High-energyparticletransport in3Dhydrodynamicmodels ofcolliding-windbinaries K.Reitberger,R.Kissmann,A.Reimer,O.Reimer Institutfu¨rAstro-undTeilchenphysikandInstitutfu¨rTheoretischePhysik,Leopold-Franzens-Universita¨t 4 Innsbruck,A-6020Innsbruck,Austria 1 0 and 2 n G.Dubus a J 7 UJF-Grenoble1/CNRS-INSU,InstitutdePlane´tologieetd’AstrophysiquedeGrenoble(IPAG),UMR5274, Grenoble,France ] E H [email protected] . h p ABSTRACT - o r t s Massivestarsinbinarysystems(asWR140,WR147orηCarinae)havelongbeenregarded a aspotentialsourcesofhigh-energyγ-rays. Theemissionisthoughttoariseintheregionwhere [ the stellar winds collide and produce relativistic particles which subsequently might be able 1 v to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight in 3 thecomplexdynamicsofthewindcollisionregion(WCR),whileindependentanalyticalstud- 2 3 ies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged 1 particles. Inthispaper, wedescribeacombinationofthesetwoapproaches. Wepresenta3D- . 1 hydrodynamicalmodelforcollidingstellarwindsandcomputespectralenergydistributionsof 0 4 relativisticparticlesfortheresultingstructureoftheWCR.Thehydrodynamicpartofourmodel 1 incorporatestheline-drivenaccelerationofthewinds, gravity, orbitalmotionandtheradiative : v cooling of the shocked plasma. In our treatment of charged particles we consider diffusive i X shockaccelerationintheWCRandthesubsequentcoolingviainverseComptonlosses(includ- r ingKlein-Nishinaeffects),bremsstrahlung,collisionsandotherenergylossmechanisms. a Subjectheadings: accelerationofparticles–binaries: general–gammarays: stars–hydrody- namics–stars: winds,outflows 1. INTRODUCTION Inrecentyears,severalmodelsofmostlyanalyticalnaturehaveaddressedthequestionwhetherbinary systems of massive stars without compact objects are liable to produce high-energy γ-ray emission (e.g., –2– Reimeretal.2006;Pittardetal.2006;Benaglia&Romero2003). Thesestudiesarguethatsuchobjects(i.e. systemscontainingaWolf-Rayet(WR)starandanOB-typestar)providesuitableenvironmentsforefficient particle acceleration and subsequent γ-ray emission. Electrons and protons are thought to be accelerated at the shock fronts tracing the edge of the regions where stellar winds collide with supersonic velocities. Several γ-ray emission mechanisms – inverse Compton (IC) scattering, relativistic bremsstrahlung and π0- decay – can produce γ-rays at GeV and TeV energies with sufficient fluxes to allow for detection with instrumentsastheFermi-LargeAreaTelescope(LAT)orperhapsevenHESS,MAGICandVERITAS. In contrast to expectations, no such detection of γ-ray emission linked to colliding-wind binaries (CWBs) has been reported so far, with one notable exception: the highly unusual object η Carinae is the onlyCWBsystemunambiguouslylinkedtohigh-energyγ-rayemission(Reitbergeretal.2012). Thissys- tem most likely consists of a WR star and a high-mass Luminous Blue Variable (LBV). Both stars are envelopedinahugedustandgascloud,theHomunculus-nebula,whichoriginatedinamassiveoutburstof theLBVintheyearof1843. Althoughthissourceexhibitsanumberofuniquecharacteristics,noexplana- tionforitshighγ-rayflux–comparedtothenon-detectionofotherCWBs–canbegivensofar. Dedicated observations of WR-OB systems as WR 147 or WR 140 (for which models predicted fluxes above LAT detectionthresholds)haveyieldedupperlimits(Werneretal.2013). Detailed 3D hydrodynamical (HD) simulations (Pittard 2009) have recently explored the highly dy- namical nature of the WCR in CWBs and its strong dependence on stellar and orbital parameters. The complexdensity,velocityandtemperaturestructureofthecollidingwindshavefurtherbeenusedtomodel thethermalradioandX-rayemissioninsuchsystems(Pittard2010;Pittard&Parkin2010). This work aims at a numerical computation of the spectral energy distribution of charged particles within a numerical HD model of the WCR. By solving a transport equation including spatial convection, diffusive shock acceleration (DSA) and various cooling processes for electrons and protons at every grid point of the HDsimulation, we simulate the time-dependent 3D spatial distributionof particles at different energies. AscoolingprocesseswetakeICemission,bremsstrahlung,nucleon-nucleoninteraction,adiabatic cooling and others into account. The particles are injected at the shock fronts of the wind collision region andsubsequentlygainenergybyDSA. We developed a code which – by taking stellar, stellar wind and orbital parameters of a given binary system as input – solves the 3D distribution of density, velocity and temperature fields of the wind plasma as well as the energy spectra for electrons and protons for every point on a numerical grid. The resulting spatiallyvaryingparticlespectrawillserveasinputforcomplementarystudies,computingthecomponents ofensuingγ-rayemission. In Section 2 we introduce the numerical and HD setup that we use to simulate a 3D distribution of radiativelydrivenwindsinabinarysystem. Ourmethodofdealingwiththespatialandenergeticevolution of particle species via solving a transport equation is thoroughly discussed in Section 3. In Section 4 we present results obtained for a typical CWB system in terms of spatial and spectral distribution of high- energyelectronsandprotons. Section5providesasummaryofourfindingsaswellasanoutlookonfuture developments. –3– 2. HYDRODYNAMICS 2.1. NumericalSetup To simulate the hydrodynamics of the stellar winds we use the Cronos code (Kissmann et al. 2008; Kleimann et al. 2009) which is a finite-volume magneto-hydrodynamic (MHD) code optimized for the simulation of compressible astrophysical plasmas. The code is second-order accurate in space and allows for Cartesian, cylindrical, and spherical grid layouts. Cronos uses approximate Riemann solvers for the timeintegrationoftheHDandMHDequations,wherethechoiceofRiemannsolversincludesHarten-Lax- vanLeer(hll, usedinthisstudy), hll-Contact(hllc)andhll-Discontinuities(hlld). Timeintegrationisdone via a second- or third-order Runge-Kutta integrator, where the time discretisation utilises the semidiscrete approach. Inthepresentcase,CronosisusedtosolvetheHDequations, ∂ρ +∇(cid:126) ·(ρ(cid:126)v) = 0 (1) ∂t ∂ρ(cid:126)v +∇(cid:126) ·(ρ(cid:126)v(cid:126)v+Pˆ) = ρf(cid:126) (2) ∂t (cid:32) (cid:33)2 ∂(cid:15) ρ +∇(cid:126) ·[((cid:15) +P)(cid:126)v] = Λ(T)+ρf(cid:126)·(cid:126)v (3) ∂t m H where the left-hand side of the equations is solved by Cronos intrinsically, whereas the right-hand side (i.e. theforceterm f(cid:126)andtheradiativecoolingtermΛ(T)aredealtwithindedicatedadditionalmodulesas outlinedbelow. ρ is the mass density,(cid:126)v is the velocity vector, P the scalar pressure, f(cid:126)the sum of all external forces, (cid:15) = ρv2+eisthetotalenergypervolume,etheinternalenergypervolumeandTthetemperature. Weuse 2 theidealgasequationofstateP = (γ−1)ewiththeadiabaticindexforamonoatomicgasγ = 5. 3 2.2. Theforceterm f(cid:126) Theforcedensityterm f(cid:126)consistsofthreecomponents: gravity,radiativelineaccelerationduetheions inthewindandtheradiativeaccelerationduetophotonsscatteringoffelectrons. Itcanbewrittenas f(cid:126)= (cid:88)2 −GM∗,ir(cid:126)r3i +(cid:126)grLad,i+(cid:126)gerad,i (4) i=1 i where the index i indicates each star. The vector (cid:126)r is given relative to the star i. We assume radiative i accelerationtobedirectedradiallyfromthestars. Therefore, (cid:126)r σ L (cid:126)ge = ge i with ge = e ∗,i (5) rad,i rad,iri rad,i 4πr2c i –4– whereσ isthespecificelectronopacityduetoThomsonscatteringandL istheluminosityofstari. e ∗,i Determining the line-acceleration requires an integration over the finite stellar disk (as a point source basedapproachwouldyieldsignificantlyerroneousresultsclosetothestar(seeLamers&Cassinelli1999). This integral can be simplified by assuming azimuthal symmetry of the stellar disk. To approximate the contribution of the wide spectrum of optically thick and thin spectral lines of the ions in the wind, we rely on the standard Castor-Abbott-Klein (CAK) formalism first introduced by Castor et al. (1975) and later modified and improved by Pauldrach et al. (1986). This approach replaces the required summation over all lines by a simple parametrization with two parameters α and k. Taking all this into account, the line- accelerationterm(asgiveninGayleyetal.1997)can–withsomemodification–beexpressedasfollows: (cid:126)grLad,i = grLad,i(cid:126)rrii with grLad = 2kσc1e−α4πLR∗,i2∗,i (cid:90)0θ∗,in(cid:126)i·∇(cid:126)ρv(nt(cid:126)hi·(cid:126)v)αsinθcosθdθ (6) withk andαbeingtheCAK-parametersmentionedabove. ρisthemassdensityofthewindinthecellfor whichtheaccelerationiscalculated. v isthethermalvelocityofionizedhydrogen,theangleθ marksthe th ∗,i edgeofthestellardiskrelativetothepointforwhichwederivetheacceleration. Itisdefinedbysinθ = R∗,i. ∗,i ri Theprojectedvelocitygradientn(cid:126) ·∇(cid:126)(n(cid:126) ·(cid:126)v)dependsontheunitvectortowardsapointonthestellarsurface i i n(cid:126) dependingagainonθ. InEuclideancoordinatesitcanbeexpressedas i (cid:32) (cid:33) ∂v ∂v ∂v ∂v ∂v (cid:126)n·∇(cid:126)((cid:126)n·(cid:126)v) = n2 x +n2 y +n2 z +n n y + x + x ∂x y ∂y z ∂z x y ∂x ∂y (cid:32) (cid:33) (cid:32) (cid:33) (7) ∂v ∂v ∂v ∂v +n n z + x +n n z + y x z y z ∂x ∂z ∂y ∂z In evaluating the integral in Eq. 6 we use(cid:126)n = sinθP(cid:126) +cosθN(cid:126), where N(cid:126) is the unit vector pointing i fromthegridpointtowardsthestellarcenter. P(cid:126) isaperpendicularvectorchosensuchthatitisnonzeroand liesinaplaneofthenumericalgrid. IntegrationisthenperformednumericallyusingasimpleSimpson-rule withfivestepsintheinterval[0,cosθ ]. ∗,i Duetotheionizationoftheplasma,linedrivingissettozeroincellswithtemperatureabove106K. 2.3. Radiativecooling DuetohighdensitiesandtemperaturesintheWCR,radiativecoolingbecomesimportantandthushas tobeconsidered,seeEq. (3). HereweusethecoolingfunctionΛ(T)fromSchureetal.(2009)whopresent anewradiativecoolingcurvebasedonancontemporaryplasmaemissioncodeprovidingdetailedlogT-logΛ tables. Weusethetabulateddataandinterpolatebetweenindividualdata-points. –5– 2.4. Geometricalsetup&initialconditions We use a Euclidean coordinate system defined such that the x-axis coincides with the semimajor axis ofthebinarysystem,thusconnectingperiastronandapastron. Theoriginisatthecenterofmass. Thez-axis isperpendiculartotheorbitalplane. Initially we place the stars along the x-axis (choosing between periastron and apastron passage) and initializethestellarwindsbyaβ-lawapproximation. (cid:32) ξR (cid:33)βi v(r) = v 1− ∗,i (8) i ∞,i r FromthecontinuityequationEq. (1)itfollowsthat M˙ ρ(r) = i (9) i 4πr2v(r) i fortheindividualstars. ThetemperatureT isinitializedwiththevalue104K.Itisnotallowedtodropbelow thisvalue,simulatingtheeffectsofphotoionizationheating. (cf.Pittard2009). Asitiscomputationallyexpensivetoself-consistentlysimulatethewindupfromthestellarsurface,it has been common practice to prescribe a fixed solution in at least 3 cells above the stellar surface at every time step (e.g. Pittard 2009). A classical β-law solution (ξ = 1, only accurate in the point source limit) usually results in an non-physical kink between fixed cells and those dynamically solved. Multiple trials with1Dsimulationsclearlyshowthatasmoothtransitionisbestachievedbyinitiatingthefixedcellswith ξ ∼ 0.9983–whichisalsothevaluesuggestedbyLamers&Cassinelli(1999). Toachievesmootherwind- velocity profiles even at lower spatial resolutions we prescribe the wind with this modified β-law at every time step up to 5 cells above the stellar surface. For a typical resolution of ∼15.6 R per cell, this gives (cid:12) satisfactoryvelocityanddensityprofiles. For given stellar parameters, we determine the best fit value of β, as well as the values of the CAK- parametersαandkbyaniterativesequenceof1DsimulationsbasedontheknownobservablesR , L , M , ∗ ∗ ∗ thewind’sterminalvelocityv andthemasslossrate M˙. ∞ To simulate the orbital motion of the stars, we use the standard equations for a Keplerian orbit. The differential equation for the eccentric anomaly Ψ(t) (being ωt = Ψ−esinΨ with eccentricity e) is solved by a ten step Newton-Raphson method. The wind velocity that is prescribed at each step above the stellar surfaceismodifiedbythestellarvelocityduetoitsorbitalmotion. –6– 3. PARTICLESPECTRA 3.1. Thetransportequation IninjectingelectronsandprotonsinsidetheWCRwhichthensufferfromvariousenergy-lossmecha- nisms,wewidelyrelyontheworkbyReimeretal.(2006)inwhichananalyticalapproachforasimplified windset-upiscarriedoutingreatdetail. We distinguish between acceleration cells which are located at the shock front of the WCR, and all othercells. Inordertodiscriminatebetweenthesetworegions,weusethetemperaturestructureofthewind plasma. Due to the imposed lower limit of 104 K, the wind is isothermal until it reaches the WCR. There, the temperature increases by three to four orders of magnitude within a few grid cells (see Fig. 1(b)). In our approach, we declare a cell to be an acceleration cell if three conditions are met: i) the divergence of thevelocityvectorbenegative(thewindiseffectivelyslowingdown),ii)thetemperaturebehigherthanin theunshockedwind, andiii)thetemperatureofatleastoneofthesixneighbouringcellsbeatthevalueof the unshocked wind. This yields a one-cell-thick skin of acceleration cells that envelop the WCR (see Fig. 1(d)). Thetime-dependenttransportequation-asitissolvedforeachgridpoint-reads: ∂N(E) ∂ (cid:104) (cid:105) N(E) +∇·[(cid:126)vN(E)]+ E˙N(E) + = Q δ(E−E ) (10) 0 0 ∂t ∂E τ (1) (4) (2) (3) where N is the differential number density of particles at energy E in a grid cell at position (cid:126)r. We now discusseachtermindetail: (1) Thespatialconvectionterm(where(cid:126)visthevelocityvectorofthewindmaterial)handlesthetransport ofchargedparticlesdownstreamalongtheWCR.Itisusedforallgridcellsexceptaccelerationcells whichistreatedinleakyboxapproachanalogoustotheaccelerationregioninReimeretal.(2006). (2) Thistermhandlesallenergygainandlossprocesseswhichdependontheconsideredparticlespecies andonwhetherthecellislocatedattheshockfrontornot. Foraccelerationcellstheterm E˙ includes DSA (not active outside the shock front) and radiative losses. We also consider adiabatic cooling whichbecomesimportantastheparticlesacceleratetravellingdownstream. Foraccelerationcellsand all cells where ∇·(cid:126)v < 0 (true for cells just behind the shock front) the adiabatic cooling term has to be switched off as it would allow additional acceleration which is explicitly already taken care of by DSA. E˙ = EEE˙˙˙rDaSdiAati+veE+˙raEd˙iative feeollssreeawwchhceeelrreeeriiaffti∇∇on··(cid:126)(cid:126)vvce<>lls00 (11) radiative adiabatic TheindividualenergygainandenergylosstermsarediscussedindetailinSections3.2and3.3. (3) By considering the acceleration cells similarly to a leaky box model (see e.g. Protheroe & Stanev 1999), the escape time τ describes the rate at which particles are lost by diffusing out of the system. –7– Theescapetimecanbeapproximatedviathediffusioncoefficientandthewindvelocityperpendicular totheshockV . ForWCRcellsoutsidetheshockfront,thediffusionalleakageoutofthesystem Shock issettozerobychoosinganinfiniteescapetime(seeMartin&Dubus2013). τ = ∞VcS2r,hDock, elsefworhaecrecelerationcells (12) withthecompressionratioc andtheenergy-independentdiffusioncoefficientD,whichisanapprox- r imation for the sum of the upstream and downstream component of the diffusion coefficients at the shock (D ≈ D + c D ) (e.g., Schure et al. 2010). Kirk et al. (1998) provide a comparison to the 1 r 2 alternative assumption of an energy-dependent diffusion coefficient. In the present work, we choose theenergy-independentapproachinordertoallowdirectcomparisonwithReimeretal.(2006). Thus, D is constant throughout this work. Note that an energy-independent diffusion coefficient demands additional consideration of the Bohm limit, at which further acceleration of particles is inhibited as their gyroradii become comparable to the characteristic size of the shock. We include this in our simulations by setting τ = 0 as soon as the Bohm diffusion coefficient (∝ E) exceeds the chosen energy-independentdiffusioncoefficientD. τ = 0, forE > E = 3eBD (13) Bohm wherethemagneticfieldstrength Bisapproximatedasdescribedbelow. (4) Particles are injected into the system at an energy E (usually chosen to be 1 MeV). The choice of 0 theinjectionrateQ islimitedtotheconstraintsofparticlenumberandenergyconservation. Agiven 0 gridcellintheshockregioncannotinjectmoreparticlesthanitinitiallycarries,neithercanitdeposit more energy in the injectedparticles than it has. Following Martin& Dubus (2013) we approximate theamountofinjectedparticlesbyaconstantfractionηofthemassdensity. Assuming a wind that predominantly consists of ionized hydrogen, partly ionized helium and elec- trons,itfollowsthat ρ 1+I ζ ρ n = He He and n = (14) e m 1+4ζ p m (1+4ζ ) H He H He with n and n being the number densities of free electrons and protons in a given cell, ρ being the p e local wind density, ζ = nHe, and I being the number of electrons provided per helium nucleus. He nH He Hydrogen is assumed to be completely ionized. (We assume ζ = 0.1 and I = 2 for wind tem- He He peratures higher than 30 000 K and I = 1 below.) This imposes a limit on the maximum number He densityforelectronsQe andprotonsQp thatcanbeacceleratedpertimestepdt,ofwhichwetakethe 0 0 fractionsη andη . OtherparticlespeciesliableforsignificantaccelerationintheWCR(asHeions) e p arenotconsideredinthepresentstudy. Q = ηdetmρH 11++IH4ζeζHHee or ηdpt mH(1+ρ4ζHe), foraccelerationcells(electrons,protons) (15) 0 0, elsewhere –8– The injection fractions are used as free parameters. Typically, we take η = 10−3 and η = 10−5. p e The ensuing mass density decrease in the wind plasma is small enough to be negligible. As the energydepositedintheshockisalsoproportionaltoη (andthusverysmall),thereisnosignificant e,p reductionofthekineticenergyofthewind. Energyconservationthereforeholds. Wedonotconsider alternativesourcesofparticlesenteringtheaccelerationprocess(e.g.,viaγ−γpairproduction.) 3.2. Particleacceleration Ofthevariousaccelerationmechanismsfornon-thermalparticlesthatarediscussedinliterature,DSA (as a variant of the first-order Fermi acceleration principle in which particles gain energy by repeatedly traversing a shock) appears to be the most feasible process to be taken into account for our models. Al- ternative mechanisms as various turbulent processes (e.g., the second-order Fermi processes) or magnetic reconnection are assumed to be either less efficient or incapable of supplying particles that reach energies sufficientforgamma-rayemission(seePittard&Dougherty2006). Thus, werestrictourselvestoconsider DSAasthesoleaccelerationprocessofelectronsandprotons,fortheremainderofthiswork. Theaverage rateofmomentumgainbyDSA(seee.g.;Schureetal.2010)is (cid:32)c −1(cid:33) V2 E˙ = r ShockE (16) DSA 3c D r whereV istheshockvelocity,c thecompressionratioand Dtheenergy-independentspatialdiffusion Shock r coefficientasmotivatedabove. We define the shock velocity V as the upstream velocity normal to the shock and determine it by Shock computingthevelocitycomponentoftheplasmaperpendiculartotheWCR.Asatracerfortheorientation ofthecollisionregion,wetakethegradientofthetemperaturefield∇(cid:126)T andcompute (cid:126)v(cid:5)∇(cid:126)T V = (17) Shock | ∇(cid:126)T | Thecompressionratioc attheshockisalsodirectlydeterminedfromthewindstructurebycomputingthe r ratioofpost-shockmassdensityandpre-shockmassdensity. Theformerisdeterminedbyinterpolatingthe massdensityatadistanceofthreecellwidthsalongtheshocknormaltowardstheWCR.Thechoiceofthree cell widths is motivated by the fact that the shock front in the simulations is in general three cells wide. A choice of two cell widths would yield too low postshock mass densities and result in a lower compression ratio. Likewise, a choice of four or more cell widths probes the mass density too far inside the WCR. As themassdensityminimumofthewindplasmapriortoreachingtheWCRisgenerallylocatedattheshock positionforwhichthecompressionratioiscomputed,wesetthepreshockmassdensitytothelocalvalue. Onceaccelerated,theelectronsandprotonsaresubjectedtoseverallossmechanismwhichwediscuss below. –9– 3.3. Energylosses Inverse Compton emission (electrons only) IC cooling occurs as relativistic electrons scatter on stellar radiation fields within the binary system. It is a major energy-loss mechanism for non-thermal electrons. HereweusethefullKlein-Nishinacrosssectionresultinginthelossterm: E˙ = −b E2f (E) (18) IC IC KN with 4 b = σ u (19) IC Th ph 3m2c3 e where σ is the Thomson cross section and f (E) is the correction factor for the Klein-Nishina regime Th KN (followingModerskietal.2005)being (cid:34)(cid:32) (cid:33) (cid:32) (cid:33) (cid:35) 9 1 6 11 1 f (b˜) = b˜ +6+ ln(1+b˜)− b˜3+6b˜2+9b˜ +4 −2+2Li (−b˜) (20) KN b˜3 2 b˜ 12 (1+b˜)2 2 with the dilogarithm-function Li and the dimensionless variable b˜ = 4(cid:15) E with (cid:15) being the energy of 2 Tm2c4 T e thetargetphoton. Forb˜ < 10−3 itissafetoset f = 1. KN Theradiationenergydensityu (takingintoaccountbothstars)is ph uph = 41πc Lr∗2,1 + Lr∗2,2 (21) 1 2 where L are the stellar luminosities and r the distance to the stars. At present, we do not consider addi- ∗,i i tionalradiationfields(e.g.,photonsfromsynchrotronemission)astargetsforICscattering. Synchrotronemission(electronsonly) Thelosstermforsynchrotronemissionis E˙ = −b E2 (22) syn syn with 4 b = σ u (23) syn Th B 3m2c3 e wherethemagneticenergydensityu isdefinedas B B2 u = (24) B 2µ 0 Duetothelackofknowledgeofthemagneticfieldstrength Binmostcolliding-windbinaries,werelyhere ontheapproximationsinUsov&Melrose(1992)whodescribethemagneticfieldaseitheraclassicaldipole field,aradiallydominatedfieldandoratoroidallydominatedfield,dependingonthedistancefromthestar. B≈ BBB∗∗∗(cid:18)(cid:18)(cid:16)RrvvrAR∞r∗or3∗rt(cid:17)2RA3(cid:19)2∗r,(cid:19),, fffooorrrrrr <>> rrrAAA aannddrr <> RR∗∗vvvvrr∞∞oott (25) –10– where B isthemagneticfieldatthestellarsurfaceandv isthesurfacerotationvelocityofthestar, typi- ∗ rot callyapproximatedbyv ∼ 0.1v . FortheAlfve´nradiusr wetake rot ∞ A R∗(1+ξ), forξ (cid:28) 1 r ≈ (26) A R∗ξ1/4, forξ (cid:29) 1 withξ = B2∗R2∗ . Asareasonablevalueforthesurfacemagneticfield B = 0.01Tisassumedthroughoutthis M˙v∞ ∗ workforbothstars(seee.g.,Reimeretal.2006). Thus, we have an estimate for the magnetic field depending on the distance from each star. Since we merely approximate the absolute value of the magnetic field vector without having knowledge of its individual components, we cannot compute its vector sum for both stars. As an approximation, we merely considerthedominantcomponentatagivengridcelltocalculateu andb . B syn InordertopreserveconsistencywithReimeretal.(2006),wedonotacknowledgethecompressionof themagneticfieldinproportiontothecompressionofthewindinsidetheWCR.Thus, thefieldstrength B islikelytobeunderestimatedbyafactorof∼4whichhasnoeffectatlowerenergies,butcaninfluencethe maximumparticleenergyduetohighersynchrotronlossesandahigherBohm-energy. Infuturework,afull MHDdescriptionofthewindwillallowgreaterprecisioninthetreatmentofthemagneticfield. Losses by thermal bremsstrahlung (electrons only) As charged particles interact with the Coulomb fields of ions in the wind plasma, bremsstrahlung emission occurs. To account for the ensuing energy loss weuse E˙ = −b E (27) br br with 2 b = ασ cN (28) br Th H π where α is the fine-structure constant and N is the number density of the thermal ions in the wind which H weapproximatefromthemassdensityinagivengridcell–dividingitbym (1+4ζ ). H He ρ N ≈ (29) H m (1+4ζ ) H He Coulomblosses(electrons) Aslosstermfortheelectronsweconsidertheenergy-independentCoulomb lossesgivenby E˙ = −b = −55.725cσ N m c2 (30) coul coul Th H e Coulomb losses (protons) In the dense winds Coulomb losses can also become significant for protons. Theyareexpressedby 3cσ m c2Z2lnλ β2 E˙ = − Th e N (31) coul 2 Hx3 +β3 m