θ ,θ pitchamplitudeandpitchangleofairfoil,deg 0 ϕ phaselagbetweenpitchingandplungingmotions,deg andbookchapters(Hoetal.,2003;Platzeretal.,2008;RozhdestvenskyandRyzhov,2003;Shyyetal.,2010,1999,2008; Triantaflyllouetal.,2004;Wang,2005)havesystematicallysummarizedtheprogressfromdifferentaspects.However,due tothe intrinsic complexity of the unsteadyaerodynamics, there are still manyopen questions to be answered. One such issueisthesyntheticeffectsofthewingthicknessandkinematicsonthethrustproductionandpropulsiveefficiencyduring the flapping flight. As is widely recognized, natural flyers, e.g. birds and insects, maneuver their thin wings (i.e., wing thicknessisonlyafewpercentofthechordlength)viathe“pitchingandrolling”motion.However,previousstudiesseldom investigated the synergy of thin airfoils and sophisticated flapping kinematics but were limited to thick airfoils (airfoil thicknesslargerthan10%ofchordlength)andrelativelysimplemotions(i.e.pitchingorplunging).Thesepreviousefforts arebrieflyreviewedasfollows. The first explanation for the thrust generation with oscillating airfoils was given by Knoller (1909) and Betz (1912) independentlybasedontheinviscidassumptionandtheeffectiveangleofattack(AOA)concept.Thiswasexperimentally confirmed by Katzmayr (1922) through mounting a stationary wing in an oscillating flow. After that, von Karman and Burgers(1935)showedathought-provokingwaytoexplainthethrustordragproductionbycheckingmomentumsurfeitor deficitinthewakebasedonthewakevorticesorientationandlocation.Thishasgraduallybecomeaqualitativeprincipleto judgewhetheranoscillatingmechanismgeneratesthrustordrag.Astheaerodynamicperformanceoftheoscillatingfoils/ wings is closely tied to the vortical structures, the vortical structure analysis becomes an effective toolto unveil the key mechanisminflapping-wingaerodynamics.Withdifferentflowvisualizationtechniques,Freymuth(1988),Koochesfahani (1989),Jonesetal.(1998),LaiandPlatzer(1999),Godoy-Dianaetal.(2008),Schnipperetal.(2009),BohlandKoochesfahani (2009)andYuetal.(2012),justtonameafewhere,haveexperimentallyinvestigatedthevortexstructuresaroundplunging orpitchingfoils.Inparallel,byusingvariousnumericalsimulationortheoreticalanalysismethods,theevolutionofvortex fields around plungingor pitching foils and the corresponding propulsion features (i.e. thrust production and propulsive efficiency)havebeenstudiedbymanyresearchers(Triantaflyllouetal.,1993;Jonesetal.,1998;Wang,2000;LewinandHaj- Hariri,2003;YoungandLai,2004;Yuetal.,2012).Notethatalltheaforementionedstudiesonwakestructuresarerelatedto simpleairfoilkinematics,namelypureplungingorpitchingmotions,andrelativelylargeairfoilthickness. Asreportedbymanyresearchers,acombinedpitchingandplungingmotionisamoreelaboratemodeloftheflappingwing kinematics. Also, there is a growing awareness in this community that the airfoil thickness can affect thrust generation and propulsive efficiency. Based on extensive numerical study, Jones and Platzer (1997) argued that the combined pitching and plungingmotioncouldadjusttheeffectiveAOAoftheairfoil,enhancingthethrustgenerationorpowerextractionperformance. Andersonetal.(1998)experimentallyexaminedthepropulsiveperformanceofaNACA0012airfoilwithacombinedpitchingand plunging motion, and gave the parameters for optimal thrust production. Isogai et al. (1999), Tuncer and Platzer (2000), Ramamurti and Sandberg (2001), Read et al. (2003), Schouveiler et al. (2005) and Kang et al. (2009) confirmed that better propulsiveperformancewasachievedwhenthecombinedpitchingandplungingmotionwithsuitablephaselagwasadopted. Thestudiesinairfoilthicknesshaveshownlargediscrepancyinitseffectsonaerodynamicperformance.LentinkandGerritsma (2003)comparedtheperformancesofseveralplungingairfoilswithdifferentthicknessatReynoldsnumber150,andconcluded that airfoils with larger thickness could generate greater thrust than the airfoils with small thickness. Based on the inviscid simulation from an unsteady panel code, Cebeci et al. (2004) found that thickness had a negligible effect on the propulsive efficiency.Anetal.(2009)foundthatthicknessratiowasacrucialparameterforthrustproductionandtheirresultsindicatedthat 168 M.Yuetal./JournalofFluidsandStructures42(2013)166–186 there existed an optimal thickness ratio for the thrust generation at Reynolds number 185. Ashraf et al. (2011) systematically studiedthethicknesseffectsonthepropulsiveperformancesofflappingairfoilsatdifferentReynoldsnumbersrangingfrom200 to2(cid:3)106.TheyfoundthatatlowReynoldsnumbers,thinairfoilsoutperformedthickairfoils,whileathighReynoldsnumbers thereexistedanoptimalthicknessforthethrustproductionandpropulsiveefficiency.Recently,Yuetal.(2012)foundthatatlow Reynoldsnumbers,viscousforcecouldevengeneratethrustonplungingthinairfoils(e.g.NACA0004andNACA0006)duetothe unsteadycircumnavigationofleadingedgevortices(LEVs). Basedontheliteraturereview,itisclearthatstudiesonthesynergyoftheairfoilkinematicsandthicknessonflapping- wing propulsion are limited, although this can be crucial for the MAV design. As is known, flapping-wing propulsion is closelyrelatedtotheunsteadyvortexdynamics.Highordercomputationalfluiddynamics(CFD)methodsappeartobemore accuratethantheirlowordercounterpartsforsimulationsofvortex-dominatedflow(Wang,2007).Somerecentworkon thenumericalsimulationsofbio-inspiredflowwithhigh-ordermethods(e.g.Visbal,2009;Visbaletal.,2009;Perssonetal., 2010;Liangetal.,2010;Yuetal.,2011;Ouetal.,2011)hasprovidedimpressiveresultsforthecommunityanddemonstrated the potential of the high-order numerical simulation in unsteady flapping-wing aerodynamics. The simulations in the presentpaperarecarriedoutusingthehigh-orderaccuratedynamicgridNavier–Stokesflowsolver. Althoughallnatureflyersusecomplex3Dwingkinematicsintheflappingflight,someintrinsicprinciplesofunsteady aerodynamicsdofallintothe2Dframeworksandunderstandingthesebasicphysicscanhelpmakeprogressonthestudyof the3Dflappingwingaerodynamics.Therefore,thisstudyisonlyrestrictedto2Dflappingairfoilsimulations.Theremainder ofthispaperisorganizedasfollows.InSection2,thedynamicunstructuredgridbasedspectraldifference(SD)methodis first introduced. The simulationparametersare presented at the end of this section.Numericalresultsaredisplayed and discussedinSection3.Thesyntheticeffectsofairfoilthicknessandkinematicsonflappingairfoilpropulsionareanalyzedin detail, and the aerodynamic performance dependency on the reduced frequency and Strouhal number is also discussed there.Section4brieflyconcludesthiswork. 2. Numericalmethodandsimulationparameters 2.1. Governingequations NumericalsimulationsarecarriedoutwithanunsteadycompressibleNavier–Stokessolverusingdynamicunstructured gridbasedhigh-orderSDmethoddevelopedinYuetal.(2011)andSunetal.(2006).The2DunsteadycompressibleNavier– Stokesequationinconservationformreads, ∂Q ∂F ∂G þ þ ¼0: ð1Þ ∂t ∂x ∂y Herein,Q¼(ρ,ρu,ρv,E)Taretheconservativevariables,andF; G arethetotalfluxesincludingboththeinviscidandviscous fluxvectors,i.e., F ¼Fi−Fvand G ¼Gi−Gv,whichtakesthefollowingform: 8 9 8 9 >>>><pþρuρu2>>>>= >>>>< ρρuvv >>>>= Fi¼ ; Gi¼ ; >>>>:uðEρuþvpÞ>>>>; >>>>:vpðEþþρvp2Þ>>>>; 8 9 8 9 >>>>< τ0 >>>>= >>>>< τ0 >>>>= xx xy Fv¼>>>>:uτ þvττyxþμCpT >>>>;; Gv¼>>>>:uτ þvττyyþμCpT >>>>; ð2Þ xx yx Pr x xy yy Pr y In Eq. (2), ρ is the fluid density, u and v are the Cartesian velocity components, p is the pressure, and E is the total internalenergy,μisdynamicviscosity,C isthespecificheatatconstantpressure,PristhePrandtlnumber,andTisthe p temperature.ThestresstensorsinEq.(2)takethefollowingform (cid:2) (cid:3) (cid:2) (cid:3) u þv u þv τ ¼2μ u − x y ; τ ¼2μ v − x y ; τ ¼τ ¼μðv þu Þ ð3Þ xx x 3 yy y 3 xy yx x y Onassumingthattheperfectgaslawisobeyed,thepressureisrelatedtothetotalinternalenergyby E¼ðp=ðγ−1ÞÞþ ð1=2Þρðu2þv2Þwithconstantγ,whichclosesthesolutionsystem. Toachieveanefficientimplementation,atime-dependentcoordinatetransformationfromthephysicaldomain(t,x,y)to thecomputationaldomain(τ,ξ,η),asshowninFig.1(a),isappliedtoEq.(1).Thecoordinatetransformationisamapping betweencomputationaldomainandthephysicaldomain,whichtakesthefollowingform, t¼τ; x¼xðτ;ξ;ηÞ; y¼yðτ;ξ;ηÞ: ð4Þ M.Yuetal./JournalofFluidsandStructures42(2013)166–186 169 Fig.1. (a)Transformationfromamovingphysicaldomaintoafixedcomputationaldomain;(b)Distributionofsolutionpoints(asdenotedbycircles)and fluxpoints(asdenotedbysquares)inastandardquadrilateralelementforathird-orderSDscheme. herein,(ξ,η)∈[−1,1]2,arethelocalcoordinatesinthecomputationaldomain.ReadersarereferredtothebookbyTannehill etal.(1997)formoredetailsofthecoordinatetransformation. ThenthetransformedequationofEq.(1)takesthefollowingform ∂Q~ ∂F~ ∂G~ þ þ ¼0; ð5Þ ∂τ ∂x ∂y where 8 >><Q~ ¼jJjQ >>:FG~~¼¼jjJJjjððQQξηtþþFFξηxþþGGξηyÞÞ : ð6Þ t x y Inthetransformationshownabove,theJacobianmatrixJtakesthefollowingform: 0 1 xξ xη xτ ∂ðx;y;tÞ B C J¼ ∂ðξ;η;τÞ ¼@yξ yη yτA: ð7Þ 0 0 1 ! Notethatthegridvelocityvg¼ðxτ;yτÞisrelatedwith(ξt,ηt)by 8 <ξ ¼−!v ⋅∇ξ :ηt¼−!vg⋅∇η: ð8Þ t g 2.2. Spacediscretization TheSDmethodisusedforthespacediscretization.IntheSDmethod,twosetsofpointsaregiven,namelythesolution andfluxpoints,asshowninFig.1(b)fora2Dquadrilateralelement.Unknownsolutionsordegreesoffreedom(DOFs)are definedatthesolutionpoints(SPs),andfluxesarecalculatedonfluxpoints(FPs).Inthepresentstudy,thesolutionpoints arechosenastheChebyshev–Gaussquadraturepoints.ForaPN−1reconstruction,Nsolutionpointsareneededin1Dandare specifiedas (cid:2) (cid:3) 2s−1 ξ ¼−cos π ; s¼1;2;⋯;N: ð9Þ s 2N IthasbeenprovedinJameson(2010)thattheadoptionoftheLegendre–Gaussquadraturepointsasthefluxpointscan ensure the stability of the SD method. Therefore, the flux points are selected to be the Legendre–Gauss points with end points−1and1.Thesepointsaredenotedasξ ; f¼0;1;…;N. f TwosetsofLagrangepolynomialsbasedontheSPsandFPsrespectivelycanbespecifiedasfollows. SPsbasedLagrangepolynomial: N ξ−ξ Ls;iðξÞ¼ ∏ ξ−ξs; i¼1;2;…;N: ð10Þ s¼1;s≠i i s FPsbasedLagrangepolynomial: N ξ−ξ Lf;iðξÞ¼ ∏ ξ−ξf ; i¼0;1;…;N: ð11Þ f¼0;f≠i i f 170 M.Yuetal./JournalofFluidsandStructures42(2013)166–186 ThereconstructionoftheSDmethodisstatedbrieflyasfollows.Firstofall,theinviscidfluxesarereconstructed.Note that the fluxes related to the grid movement are incorporated into the inviscid fluxes, e.g., F~i¼jJjðQξτþFiξxþGiξyÞ. The conservativevariablesQ onthefluxpointsareinterpolatedfromtheconservativevariablesQ onthesolutionpointsviaa f s tensorproductionofthe1DLagrangepolynomialsEq.(11),whichtakesthefollowingform N N Qfðξ;ηÞ¼ ∑ ∑ Qsðξi;ηjÞLs;iðξÞLs;jðηÞ: ð12Þ j¼1i¼1 Then the fluxes can be reconstructed at the flux points using Q. Note that this reconstruction is continuous within a f standardelement,butdiscontinuousonthecellinterfaces.Therefore,aRiemannfluxorcommonfluxneedstobespecified ontheinterfacetoensureconservation.Sincetheflowregimeforflappingflightisalmostincompressibleandthepresent governing equations are compressible N-S equations, the Riemann solver should retain good performance at low Mach numbers.TheAUSM+-upRiemannsolver(Liou,2006)forallspeedsisimplementedforthepresentsimulationandisproved tobehavewellatlowMachnumbers.TheprocedurestoreconstructthecommonfluxesfromtheAUSM+-upRiemannsolver arestatedasfollows. ! Denotethefacenormalofarbitraryinterfaceby n,thentheinterfacemassflowratem_1=2 reads ( m_1=2¼a1=2M1=2 ρρL iofthMe1r=w2i4se0; ð13Þ R wherethesubscript‘1/2’standsfortheinterface,aandMarespeedofsoundandtheMachnumberrespectively.Notethat ~i ~i thegridvelocityhasbeenincludedintheinterfaceMachnumberM.ThenumericalnormalfluxesF andG canthenbe specifiedas 8 ( ! >>>>><F~i¼ m_1=2 ψψL iofthm_e1r=w24ise0 þP1=2 jJjj∇ξjsignð!nU∇ξÞ; >>>>>:G~i¼ m_1=2(ψψRL iofthm_e1r=w24ise0 þP1=2!jJjj∇ηjsignð!nU∇ηÞ; ð14Þ R (cid:4) (cid:5) whereψ¼ð1;u;v;ðEþpÞ=ρÞT; P¼ 0;pnx;pny;pvg;n T,withnx,nyandvg,nspecifyingthefacenormalcomponentsinxand ydirectionandthegridvelocityinthefacenormaldirection,respectively. Afterthis,thederivativesoftheinviscidfluxesarecalculatedonthesolutionpointsusingthefollowingformulas: ~i ∂∂Fξðξ;ηÞ¼ ∑N ∑N F~iðξi;ηjÞLf0;iðξÞLs;jðηÞ; j¼1i¼0 ~i ∂G∂ηðξ;ηÞ¼ ∑N ∑N G~iðξi;ηjÞLs;iðξÞLf0;jðηÞ: ð15Þ j¼0i¼1 Since the viscous fluxes are functions of both the conservative variables Q and their derivatives ∇Q, slightly more involvedreconstructionproceduresareneeded.Inthepresentstudy,theapproachproposedinBassiandRebay(1997),also known!as‘BR1’,isadopted.TheimplementationofthisapproachinSDisbrieflyintroducedasfollows. Let R ¼∇Q.!On transforming this formula from the physical domain to the computational domain, we obtain the componentsof R intheconservationformas (cid:2) (cid:3) 1 ∂jJjQξ ∂jJjQη Rx¼ xþ x ; jJj ∂ξ ∂η (cid:2) (cid:3) 1 ∂jJjQξ ∂jJjQη Ry¼ yþ y : ð16Þ jJj ∂ξ ∂η thenthederivativesinEq.(16)onthesolutionpointscanbecalculatedfromtheconservativevariablesQ onthefluxpoints f followingtheprocedureasshowninEq.(15).NotethatthecommonconservativevariablesQcomonelementinterfacesare usedinthederivativecalculation.InBR1,Qcomistheaverageoftheleftandrightsolutionsontheinterface, QLþQR Qcom¼ : ð17Þ 2 Afterthis,thegradientofQistheninterpolatedbacktofluxpointsfollowingtheprocedureasshowninEq.(12)andthe viscous fluxes can then be calculated on flux points. Again, the gradient of Q from the aforementioned reconstruction is generally discontinuous on the element interface, and BR1 is used to provide a common gradient ∇Qcom on the element interfaceasfollows, ∇QLþ∇QR ∇Qcom¼ : ð18Þ 2 ~v ~v ThustheviscousfluxesF andG onfluxpointsareuniquelyspecifiedinalocalcell,andthefluxderivativesonsolution pointscanthenbecalculatedviatheapproachasshowninEq.(15). M.Yuetal./JournalofFluidsandStructures42(2013)166–186 171 Fig.2. SketchofthekinematicsoftheNACA0012airfoil. Fig.3. (a)ConvergencehistoryoftheenergyresidualforthesteadysolutionoftheviscousflowoverastationaryNACA0012airfoilwithimplicit(LU-SGS) timeintegrationatRe¼5000,Ma∞¼0.05andzeroAOA;(b)pressurecoefficientcontoursfortheconvergedsteadyflow;(c)Machnumbercontoursforthe convergedsteadyflow. Onceallfluxderivativesareavailable,theDOFscanbeupdatedwitheitherexplicitorimplicittimeintegrations. 2.3. Simulationparameters Inthisstudy,thekinematicsoftheairfoilisspecifiedasfollows. Plungingmotion:y¼H sinð2πftÞ; 0 Pitchingmotion:θ¼θ sinð2πftþϕÞ: ð19Þ 0 Herein, y is the plunge position of the airfoil, H is the plunge amplitude, f is the oscillation frequency, θ is the pitch 0 0 amplitude, and ϕ is the phase lag between pitching and plunging motions. In view of the optimal thrust generation conditionssuggestedbyAndersonetal.(1998),thepivotpointforthepitchingmotionislocatedone-thirdchordlength awayfromtheleadingedge,θ issetas201andϕisfixedat751.SketchoftheairfoilkinematicsisdisplayedinFig.2.Grid 0 deformationstrategyassociatedwiththekinematicsoftheairfoilcanbefoundinthepaperbyYuetal.(2011). Theaerodynamicparametersarespecifiedasfollows.TheReynoldsnumber(Re )basedontheairfoilchordlengthCand C thefreestreamvelocityU∞issetas1200formostofsimulations.Meanwhile,theairfoilthicknessbasedReynoldsnumber (Re )isalsousedtocharacterizedifferentflowfeatures.AlltheseReynoldsnumbersfallwellwithintheinsectflightregime. T According to the optimal Strouhal number suggested by Triantaflyllou et al. (1993), the Strouhal number (St¼2fH0/U∞) basedontheplungeamplitudeH0ischosenas0.3or0.45.Thereducedfrequency(k¼2πfC/U∞)basedontheairfoilchord lengthCisassignedas1.0or3.5.Asreportedbysomeresearchers(YoungandLai,2004),theinletMachnumberMa∞is crucialfortheaerodynamicperformanceofaflappingwingifacompressiblesolverisadoptedforthesimulation.Inthe presentstudy,Ma∞issettobe0.05,whichisinaccordancewiththevaluespecifiedinYoungandLai(2004). 3. Resultsanddiscussion TheperformanceofthedevelopedsolverforlowMachnumberflowisfirsttestedbycomputingthesteadyviscousflow overaNACA0012airfoilatRe¼5000,Ma∞¼0.05andzeroAOAwitha3rdorderaccurateSDschemeandanimplicitLU-SGS timeintegration(Yuetal.,2011)onacoarsemesh.Theresidualconvergencehistory,pressurecoefficient(C )contour,and P theMachnumbercontouraredisplayedinFig.3(a)–(c)respectively.ItisobviousthattheNavier–Stokessolverworkswellat lowMachnumberasnooscillationoftheflowfieldisobserved. Then h-refinement (grid refinement) and p-enrichment (polynomial degree enrichment) studies are carried out to determinethesuitablegridandschemeaccuracy,whichensurethattheaerodynamicforceandvorticalstructuresaroundthe 172 M.Yuetal./JournalofFluidsandStructures42(2013)166–186 airfoil are grid and scheme accuracy independent for the simulations of the oscillating airfoils. The case of an oscillating NACA0006airfoilwiththecombinedpitchingandplungingmotionsatk¼3.5,St¼0.3isusedforthehp-refinementstudy. TwosetsofgridsinthevicinityoftheairfoilaredisplayedinFig.4(a)and(b).Forthecoarsemesh,100gridpointsareplaced ontheairfoilsurfaceand35gridpointsareassignedintheradialdirectionfromtheairfoil.Thenumberofgridpointsforthe finemeshinbothdirectionsis1.5timesthatforthecoarsemesh.AnoverviewofthecomputationalgridisshowninFig.4(c) with the far field boundary imposed at about 10 chord length away from the airfoil surface. Time histories of the thrust coefficients(C)fromthehp-refinementstudyareshowninFig.4(d).Itisfoundthattimehistoriesofthrustcoefficientsforthe T 3rdorderschemewithbothcoarseandfinegridsandthe4thorderschemewiththecoarsegridagreewellwitheachother, while thatforthe 2ndorder schemewith thecoarsemeshshows marked deviation.Based on theseresults,the 3rdorder accurate SD scheme with a coarse mesh is chosen to conduct the simulations. Moreover, the non-dimensional time step (Δt¼ΔtU∞=C)usedinthesimulationsissetas1.2(cid:3)10−5,whichisdeterminedfromatimerefinementstudyonthecasewith thechosenaccuracyandgridconfiguration.MorevalidationofthepresentflowsolvercanbefoundinYuetal.(2012,2011). Nextitisfirstlyconfirmedthattheaerodynamicperformanceofairfoilswithdifferentthicknesscanvarydramatically underthesamekinematics,andthatthecombinedpitchingandplungingmotionwithsuitablephaselagisconducivefor enhancingtheaerodynamicperformance.Thenweexaminetheairfoilthicknesseffectsonflappingairfoilpropulsionwith the combined motion at different reduced frequencies, the Strouhal numbers and the Reynolds numbers and unveil the hiddenflowphysicsviavortexdynamicsanalysis. 3.1. Syntheticeffectsofairfoilthicknessandkinematics Three kinds of oscillation motions, namely the pure plunging motion, the pure pitching motion and the combined pitchingandplungingmotion,arestudiedinthissection.Thetimehistoriesof thethrustcoefficientsforNACA0006and NACA0030withdifferentoscillationmotionsatk¼1;St¼0.3aredisplayedinFig.5. BycomparingthetimehistoriesofthethrustcoefficientsinFig.5andtimeaveragedthrustcoefficientsinTable1,several observationscanbesummarizedasfollows. Fig.4. hprefinementstudyfortheflowovertheNACA0006airfoilwiththecombinedpitchingandplungingmotionatk¼3:5;St¼0.3.(a)Thecoarsegrid and(b)finegridusedinthegridrefinementstudy.(c)Overviewofthecomputationalgrid.(d)Timehistoriesofthethrustcoefficientsfromthehp refinementstudy. M.Yuetal./JournalofFluidsandStructures42(2013)166–186 173 Fig.5. Timehistoriesofthethrustcoefficientsfor(a)theNACA0006and(b)NACA0030airfoilswithdifferentmotionsatk¼1,St¼0.3. Table1 TimeaveragedthrustcoefficientsfortheNACA0006andNACA0030airfoilswithdifferentmotionsatk¼1; St¼0.3.〈CT〉denotesthetotaltimeaveraged thrustcoefficient;〈CT_P〉denotesthetimeaveragedthrustcoefficientcalculatedfromthepressureforce;〈CT_v〉denotesthetimeaveragedthrustcoefficient calculatedfromtheviscousforce. NACA0006 NACA0030 Plu. Pit. Com. Plu. Pit. Com. 〈CT〉 0.0085 −0.240 0.418 0.020 −0.399 0.105 〈CT_P〉 0.032 −0.198 0.453 0.056 −0.327 0.166 〈CT_v〉 −0.0235 −0.042 −0.035 −0.036 −0.075 −0.061 First,itisfoundthatforbothairfoils,(1)althoughthecombinedmotionisalinearsuperpositionoftheplungingand pitching motion, the aerodynamic force generated from the combined motion is not the linear superposition of the aerodynamicforcegeneratedfromtheplungingandpitchingmotion;(2)onlydragisgeneratedwhenpurepitchingmotion isused;(3)thecombinedmotionoutperformspureplungingmotion. Second,NACA0006cangeneratelargerthrustthanNACA0030forthecombinedpitchingandplungingmotion.However, for pure plunging motion, NACA0030 outperforms NACA0006. The pitching motion did not help much in enhancing the aerodynamic performance of the oscillating NACA0030 airfoil, but it significantly increases the thrust generation of NACA0006aswhenpureplungingmotionisconducted,theNACA0006airfoilalmostdoesnotgeneratethrust. Theexplanationforthecommonfeaturesdisplayedbybothairfoilsisgivenasfollows.Thenonlinearsuperpositionof aerodynamicforcesisattributedtothenonlineareffectsoftheunsteadyvorticalflow.Avisualproofofthisnonlinearityis thatthevorticalstructuresfromthecombinedmotionarenotlinearsuperpositionofthosefrompureplungingandpitching motionasclearlydisplayedinFigs.6and8.AccordingtothedefinitionoftheStrouhalnumberforthepitchingmotionas showninYuetal.(2012),itsvalueinthepresentcaseisStpit¼2f(2Csinθ0/3)/U∞¼0.07.Thisvalueiswellbelowthecritical Strouhalnumberforthrustproductionanditindicatesthatpurepitchingmotionisnotpowerfulenoughtogeneratethrust. Instead,theplungingmotionplaysamajorroleinthrustgenerationastheplungingamplitudebasedStrouhalnumberis0.3 here.NotethatthrustgenerationviathepitchingmotionhasbeenpreviouslystudiedbyKoochesfahani(1989),Jonesand Platzer (1997), Ramamurti and Sandberg (2001) and Bohl and Koochesfahani (2009), just to name a few. There, similar propulsionperformancefromthepitchingmotionhasbeenreported.Beforeexplainingwhymorethrustisgeneratedfrom the combined motion than pure plunging one, we recognize that the superior propulsion performance of the combined motionhavebeenstudiedpreviouslyfromdifferentaspects,suchastheeffectsofthephaselagbetweenplungeandpitch, theeffectsofAOAandtheeffectsofreducedfrequencyandStrouhalnumberbymanyresearchers(e.g.JonesandPlatzer, 1997;Andersonetal.,1998;TuncerandPlatzer,2000;RamamurtiandSandberg,2001;Readetal.,2003;Schouveileretal., 2005).Itisreportedfromtheseworkthataerodynamicparametersleadingtogoodperformanceofthecombinedmotion are generally associated with the favorable dynamic vortex configuration around the airfoils. Here, a comprehensive explanation for the superior performance of the combined motion is given by relating the aerodynamic force with kinematics and vorticity fields. First, weintroduce the conceptof ‘frontal area’, which is defined as the projection of the airfoilinthefreestreamdirectionasshowninFig.2.Obviously,whentheairfoilisparalleltothefreestream,thefrontal area is actually the airfoil thickness. From Table 1 we find that the drastic change in the thrust coefficients between the combinedmotionandpureplungingmotionismainlyduetothechangeofthepressureforcecontributiononthethrust. Recallthatthiscontributionisdeterminedbothbypressuredifferenceinthefree-streamdirectionandfrontalarea.From thevorticityandpressurefields withdifferentmotionsatdifferentphasesasdisplayed inFigs.6and7(NACA0006) and 174 M.Yuetal./JournalofFluidsandStructures42(2013)166–186 Fig. 6. Vorticityfields for the NACA0006airfoil withdifferentmotionsatk¼1; St¼0.3.(a)–(d)combined pitchingand plunging motion atphases 0; π=2;π;3π=2 respectively; (e)–(h) pitching motion at phases 0; π=2;π;3π=2 respectively; (i)–(l) plunging motion at phases 0; π=2;π;3π=2 respectively. Figs.8and9(NACA0030),itisclearthatwhenasuitablepitchingmotionisaddedtotheplungingmotion,thefrontalarea canbeeffectivelyadjustedtoenhancethethrustgenerationfrompressureforce.Forexample,atphases0andπ,thelow pressureregioninducedbyLEVsisattachedonthewindwardsideofbothairfoils.Atthesamephases,thefrontalareaof both airfoils almost reaches its maximum value. Thus, the performance in terms of thrust generation is significantly improvedwiththecombinedflappingmotion. Now we explain how airfoil thickness affects the aerodynamic performance with different kinematics. The inferior performanceoftheplungingNACA0006airfoilisattributedtothesmallfrontalarea,whichisalsotheairfoilthicknessin this case. Specifically, it is observed from Figs. 7(i)–(l) and 9(i)–(l) that at phases 0 and π, which are close to the thrust generationpeaks,bluntleadingedgeofNACA0030takesfulladvantageofthelowpressureregioninducedbytheleading edgevortices.FromFig.5itisclearthatthethrustpeakfortheplungingNACA0030airfoilisaboutfourtimesofthatfor NACA0006.ItisalsofoundfromFig.5thatthedragpeakfortheplungingNACA0030airfoilisonlyabouttwiceofthatfor NACA0006.ThisexplainswhyNACA0030outperformsNACA0006forpureplungingmotion.Theseresultsalsoagreewith theobservationsbyYoungandLai(2004)thatleading-edgeeffectsarevitalindeterminingaerodynamicforces. ThereasonthatthepitchingmotionalmostdoesnotenhancethethrustgenerationoftheoscillatingNACA0030airfoilis givenasfollows.OnexaminingFig.8(a)and(c),itisobservedthatalthoughthepitchingmotionhelpsenlargethefrontal areaoftheNACA0030airfoilatphases0andπ,i.e.t/T¼3and3.5inFig.5(b),theLEVsisstilllocatedintherearwardpartof theairfoil.Thisvortexconfigurationdoesnotcontributemuchtothethrustgeneration.Moreover,atphasesπ/2and3π/2,i.e. t/T¼3.25and3.75inFig.5(b),theNACA30airfoilwiththecombinedmotionexperienceslargerdragpeakthanthatwiththe plungingmotion.ThisisduetotheinteractionofthepropagatingLEVsandtheshedtrailingedgevortices(TEVs)duringthe oscillationstroke.Specifically,forthecombinedmotion,partsoftheTEVsaretrappedonthetrailingedgeasshowninFig.8 (b)and(d),inducingalowpressureregionthereasshowninFig.9(b)and(d).However,fortheplungingmotion,theTEVs arenottrappedonthetrailingedge,asdisplayedinFig.8(j)and(l).Thustheredoesnotexistalowpressureregioninthe rearwardpartoftheairfoil. M.Yuetal./JournalofFluidsandStructures42(2013)166–186 175 Fig. 7. Pressure fields for the NACA0006 airfoil withdifferent motions at k¼1; St¼0.3. (a)–(d) combined pitching and plunging motionat phases 0; π=2;π;3π=2 respectively; (e)–(h) pitching motion at phases 0; π=2;π;3π=2 respectively; (i)–(l) plunging motion at phases 0; π=2;π;3π=2 respectively. ThebetterperformanceoftheNACA0006airfoilwiththecombinedmotionisattributedtotheLEVsdynamicsaswell. FromFigs.6and7,itisobservedthatfortheNACA0006airfoilthepitchingmotioncanbettercontroltheLEVsandensure thatthelowpressureregionislocatedontheforwardpartoftheairfoilatphases0andπ,andnolowpressureregionis locatedontherearwardpartoftheairfoilatphasesπ/2and3π/2.FromFig.5(a),itisfoundthatincontrasttoNACA0030,the NACA0006airfoilwiththecombinedmotiondoesnotexperiencelargerdragpeakthanthatwiththeplungingmotion.This isduetothatnoTEVsaretrappedonthetrailingedgeforboththecombinedandplungingmotions. 3.2. ThicknesseffectsatdifferentreducedfrequenciesandStrouhalnumbers Asaforementioned,asuitablecombinedmotioncanenhancetheaerodynamicperformancesoftheoscillatingairfoil.In thissection,thekinematicsoftheairfoilsischosenasacombinedmotionwiththepitchingmotionleadingtheplunging motionby751.ThicknesseffectsatdifferentreducedfrequenciesforagivenStrouhalnumberarecomparedanddiscussedat first.TheevolutionofLEVsandtheinteractionbetweenLEVsandTEVsisconfirmedtobevitalfordifferentperformanceof airfoilswithdifferentthickness.Thephysicsbehindthesephenomenaisunveiledbyanalyzingthevorticityfieldsandthe correspondinginducedpressuredistribution.Thensimilaranalysisstrategyisadoptedtorevealthicknesseffectsatdifferent Strouhalnumbersforthesamereducedfrequency. 3.2.1. Thicknesseffectsatdifferentreducedfrequencies The flow fields, namely the spanwise vorticity fields and the corresponding pressure fields of NACA0020 at k¼1 and St¼0.3aredisplayedinFig.10.NotethattheflowfieldsofNACA0012aresimilartothoseofNACA0006,andarenotshown here.BycomparingthevorticityfieldsofNACA0006(Fig.6(a)–(d)),NACA0020(Fig.10(a)–(d))andNACA0030(Fig.8(a)–(d)), itisobservedthatastheairfoilbecomesthicker,attheendoftheoscillationstrokes,i.e.atphasesπ/2and3π/2,largerparts
Description: