ebook img

High Energy Wide Area Blunt Impact on Composite Aircraft Structures PDF

279 Pages·2013·58.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Energy Wide Area Blunt Impact on Composite Aircraft Structures

UC San Diego UC San Diego Electronic Theses and Dissertations Title High Energy Wide Area Blunt Impact on Composite Aircraft Structures / Permalink https://escholarship.org/uc/item/7fq9827j Author DeFrancisci, Gabriela K. Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO High Energy Wide Area Blunt Impact on Composite Aircraft Structures A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Structural Engineering by Gabriela K. DeFrancisci Committee in charge: Professor Hyonny Kim, Chair Professor Chiara Bisagni Professor Francesco Lanza Di Scalea Professor Vlado A. Lubarda Professor Vitali F. Nesterenko 2013 Copyright Gabriela K. DeFrancisci, 2013 All rights reserved. The dissertation of Gabriela K. DeFrancisci is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION My family: Sheilah, Christina, Steven and Laura. iv TABLE OF CONTENTS Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xx 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 High Velocity Versus Low Velocity Impacts . . . . . . . . . . . . . . 12 2.2 Quasi-Static Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Typical Low Velocity Experimental Setup . . . . . . . . . . . . . . 15 2.4 Impactor Geometry and Material . . . . . . . . . . . . . . . . . . . 17 2.4.1 Impactor Bluntness Effects . . . . . . . . . . . . . . . . . . . 17 2.4.2 Rubber Material Modeling . . . . . . . . . . . . . . . . . . . 18 2.5 Panel Size and Scaling Effects . . . . . . . . . . . . . . . . . . . . . 19 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Large Scale Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Blunt Impact Threat Characterization . . . . . . . . . . . . . . . . 22 3.3 Panel Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Composite Material . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Stringer Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 v 3.4.2 Procedure for Test . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.3 Stringer00 Results . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.4 Stringer01 Results . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.5 Stringer02 Results . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.6 StringerXX Discussion . . . . . . . . . . . . . . . . . . . . . 59 3.5 Phase I Frame Panels . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 Representation of Boundary Conditions . . . . . . . . . . . . 61 3.5.2 Phase I FrameXX Test Setup . . . . . . . . . . . . . . . . . 67 3.5.3 Procedure for Test . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.4 Frame01 Results . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.5 Frame02 Results . . . . . . . . . . . . . . . . . . . . . . . . 77 3.5.6 Phase I FrameXX Discussion . . . . . . . . . . . . . . . . . 83 3.6 Phase II Frame Panels . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6.2 Frame03 Results . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6.3 Frame04-1 Results . . . . . . . . . . . . . . . . . . . . . . . 96 3.6.4 Frame04-2 Results . . . . . . . . . . . . . . . . . . . . . . . 100 3.6.5 Frame by Frame Comparison of Quasi-Static and Dynamic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.6.6 Energy Quantification . . . . . . . . . . . . . . . . . . . . . 109 3.7 Experimental Conclusions . . . . . . . . . . . . . . . . . . . . . . . 110 4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.1.2 Script Based Model Definition . . . . . . . . . . . . . . . . . 116 4.2 Model Description and Definitions . . . . . . . . . . . . . . . . . . . 118 4.2.1 Rubber Bumper Modeling . . . . . . . . . . . . . . . . . . . 119 4.2.2 Panel Description . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2.3 Effective Fastener Modeling . . . . . . . . . . . . . . . . . . 127 4.3 Mesh Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4 Finite Element Analysis Validation . . . . . . . . . . . . . . . . . . 138 4.5 Panel Geometry and Material Parameter Effects Studies . . . . . . 152 4.5.1 Contribution of Non-Loaded Frames to Overall Stiffness . . 154 4.5.2 Bumper Material Stiffness Study . . . . . . . . . . . . . . . 161 4.5.3 Relative Component Stiffness Study . . . . . . . . . . . . . . 165 4.5.4 Component Material Study . . . . . . . . . . . . . . . . . . 172 4.5.5 Panel Geometry and Material Parameter Study Discussion . 185 4.6 Modeling Methodology Summary . . . . . . . . . . . . . . . . . . . 186 4.7 FEA Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 vi 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 194 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 A Cohesive Surfaces/Composites in Abaqus Tutorial . . . . . . . . . . . . . 201 A.1 Failure Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 A.1.1 Cohesive Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 202 A.2 Defining a Composite Laminate Material Orientation . . . . . . . . 206 A.3 Mesh Stack Direction and Element Type . . . . . . . . . . . . . . . 208 A.3.1 Mesh Stack Direction . . . . . . . . . . . . . . . . . . . . . . 208 A.3.2 Mesh Element Type . . . . . . . . . . . . . . . . . . . . . . 210 B Test Fixtures and Boundary Conditions . . . . . . . . . . . . . . . . . . 211 B.1 StringerXX Test Fixtures . . . . . . . . . . . . . . . . . . . . . . . . 211 B.2 Phase I FrameXX Boundary Conditions . . . . . . . . . . . . . . . 215 B.3 Phase II FrameXX Additional Aluminum Frame Boundary Conditions230 B.4 C-Frame Outer Mold Line Tool . . . . . . . . . . . . . . . . . . . . 237 B.5 Shear Tie Outer Mold Line Tool . . . . . . . . . . . . . . . . . . . . 239 B.6 Stringer Silicone Mold . . . . . . . . . . . . . . . . . . . . . . . . . 240 B.7 Phase II Skin Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 vii LIST OF FIGURES Figure 1.1.1:Aircraft Surrounded by GSE Between Flights . . . . . . . . . . 2 Figure 1.1.2:Schematic Diagram of Design Load Levels Versus Categories of Damage Severity as Defined by the FAA [5] . . . . . . . . . . . 3 Figure 1.1.3:Patch Away from Door Indicating Accidental Damage . . . . . 5 Figure 1.1.4:Cylindrical Bumper Typically Found on GSE . . . . . . . . . . 6 Figure 1.1.5:Monolithic Composite Structure . . . . . . . . . . . . . . . . . 6 Figure 1.3.1:Building Block Approach to Understanding Damage to Mono- lithic Composite Structures . . . . . . . . . . . . . . . . . . . . 8 Figure 1.4.1:High Amount of Skin Deformation in Panel With a Soft Impactor 11 Figure 2.1.1:ComparisonBetween(a)LargeMassand(b)SmallMassImpact Response [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 2.2.1:Force-DeflectionHistoriesforConcaveShellSpecimenImpacted at 3.1 m/s and Tested Quasi-Statically [23] . . . . . . . . . . . 15 Figure 2.4.1:High Deformation of Rubber Material During Impact on an Aluminum Plate [31] . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 3.2.1:Patches Surrounding Door on Boeing 747 . . . . . . . . . . . . 24 Figure 3.2.2:Boeing 737 and Surrounding GSE Between Flights . . . . . . . 24 Figure 3.2.3:Velocity of a Belt Loader Approaching a Boeing 757 Aircraft . . 25 Figure 3.2.4:Difficult Approach Angle of Belt Loader . . . . . . . . . . . . . 26 Figure 3.2.5:Potential Scraping on Fairing as Bumper is Raised to Door Level 27 Figure 3.2.6:Rolling Staircase Contacting Aircraft at an Angle . . . . . . . . 28 Figure 3.2.7:Cylindrical Bumper and “D” Shaped Bumper . . . . . . . . . . 29 Figure 3.2.8:CylindricalBumperand“D” ShapedBumperUsedinExperiments 30 Figure 3.3.1:Composite Fuselage and Acreage Internal Structure [40, 41] . . 31 Figure 3.3.2:Typical StringerXX and FrameXX Test Panels . . . . . . . . . 32 Figure 3.3.3:Shear Tie and Frame Cross Section Dimensions (all units in mm) 33 Figure 3.3.4:Shear Tie Dimensions . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 3.3.5:Stringer Dimensions (all units are in mm) . . . . . . . . . . . . 34 Figure 3.3.6:Frame Side View with Material Orientation for Shear Ties and Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 3.3.7:1.8 m Diameter Autoclave at San Diego Composites . . . . . . 37 Figure 3.3.8:Manufacturing Cure Cycle . . . . . . . . . . . . . . . . . . . . 38 Figure 3.3.9:Stringer and Skin Material Orientation . . . . . . . . . . . . . . 38 Figure3.3.10:Skin Outer Mold Line (OML) Tool . . . . . . . . . . . . . . . . 39 Figure3.3.11:Stringer Inner Mold Line (IML) Tool . . . . . . . . . . . . . . . 40 Figure3.3.12:Corner Detail of Stringer-Skin Connection . . . . . . . . . . . . 41 Figure3.3.13:Frame (OML) Tool . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure3.3.14:Shear Tie (OML) Tool . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 3.4.1:Stringer Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 viii Figure 3.4.2:Stringer Impact Locations . . . . . . . . . . . . . . . . . . . . . 45 Figure 3.4.3:Rigid76.2mmRadiusIndentor(left)andOEMRubberBumper (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 3.4.4:Panel Stringer02 Test Setup in SATEC Machine . . . . . . . . . 46 Figure 3.4.5:Stringer Test Fixtures (Indentation Location 2, Dimensions are mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 3.4.6:Stringer00 Force vs. Indentation Curves . . . . . . . . . . . . . 48 Figure 3.4.7:Localized Deformation of Panel Caused by 76.2 mm Radius Rigid Indentor During First Loading of Stringer00. . . . . . . . 49 Figure 3.4.8:NoVisiblePermanentDeformationAfterFirstLoadingofStringer00 Despite Formation of Delamination . . . . . . . . . . . . . . . . 49 Figure 3.4.9:Stringer00 Peanut Shaped Delamination After First Loading . . 50 Figure3.4.10:Stringer00 After Final Failure Following Second Loading . . . . 51 Figure3.4.11:Stringer00 After Final Failure Following Second Loading; Panel ReboundedtoOriginalOverallShapeDespitePenetrationDam- age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure3.4.12:Stringer01 Final Failure Following Fourth Loading, Penetration of Indentor Through Skin . . . . . . . . . . . . . . . . . . . . . 52 Figure3.4.13:Stringer01 Force vs. Indentation Curves . . . . . . . . . . . . . 53 Figure3.4.14:Deformation of Highly Compliant Rubber Bumper Indentor . . 55 Figure3.4.15:Stringer02 Force vs. Indentation Curves . . . . . . . . . . . . . 56 Figure3.4.16:Stringer02 Delamination Schematic . . . . . . . . . . . . . . . . 57 Figure3.4.17:Stringer02 Delamination Between the Skin and Stringer Follow- ing Fourth Loading . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure3.4.18:Stringer02 Following Fifth Loading. Complete Delamination of the Right-Side Stringer (S2) Out to the Free Edge was Observed 59 Figure 3.5.1:Phase I Test Panel Design Concept . . . . . . . . . . . . . . . . 61 Figure 3.5.2:Deformation State Dependent on Boundary Conditions . . . . . 62 Figure 3.5.3:Hoop and Rotations Degree of Freedom Stiffness at Boundaries 63 Figure 3.5.4:Full Barrel Quarter Symmetric Model with Equivalent Elastic Constants, 76.2 mm Radius Indentor; Model Represents a Full Barrel With Fixed Outer Boundaries – Only ¼ of Geometry is Modeled Due to Quarter Symmetry . . . . . . . . . . . . . . . . 64 Figure 3.5.5:Comparison Metrics Between the Full Barrel Model and Frame Panel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 3.5.6:Hoop Displacement for Various Rotational and Translational Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 3.5.7:Boundary Rotation for Various Rotational and Translational Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 3.5.8:Phase I Frame Panel Experimental Setup . . . . . . . . . . . . 68 Figure 3.5.9:Frame01 Loading History . . . . . . . . . . . . . . . . . . . . . 70 Figure3.5.10:Frame01 Component Locations . . . . . . . . . . . . . . . . . . 71 Figure3.5.11:Frame01 During Loading L3 at 44.48 kN . . . . . . . . . . . . . 72 ix

Description:
A Cohesive Surfaces/Composites in Abaqus Tutorial . 201. A.1 Failure Parameters . B. S. in Civil Engineering magnum cum laude, California. Polytechic State University, San Luis Obispo dynamic impact simulations were conducted in Abaqus Explicit. A FEA model (referred to as the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.