ebook img

High Energy Neutrinos from Space PDF

0.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Energy Neutrinos from Space

PRAMANA (cid:13)c IndianAcademyofSciences —journalof physics High Energy Neutrinos from Space 2 THOMASK.GAISSERa,∗ 1 aBartol Research Institute and Department of Physics and Astronomy, University of Delaware, 0 Newark,DE19716,USA 2 n Abstract. Thispaperreviewsthestatusofthesearchforhigh-energyneutrinosfromastrophysical a sources. Resultsfromlargeneutrinotelescopesinwater(Antares, Baikal)andice(IceCube)are J discussedaswellasobservationsfromthesurfacewithAugerandfromhighaltitudewithANITA. 1 CommentsonIceTop,thesurfacecomponentofIceCubearealsoincluded. 3 Keywords. Neutrinos,cosmicrays ] E PACSNos. Appropriatepacshere H . h p 1. Introduction - o r A principal motivation for finding and studying high-energy neutrinos from space is to t s understand better the sources of cosmic rays and how they accelerate particles to high a energy. Thisreviewisorganizedaroundtwoconnectionsbetweencosmicraysandneu- [ trinos. In the first place, it is likely that neutrinos will be produced at some level in 1 interactionsofacceleratedparticleswithgasorradiationfieldsinornearthecosmic-ray v sources. Examplesarehadronicinteractionsinthematerialnearanexpandingsupernova 1 remnant or photo-pion production in the radiation fields inside the jets of an accreting 5 6 blackhole. Themainapproachinthesecasesistolookforanexcessofneutrinosfroma 6 particulardirectionintheskyabovethebackgroundofatmosphericneutrinos. Potential . sourcesmaybeselectedforstudyaccordingtothelikelihoodthatproductionofneutrinos 1 0 isexpected. Suchtargetedsearches mayincreasethediscoverypotential comparedtoa 2 surveyofthewholesky. 1 Productionofneutrinosisalsoexpectedbyinteractionsofcosmicraysastheypropa- : v gatethroughtheUniverse. Locally, neutrinosareproducedascosmic-raysinteractwith i gasintheinterstellarmedium[1]. Theexpectedlevel(whichisquitelow)canbecalcu- X lateddirectlyfromtheobservedgamma-rayfluxfromthesamesource,whichtracesthe r a gasinthediskofthegalaxy. Amoreinterestingquestionisthelevelofneutrinoproduc- tionbycosmicraysofultra-highenergy(UHECR)astheypropagatethroughthecosmic microwavebackground(CMB).Protonswithenergiesabove5×1019 eVareabovethe thresholdforproductionofpionsonCMBphotons[2,3]. Neutrinoswouldbeproduced whenthepionsdecay. UHEcosmic-raynucleialsoloseenergyduringpropagationinthe CMB by photo-disintegration [4], but the level of neutrino production from subsequent decayofspallationneutronsislower[5]. ∗[email protected] 1 ThomasK.Gaisser Figure1. Compilation of the primary cosmic-ray spectrum measured by air shower experiments[6]. Figure1isacompilationofmeasurementsofthecosmic-rayspectrumathighenergy. The spectrum steepens between 1015 and 1016 eV total energy per particle. This fea- ture,calledtheknee,mayreflectthedecreaseintheabilityofgalacticacceleratorssuch assupernovaremnantstoachievesuchhighenergy. Thespectrumflattensagainaround 3×1018eV=3EeV,afeatureknownastheankle. Itisgenerallyassumedthatparticles abovethisenergyoriginateinmorepowerfulextragalacticsources. Finally,thesteepen- ing of the spectrum above 5×1019 eV is usually assumed to be the effect of expected energylossesduringpropagationthroughtheCMB.Onereasontosearchforcosmogenic neutrinos associated with propagation through the CMB is to see if this assumption is correct. Detector NumberofOMs Enclosedvolume Depth Status (Megatons) (m.w.e.) Baikal[7](NT200+) 230 10 1100-1310 Operating AMANDA[8] 677 15 1350-1850 2000-2009 ANTARES[9] 900 10 2050-2400 Operating IceCube[10] 5160+324 900 1350-2280 Operating (IceCubeDeepCore[11]) (480) (15) (1950-2280) Operating KM3NeT[12] ∼10,000 km3 2300-3300 Designstudy km3 3000-4000 km3 1400-2400 GVD[15](futureBaikal) ∼2500 km3 800-1300 Designstudy Table 1. Parameters of existing and proposed neutrino telescopes ice. Of the total of 5484 OMs in IceCube, 480 are deployed on DeepCore Strings and 324 in IceTop tanks. The three depths listed for KM3NeT correspond to three possible locations, NEMO[13],NESTOR[14]andAntares[9]inthatorder. 2 HighEnergyNeutrinosfromSpace 2. Detectorsiniceandwater TheoperatingprincipleofdetectorslikeIceCube,AntaresandBaikallistedinTable1is thesameasSuper-Kamiokande[16]andSNO[17]: eventsarereconstructedfromtimes and amplitudes in an array of optical sensors of Cherenkov light from charged particles movingfasterthanthelocalspeedoflightinthedetector. Thelargedetectorsare,how- ever,muchlessdenselyinstrumented. ComparedtoSuper-Kwith11,000photomultiplier tubes(PMTs)in40kilotonsofwater,IceCubehas5160PMTsofhalfthediameterina gigatonofice. Theneutrinotelescopesareoptimizedforlargetargetvolumewithsparse instrumentationtoobtainthegreatestsensitivityforrelativelyrareastrophysicalneutrinos ofhighenergy. Figure2. Artist’sdrawingoftheIceCubedetector[18]. IceCube is currently the largest neutrino detector in operation [18]. Construction at the South Pole was completed at the end of 2010, and the detector has been running sinceMay20,2011withitsfullcomplementof86strings,eachequippedwith60digital opticalmodules(DOMs)atdepthsbetween1450and2450mintheice. Fig.2showsthe completed detector, which also includes a surface air shower array of 81 pairs of tanks, eachinstrumentedwithtwoDOMsandfullyintegratedintothedataacquisitionsystem (DAQ) of IceCube. The IceCube DOM includes, in addition to the 25 cm PMT [19], a programmable data acquisition board [20] that records the amplitude as a function of timeproducedbyphotonshittingthephotocathode.Digitalsignalsaresenttothesurface where computers build events from physically related signals in the DOMs. Times in individualDOMsarekeyedtoasingleGPSclockonthesurfacetoanaccuracyof<3ns acrosstheentirearrayincludingIceTop. Antares [9] is located in the Mediterranean Sea near Toulon. It is the first neutrino 3 ThomasK.Gaisser detectortooperateintheopenocean,whichrequiresdeployinglinesofopticalmodules fromashipandcontinuouslymonitoringthepositionsofthesensorsastheyrespondto currentsinthewater.Antaresopticalmodulesarearrangedingroupsofthreesothatlocal coincidencecanbeusedtoovercometherelativelyhighbackgroundofbioluminescence. TheBaikaldetectoralsooperatesinanaturalbodyofwater,butdeploymentoccursfrom thesolidiceonthesurfaceofthelakeinwinter. 103 cos((cid:101)) = -0.9 cos((cid:101)) = -0.7 2m) 110012 cccooosss((((cid:101)(cid:101)(cid:101)))) === ---000...531 neutrinos/year111000345 CAPsrootnrmoveppnht tyaiostmincaaolls anptehmeuotrriscinp nohese ur(itIcrCi nn4oe0su l ti(mrEininto)bse (rHg oent daal. )2006) A (effective 100 11002 1 10-1 10-1 10-2 10-2 10-3 101 102 103 104 105 106 107 108 2 3 4 5 6 7 8 9 E(cid:105) (GeV) log10(Etrue[GeV]) Figure3. Left: Effectiveareaofanidealcubickilometerdetector. Right: Response of IceCube (with 59 strings in 2009-10) to three different spectral shapes for muon neutrinos[21]. The muon channel is the most favorable in terms of event rate in the TeV range and above because the target volume is enlarged by the charged current interactions of neu- trinos outside the detector that produce muons that go through the detector. The most sensitiveanalysisusestheEarthasashieldagainstthedownwardbackgroundofcosmic- ray muons by selecting horizontal and upward moving events. For energies in the TeV rangeandabove,stochasticenergylossesbymuonsbecomeimportant,andthelightpro- ducedincreasesinproportiontothemuonenergyaccordingtothestandardformula[6] dE µ = −a−bE . (1) dX µ The event rate in this channel is a convolution of the neutrino flux with the neutrino crosssection,thedetectorresponseandtherangeofthemuon. AthighenergytheEarth becomesopaquetoneutrinos, firstforverticallyupwardneutrinos(∼ 30TeV)andthen formorehorizontalevents(∼PeV).Thustheeffectiveareaforν inthechargedcurrent µ channelis A (θ,E ) = (cid:15)(θ)A(θ)P (E ,E )exp{−σ (E )N X(θ)}, (2) eff ν ν ν µ ν ν A whereX(θ)istheslantdepth(g/cm2)alongazenithangleθ > 90◦, N isAvogadro’s A number,σ istheneutrinocrosssectionand(cid:15)(θ)areconstructionefficiency. ν (cid:90) Eν dσ (E ) P (E ,E ) = N dE∗ ν ν R(E∗,E ) ν ν µ A µ dE∗ µ µ Eµ µ istheprobabilitythatamuonproducedwithenergyE∗ reachesthedetectorwithenergy µ E sufficient to trigger the detector. The muon range R is calculated from Eq. 1. The µ 4 HighEnergyNeutrinosfromSpace leftpanelofFig.3showstheν effectiveareaforanidealcubickilometerdetectorwith µ a threshold E = 100 GeV. The neutrino rate is a convolution of effective area with µ neutrinoflux. IntheTeVrangeandabovemuonstypicallypassthroughthedetector,soonlyafrac- tionofthemuonenergycontributestolightinthedetector. Inthissituation,simulations thatincorporatethephysicsofneutrinointeractions,ofmuonenergylossandoficeprop- ertiesmustbeusedtorelatethemeasuredlighttotheenergyofthemuoninthedetector andthencetotheenergyoftheneutrino. Thisisdoneeitherbyconvolvinganassumed neutrinospectrumwiththesequenceν → µ →observedlight,orbyanunfoldingpro- µ cedure. An important feature of the analysis is that the distribution of ν energies that µ give rise to a given signal in the detector is different for the steep atmospheric neutrino spectrum from what it would be for a hard spectrum of astrophysical neutrinos. This is illustrated in right panel of Fig. 3, which shows the distributions of neutrino energy thatcorrespondrespectivelytoatmosphericneutrinosfromdecayofpionsandkaons,to promptatmosphericneutrinosfromcharmdecayandtoastrophysicalneutrinosassumed tohaveanE−2 differentialenergyspectrum. Theresponsesareintegratedover2π solid anglefrombelowthehorizonandusethefullsimulationofIC-59forA . eff Figure4. SkymapsshowingexposureofAntares(top)andIceCube(bottom)forat- mosphericν frombelowthelocalhorizon.FigurefromRef.[22]. µ 3. Pointsourcesearch Thebasicanalysisinneutrinotelescopesistosearchforpointsourcesofextraterrestrial neutrinosusingthedirectionoftheneutrino-inducedmuonasaproxyforthedirectionof (cid:112) theparentneutrino. IntheTeVrange,ther.m.s. anglebetweenν andµis <ψ2 > ≈ √ µ 1.8◦/ E (TeV). ThemedianangularresolutionforAntaresis0.5◦ [23]. ForIceCube, ν 60%oftheeventsarereconstructedtobetterthan1◦ [24]basedonanalysisofthemoon shadowincosmic-rayinducedmuons[25]. 5 ThomasK.Gaisser Figure5. Left: Sensitivity of Antares and IceCube (IC-40) for point sources of ν µ (lines)andlimitsforpre-selectedsources(points)asafunctionofdeclination. Figure from Ref. [26]. Right: Color scale in angle and energy space for the neutrino point sourcesearchinIceCube(notincludingDeepCore). An important difference between IceCube and the Antares location at Northern mid- latitudesisexposure,asshowninFig.4fromRef.[22].Inparticular,thecentralregionof theGalaxyisnotvisibleinupwardgoingeventsfromtheSouthPole. Thesensitivityof AntaresandIceCubeforpointsourcesisshownbythelinesinFig.5. Inthisplotthesen- sitivityisshownforIceCuberunningwith40stringsinstalledin2008-2009(IC-40). The individualpointsarelimitsonpreselectedsources,whichincludegalacticobjectsinclud- ingsupernovaremnantsaswellaspotentialextragalacticsourcessuchasactivegalactic nuclei(AGN).Thepoint-sourcelistforIC-40includes13galacticsourcesand30extra- galactic sources. Among the galactic sources targeted are several supernova remnants. Theextragalacticcandidatesaremostlyactivegalaxies. For the Northern sky the larger IceCube detector is by far the most sensitive. Upper limits on specific point sources of neutrinos in the Northern sky from IceCube are cur- rently less than 10−11 cm−2s−1TeV−1. The sensitivity to point sources is approaching the level of 10−12 cm−2s−1TeV−1 [27] at which TeV gamma rays are seen from some blazars(e.g. Mrk401[28]). IceCube extends the search for point sources to Southern declinations by raising the energy threshold to reduce the high background of downward atmospheric muons. The sensitivityandlimitsfromIC-40fromtheSouthernskyareincludedintheleftpanelof Fig. 5. The right panel of Fig. 5 shows the energy response of IceCube with 59 strings (IC-59)asafunctionofdeclination. ForupwardneutrinosfromtheNorthernhemisphere thelimitsapplytoν energiesintheTeVtoPeVenergyrange. Foreventsfromabovein µ IceCube(Southernsky)therelevantenergyrangeisapproximatelytwoordersofmagni- tudehigher(100TeVto100PeV). Withdatafrom2010andlateritwillbepossibletoextendthesearchforneutrinosin theSouthernhemispheretolowerenergybyusingtheDeepCoresubarrayofIceCube. In thefinalconstructionyearsofIceCubeeightspeciallyequippedstringsweredeployedto provideamoredenselyinstrumentedsub-arrayinthecenterofIceCubecalledDeepCore. Eachofthesestringshas60DOMs,50ofwhicharebetweendepthsof2100and2450m, whichisbelowthemaindustlayerattheSouthPole. TheDeepCoresub-arrayisdefined to include the bottom half of the central string of IceCube as well as the lower DOMS 6 HighEnergyNeutrinosfromSpace onsixsurroundingstandardstrings. TypicalspacingbetweenstringsinDeepCoreis75 mascomparedto125mbetweenstandardstrings. ThespacingbetweenDOMsonthe8 specialstringsis7m. Oneofthemainmotivationsistoprovideaninnerfiducialvolume surroundedbyatleastthreeringsofstandardIceCubestringsandthirtylayersofDOMs abovetoprovideavetoagainstatmosphericmuonsandallowforTeVneutrinoastronomy intheSouthernsky. ThisandothergoalsofDeepCorearedescribedinRef.[11]. 4. Flaring,transientandgamma-rayburstsources Acorrelationinspaceortime(orboth)withasourceobservedelectromagneticallywould enhancethelikelihoodthattheobservedneutrinosareofastrophysicalorigin.Twostrate- giesareusedinIceCubetopursuethisoption.Oneistosendalertsforfollow-upbyother instruments when an apparently significant grouping of neutrinos is seen. The potential signalcouldbetwoormoreneutrinosfromthesamedirectionwithinashorttimewindow orasequenceofeventsfromatargetedsourcethatexhibitsflaresintheelectromagnetic spectrum, for example. Currently alerts are sent from IceCube to ROTSE and the Palo- marTransientFactoryandSWIFT[29]. ArrangementsforsendingalertstotheNorthern hemispheregamma-raytelescopesMAGICandVERITASarealsoinpreparation. These multi-messenger agreements lead to the possibility that a neutrino signal could be asso- ciatedwithanidentifiedtypeofobject,suchasasupernovaexplosionoraflaringAGN. LimitsobtainedfromthefollowupwithROTSE[30]aredescribedinRef.[31]. Goingtheotherdirection,IceCubecanfollowuppotentiallyinterestingastrophysical eventssuchasnearbysupernovae[32]orflaresfromlikelycosmicaccelerators[33]. A general search for short-term increases in rates of neutrinos from flaring sources is also done[34]. Themostimportantresultachievedfromacatalogofeventsisthesearchfor neutrinos associated with gamma-ray bursts (GRB) [35]. Recently data sets from two yearsofIceCubewhilethedetectorwasstillunderconstruction(IC-40andIC-59)have beencombinedtoobtainasignificantlimitonmodels[36]inwhichGRBsarethemain sourceofextragalacticcosmicrays. Intotal215GRBsreportedbytheGRBCoordinated NetworkbetweenApril5,2008andMay31,2010intheNorthernskywereincludedin thesearch. Noneutrinowasfoundduringtheintervalsofobservedgamma-rayemission. To set limits on the model [36], the expected neutrino spectrum was calculated for each burst based on parameters derived [37] from features in the spectrum of the GRB. In particular, a break in the observed photon spectrum marks the onset of photo-pion production by accelerated protons interacting with intense radiation fields in the GRB jet. The neutrinos come from the decay of charged pions. Given a predicted neutrino spectrum,theexpectednumberofeventswascalculatedforeachburst.Thenormalization ofthecalculationisprovidedbytheassumptionsthatafractionoftheacceleratedprotons escapeandprovidetheultra-highenergycosmicrays. Inthesimplestcase,theUHECR areinjectedasneutronsfromthesamephoto-productionprocessesinwhichtheneutrinos are produced [38]. With this normalization, 8 neutrinos are expected in 215 GRBs and none are observed. Fig. 6 shows the resulting limits along with the original prediction ofWaxmanandBahcall[36]. Amodel-independentsearchwasalsocarriedout,simply lookingforneutrinoswithin10◦inanexpandingtimewindowuptoseveralhoursaround thetimeofeachburst. Again,nocorrelatedneutrinoswerefound. 7 ThomasK.Gaisser ] 1(cid:3)10-8 r ICECUBE-40 s 1 Waxman & Bahcall s(cid:3) IC40 Guetta et al. 2 ICECUBE-59 (cid:3) m IC59 Guetta et al. c COMBINED LIMIT V IC40+59 Guetta et al. e G [10-9 ) (cid:1) E ( (cid:1) (cid:2) 2E(cid:1) 104 105 106 107 E [GeV] (cid:0) Figure 6. Limits on neutrinos from GRB with expected spectra calculated from Ref.[37].FigureisfromRef.[29]. 5. All-skysurveywithν µ Itisimportantalsotosearchforanexcessofastrophysicalneutrinosfromthewholeskyat highenergyabovethesteeplyfallingbackgroundofatmosphericneutrinos.TheUniverse istransparenttoneutrinos,sothefluxofneutrinosfromsourcesuptotheHubbleradius maybelarge[39]. AspecificestimatebasedonthedensityofAGNs[40]isthattheevent ratefromthewholeskyshouldbeafactor20largerthanfromasingleAGN.Limitsfrom AMANDA[8],Antares[9]andIceCube[41]areshowninFig.7. Thecurrentlimitfrom the40-stringversionofIceCubeisnowbelowtheoriginalWaxman-Bahcallbound[43]. The limit is obtained by fitting the distribution of light in the detector from upward movingmuonstoparametersthatdescribeanassumedneutrinospectrumconsistingof • “conventional”atmosphericmuonneutrinosfromdecayofchargedpionsandkaons; • “prompt” atmospheric neutrinos, mainly from decay of charmed hadrons with a spectralshapetakenfromRef.[44];and • anassumedastrophysicalfluxwithahardE−2differentialenergyspectrum. The atmospheric neutrino flux used in this analysis [41] is a simple power-law extrapo- lation of the calculation of Ref. [42]. Its normalization is treated as a free parameter in fittingthedatainRef.[41], whichisshownasaslightlycurvedbandthatextendsfrom 0.33 to 84 TeV in Fig. 7. The other experimental results on the high-energy flux of at- mosphericν +ν¯ inFig.7arefromAMANDA[45,46]andIceCube-40[47]. Allthe µ µ atmosphericneutrinospectrashownhereareaveragedoverangle. Theunfoldinganaly- sis of Ref. [47] extends to E ≈ 400 TeV. The integral limit on astrophysical neutrinos ν shownforIceCube-40inFig.7assumesahard,E−2spectrum.Forthisreason,thebound appliesatmuchhigherneutrinoenergies(35TeVto7PeV)thantheobservedspectrum ofatmosphericneutrinos. AsdiscussedinRef.[48],oneofthedifficultiesofsearchingforanastrophysicalcon- tributionattheleveloftheWaxman-Bahcalllimitisthattheatmosphericbackgroundin the relevant energy range above 100 TeV is not well known. Standard calculations of 8 HighEnergyNeutrinosfromSpace 1 -r s 2-1 s10-3 1 12)) AAMMAANNDDAA--IIII nAmtm uonsfoplhdeinrigc (n2m0 0103-8270 0d3) BHaorntdoal ++ NEanubmerogv MRiQnPM ((89 -m10-4 3) AMANDA-II nm 807 d Waxman Bahcall Prompt GRB(10 c V 4) ANTARES nm 07-09 Blazars Stecker (11 Ge10-5 5 5) IC40 Atmospheric nm Waxman Bahcall 1998 x 1/2 (12 6) IC40 Atmo. nm Unfolding Becker AGN (13 dEn10-6 7) IC40 nm 375.5 d Mannheim AGNs (14 /Nn 14 6 2 d10-7 3 13 2En 4 12 10-8 7 11 10-9 10 9 8 2 3 4 5 6 7 8 9 10 log E [GeV] n 10 Figure7. Horizontal lines show limits on an E−2 spectrum of astrophysical muon neutrinosfromAMANDA-II[8],Antares[9]andIceCube[41]. Thelimitsareshown alongwithmeasurementsofthefluxofatmosphericmuonneutrinosandanti-neutrinos. TheplotisfromRef.[41]wherefullreferencesaregiven. conventionalatmosphericneutrinos[42,49]extendonlyto10TeV.Inaddition,thelevel ofpromptneutrinos,whichareexpectedtobecomeimportantsomewhereabove100TeV is highly uncertain. The current IceCube limit appears already to rule out the highest predictionforcharm[50]. 6. Implications The Waxman-Bahcall bound is an upper limit to the intensity of neutrinos which holds iftheneutrinosareproducedinthesamesourcesthatproducetheextra-galacticcosmic rays. Forthistooccur,theacceleratedprotonsmustbeabletoescapefromthesources, eitherdirectlyorasneutronscreatedbyp + γ →∆+ →n + π+. ForGRB,escape(at leastoftheneutrons)islikelybecauseoftherapidexpansion,asdiscussedinRef.[38]. InthecaseofAGNs,WaxmanandBahcall[43]showthattheexistenceofTeVphotons from blazars guarantees that the density of electromagnetic radiation is such that EeV nucleonscanindeedescape, sotheboundappliestoAGNsaswellasGRBs. Ifprotons aretrappedintheaccelerationregionbytheturbulentmagneticfieldsneededtomakethe accelerationprocesswork,thentheboundmayberelatedtoanestimateoftheexpected level of neutrino production. In this scenario, the high energy protons lose energy by photo-pionproduction,whiletheneutronsescapeanddecaytoprotonstobecomeultra- highenergycosmicrays(UHECR).Theneutrinosfromthepiondecayarethenrelatedby kinematicstotheUHECR.AnotherconsequenceisthattheUHECRwouldbeprotons. This scenario could be realized in jets of GRB and of AGN if acceleration occurs in internal shocks in the jets. As IceCube limits become increasingly strong, this class of models is constrained. A generic alternative could be that the UHECR are accelerated 9 ThomasK.Gaisser outsidethejets,forexampleattheterminationshocksofAGNs.Inthiscasethecomposi- tionoftheextragalacticcosmicrayswoulddependontheambientmedium,andthelevel of neutrino production would be contingent on the density of the surrounding medium andcorrespondinglylow. Figure8. Collectionoflimitsoncosmogenicandultra-highenergyneutrinos.Theplot isbasedonRef.[53]wherefullreferencesaregiven. Theextracurveincludedhere, labeledIC-40UHE(preliminary)isfromRef.[54]. 7. Cosmogenicneutrinos Independentofthelevelofneutrinoproductionincosmicsources,therewillbeproduc- tionofneutrinosfrom p+γ →∆+ →n+π+ →ν (→p+π0 →γγ) CMB µ providedonlythatthereareprotonsabovethethresholdof∼ 5×1019 eV fromsources distributedthroughouttheUniverse. Photonsareproduceintheneutralpionchannelof the same process. These photons would undergo cascading and contribute to the back- groundofdiffusegamma-raysmeasuredbytheFermiSatellite[51],whichleadstoanup- perlimitonthespectrumofcosmogenicneutrinos.Thislimitisnowatthelevelwhereno morethanapproximatelyoneeventperyearwouldbeexpectedinthefullIceCube[52]. LimitsfromIC-40[53]andotherdetectorsarecollectedinFig.8.Thelimitsareforthe sumofthreeflavorsassumingequalcontributionsfromeachflavor. Bothdifferentialand integrallimitsareshown. DifferentiallimitsareobtainedbyassuminganE−2 spectrum over a logarithmic bin of energy and calculating the limit for the each bin. The shapes of the curves then indicate the energy response of each detector. The limits for a full 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.