ebook img

High Energy Gamma Rays from Nebulae Associated with Extragalactic Microquasars and Ultra-Luminous X-ray Sources PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Energy Gamma Rays from Nebulae Associated with Extragalactic Microquasars and Ultra-Luminous X-ray Sources

High Energy Gamma Rays from Nebulae Associated with Extragalactic Microquasars and Ultra-Luminous X-ray Sources YoshiyukiInouea,Shiu-HangLeea,b,YasuyukiT.Tanakac,ShogoB.Kobayashid aInstituteofSpaceandAstronauticalScienceJAXA,3-1-1Yoshinodai,Chuo-ku,Sagamihara,Kanagawa252-5210,Japan b2DepartmentofAstronomy,KyotoUniversity,Kitashirakawa,Sakyo-ku,Kyoto606-8502,Japan c3HiroshimaAstrophysicalScienceCenter,HiroshimaUniversity,1-3-1Kagamiyama,Higashi-Hiroshima,Hiroshima739-8526,Japan dDepartmentofPhysics,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan 7 1 0Abstract 2 Intheextragalacticsky,microquasarsandultra-luminousX-raysources(ULXs)areknownasenergeticcompactobjectslocating n at off-nucleus positions in galaxies. Some of these objects are associated with expanding bubbles with a velocity of 80–250 a Jkms 1. Weinvestigatetheshockaccelerationofparticlesinthoseexpandingnebulae. Thenebulaehavingfastexpansionvelocity − 1 &120kms−1areabletoacceleratecosmicraysupto 100TeV.If10%oftheshockkineticenergygoesintoparticleacceleration, ∼ 3powerfulnebulaesuchasthemicroquasarS26inNGC7793wouldemitgammaraysuptoseveraltensTeVwithaphotonindex of 2. These nebulae will be good targets for future CherenkovTelescope Array observationsgiven its sensitivity and angular ] ∼ Eresolution. They would also contribute to 7% of the unresolved cosmic gamma-ray background radiation at 0.1 GeV. In ∼ ≥ Hcontrast,particleaccelerationinslowlyexpandingnebulae. 120kms−1 wouldbelessefficientduetoion-neutralcollisionsand resultinsofterspectraat&10GeV. . h pKeywords: astroparticlephysics,ISM:bubbles,gammarays:ISM,stars: blackholes - o r t1. Introduction off-nucleuspositions[27]. s a [ In the veryhighenergy(VHE;& 50GeV) gamma-raysky, Microquasars are X-ray binary systems having relativistic a few hundreds of objects have been detected by the Large bipolar outflows or jets whose kinetic power is greater than 1 vAreaTelescope(LAT)onboardtheFermigamma-raytelescope 1039 erg s−1 [63]. ULXs are also compact X-ray binary sys- 2(Fermi) [7] and by the imaging atmospheric Cherenkov tele- temshavingX-rayluminositiesgreaterthan1039 ergs−1 [27]. 8scopes[seee.g.84]. Furtherprogressisanticipatedinthenear AlthoughX-rayemission mechanismsfrom microquasarsand 8future by the Cherenkov Telescope Array (CTA) [8]. Its im- ULXsarenotfullyunderstoodyet2,someofthemareknown 8provedfluxsensitivityandangularresolutionwillenableusto to be associated with expanding nebulae with a velocity of 0 1.unvIneilthneewexptarartgiacllaecatcicceslkeyra,tovrasriionutshesoUunrciveercslea.sses have been 8k0ine−ti2c5p0owkmerso−f1thaonsdeanesbizuelaoefis∼kn2o0w0nptco[b2e0c,o6m9]p.arSabinlecetothoer 0 considered for future CTA observations such as active galac- evengreaterthantheradiativeorjetkineticpower[20],theneb- 7 tic nuclei [76], gamma-ray bursts [38], star forming galaxies ulae are good candidatesas new cosmic-ray acceleration sites 1 :[3],andclusterofgalaxies[3]. Here,theangularresolutionof and possibly they would emit gamma rays through hadronu- v CTA will achieve . 3 arcmin at & 1 TeV1. As angular sizes clearinteractionswithambientgases. i Xofnearbygalaxiesupto 10Mpcis 10arcmin,itwouldbe ∼ ∼ Inthispaper,weinvestigatethediffusiveshockacceleration rpossibletospatiallyresolveparticleacceleratorsinthosegalax- a of particles in the expanding nebulae associated with extra- ies. galactic microquasarsand ULXs. And, we estimate expected It would be difficultto detect supernovaremnantsor pulsar gamma-ray and neutrino signals from those nebulae. We fur- wind nebulae in extragalacticgalaxies considering their lumi- ther consider their contribution to the cosmic gamma-ray and nosities (L . 1036 ergs 1). Here, some galaxies are known γ − neutrinobackgroundradiationandfuturedetectabilitybyCTA. to host more powerful compact objects such as microquasars Throughoutthispaper,wedefineQ =Q/10x. and ultra-luminousX-ray sources (ULX) whose kinetic or ra- x diativepoweris&1039ergs 1. Theseobjectsarediscoveredat − Emailaddresses:[email protected](YoshiyukiInoue), 2There are three distinct ideas widely considered to interpret high X-ray [email protected](Shiu-HangLee), luminositiesofULXs,althoughthereisnogeneralagreementontheirnature; [email protected](YasuyukiT.Tanaka), sub-ortrans-Eddington accretion ontointermediate massblackholes witha [email protected](ShogoB.Kobayashi) massofMBH 10M [e.g.59],supercriticalmassaccretionontostellarmass 1https://portal.cta-observatory.org/Pages/CTA-Performance.aspxblackholes[e.≫g.30,5⊙1],oraccretingpulsars[e.g.11]. PreprintsubmittedtoAstroparticlePhysics February1,2017 2. X-raySourceEmbeddedBubblesinthelocalUniverse Here, the magnetic field in the shock upstream can be de- scribedas The size of the microquasar and ULX bubbles Rb is of an Bu =1.7b√ngas,0.5µG, (8) order of 200 pc and the expansion velocity of the bubbles is knowntobev =80 250kms 1[20,69]. Followingtheself- wherethedimensionlessparameterbis 1fromZeemanmea- s − ∼ − surements of self-gravitating molecular clouds in the Galaxy similarexpansionlaw[47,86],thebubblesizecanbedescribed [19]. Themagneticfieldinthedownstreamregionwillbeam- as plifiedbycompressionas R 0.76(P /µm n )1/5t3/5 200P0.2 n 0.2 t0.6 pc, b ≈ kin p gas ∼ kin,40.5 −gas,0.5 13.5 (1) B = 1 + 2r2B 5.7n1/2 µG. (9) where P isthetime-averagedkineticpower,µ = 0.61isthe d r3 3 u ∼ gas,0.5 kin mean molecularweight, m is the protonmass, n is the gas p gas Here, if Alfve´n-wave turbulence is fully generated, B d density,andtistheageofthesystem. Thus,thecharacteristic can be amplified locally around the shocks [see e.g. 12– ageofthebubbleis 14, 75]. In such cases, B would become as high as B d d (4πξ f µn m v2)1/2 74ξ1/2f1/2 n1/2 v µG, where ξ≈ τ=3Rb/5vs ∼4.9×105Rb,20.8v−s,17.1yr. (2) istheBmioangnegatiscfipelsdam∼plificaBti,o0niofna,c0tograsa,0n.5dsf,7.1 n /(n +nB) ion n n i ≡ This age is comparable to the expected ULX lifetime [e.g. istheionizationfraction. nn andni istheneutralparticleden- 42, 62]. Once we measure the bubble size and the expanding sityandtheionizedparticledensity,respectively. However,we velocity,thetime-averagedkineticpowerofthebubblecanbe note that ion-neutralcollisions suppress Alfve´n wave [56, 74] describedas at vs . 120 kms−1. In this paper, we take Equation9 as the fiducialvalueforthedownstreammagneticfield. P 18µm n R2v3 3.6 1040R2 v3 n ergs 1. Thediffusiveshockaccelerationtimescalecanbewrittenas kin ≈ p gas b s ∼ × b,20.8 s,7.1 gas,0.5 − (3) 10ηcr TheMachnumberoftheshockduetotheexpandingnebulae tacc ≈ 3 v2g ∼1.3×106Z−1n−ga1s/,02.5v−s,27.1Ecr,14yr, (10) isestimatedas s wherer = E /ZeB isthegyroradiusandη 1. Forsimplic- M≈vs/(γkBTu/µmp)1/2 ∼8.0vs,7.1Tu−,14/2, (4) ity, wegtake ηcr = 1din this paper, i.e. the B≥ohm limit, since ULXs are known to be associated with star forming regions where γ = 5/3 is the specific heat ratio, k is the Boltzmann B [e.g.33,72,81]whichwouldamplifytheupstreamturbulence. constant,andT isthetemperatureoftheupstreamoftheshock. u SuchanefficientaccelerationispossiblyseeninaGalacticsu- is larger than unity for the upstream cold gas component M pernova remnant by assuming a simple diffusive shock accel- withT < 104 K.Thedynamicaltimescaleinwhichtheshock u eration model [83], althoughη can be different from unity by dissipatesis considering escape-limited acceleration [34, 68] or stochastic R acceleration[26]. t b 8.1 105R v 1 yr. (5) dyn ≈ vs ∼ × b,20.8 −s,7.1 Theattainablemaximumcosmic-rayenergyisgivenbytacc = t (SeeEquation5andEquation10): dyn Thedownstreamtemperatureisestimatedas 3ZeB R v E = d b s (11) T 2(γ 1)µm v2/k /(γ+1)2 2.0 105v2 K. (6) cr,max 10ηc d ≈ − p s B ∼ × s,7.1 1.3 1014η n1/2 v R eV, (12) Thus, radiative cooling plays an important role. For a solar ∼ × 0 gas,0.5 s,7.1 b,20.8 metallicityinterstellarmedium(ISM)environment,thecooling TeVcosmicrayscanbeaffordablefromtheextragalacticX-ray timescaleisgivenby[Eq. 34.4of24] source nebulae. If the Alfve´n-wave turbulence is fully gener- ated,itwillreachto 1PeV. t 1.4 103n 1 v17/5yr, (7) ∼ rad ∼ × −gas,0.5 s,7.1 The ionization state in the shock downstream strongly de- pendsonitsvelocity[36,56,74]. Ifneutralparticleexists,i.e. for 105 . T . 107.3 K. If the metallicity is 0.1Z , the time v . 120 kms 1, ion-neutral collisions will lead damping of ⊙ s − scale will become a factor of 3 longer. From Equation5 and themagneticturbulenceintheshockprecursorandthosecolli- Equation7, the downstream plasma cools within dynamical sionswillhamperaccelerationofparticlesatthehighestener- timescale. In other words, these nebula shocks are radiative. gies. The expectedbreakenergycan be estimated as [60, and UV photons from the radiative zone would significantly ion- referencestherein] ize the upstream ISM. At v & 120 kms 1, shock induced s − ionizing radiation is strong enough to completely ionize the Ecr,br ∼1.9×109Tu−,04.4B2u, 6(1− fion)−1fi−on1/2n−ga3s/,20.5eV. (13) upstream gas [36, 56, 74]. At the downstream, the tempera- − ture decreases and the density increases as the radiationcools Thus, at v . 120 kms 1, the particle spectrum will have a s − the gas in the downstream. As the shock compression ratio break at 10 GeV and become steeper by one power above ∼ r =(γ+1) 2/[(γ 1) 2+2] 4inourcase,weassumethe the break. The ion fraction f is estimated according to the ion M − M ∼ spectralindexof2forsimplicityinthispaper. steady-statemodelbyHollenbachandMcKee[36]. 2 10-10 Table1: ObservedPropertiesofNebulaeAssociatedwithExtragalacticCom- S26 (ngas = 1 cm-3) pactX-rayObjects IC 342 X-1 (ngas = 1 cm-3) Object (Mdpc) (ergLXs−1) (Rpcb) (kmvss−1) 10-11 IC 1F0e Xrm-1i/ L(nAngTgaa s(s 1= =0 1 3y c ecmamr-s3-3)) UMLicXroIqCua3s4a2rXS2-16 33..99 16..62×11004306 220000 120500 2cm/s) 10-12 CTA-South (50 hr) HMXBIC10X-1 0.79 1.5××1038 170 80 N/dE (erg/ 10-13 d Table2: ThetabledataaretakenfromPakulletal.[70,forS26],Allenetal. 2E [10],Csehetal.[20,forIC342X-1],andLozinskayaandMoiseev[58,for IC10X-1]. Thedataforthetime-averaged X-rayluminosityarefromCseh 10-14 etal.[20]. 10-15 10-2 10-1 100 101 102 103 104 105 106 107 Energy (GeV) Let us consider energyloss processesfor cosmic rays. The energy loss timescale due to pp interactions can be estimated as Figure1: Expected gamma-rayspectra fromnebulae associated withmicro- 1 t 6.0 106n 1 yr, (14) quasarS26,ULXIC342X-I,andHMXBIC10X-Ishownbysolid,dashed, pp ≈ κ 4n σ c ∼ × −gas,0.5 and dot-dashed curve, respectively. Thick curves represent the case with pp gas pp ngas = 1 cm−3, while thin curves show ngas = 3 cm−3. The sensitivity of where the cross section σpp 3 10−26 cm2 for 1010−12 eV Fermi/LATandCTAinthesouthernsiteisshownfor10yrand50hrintegra- ∼ × [46,48]andtheinelasticityκ 0.5.Thefactorof4infrontof tion,respectively. pp ≈ n isduetocompressioninthedownstream. Wenotethatthe gas ppcrosssectiondependslogarithmicallyontheprotonenergy. Figure1showstheexpectedgamma-raysignalsfromnebu- By consideringthe steady-state for simplicity, the hadronu- lae hosting compact X-ray sources in the nearby Universe to- clearinteractionefficiencyisestimatedas gether with the Fermi/LAT3 and CTA-South4 sensitivities for f = tdyn 0.28R v 1 n . (15) 10-yrintegrationanda50hrobservation,respectively. Wese- pp t ∼ b,20.8 −s,7.1 gas,0.5 lectrepresentativesourcesfromCsehetal.[20]whichinclude pp microquasar S26 [70], ULX IC 342-X-1 [10, 20], and high- Inhadronuclearinteractions,chargedandneutralpionsaregen- mass X-ray binary (HMXB) IC 10-X-1 [58]. The parameters eratedattheratioofπ+ :π0 2:1. Gammaraysareproduced ≈ are summarized in Table1. For the calculation of the pp in- bythedecayofneutralpionsasπ0 2γ. → teraction,wefollowtheprescriptionprovidedbyKamaeetal. Ifweneglection-neutralcollisions,gamma-rayfluxfroman [48] setting the fraction of the energy received in the pion as expandingnebulacanbeestimatedas 0.17 [52]. For the gas density, we consider two cases with E2dNγ 1ǫMξcrPkinmin[1, fpp], (16) ngas = 1 cm−3 and 3 cm−3. Here, ULXs are known to be as- γdE ≈ 3 4πd2 sociatedwithstarformingregions[e.g.33,72,81]andthegas γ C densityintheHIIregioncanbeashighas 10cm 3 forthe ∼ 1.1×10−13ergcm−2s−1 1C2!−1 2Mdpc!−2 sizTehoef∼n1eb0u0lpaca[s3s7o]c.iated with the nearby∼microqu−asar S26 ξ R3 v2 n2 (17) shows a flat spectrum in E2dN/dE extending to 100 TeV × cr,−1 b,20.8 s,7.1 gas,0.5 andisdetectableevenforn = 1cm 3. Thus, S2∼6wouldbe where ξ is the cosmic-ray acceleration efficiency and = gas − cr C agoodtargetforfutureCTAobservation. Onthecontrary,the ln(E /E ).WesetE =1014eVandE =109eV. p,max p,min p,max p,min nebulaeassociatedwithIC342X-1andIC10X-1wouldhave We set the nuclear enhancement factor ǫ = 1.85 as in our M soft gamma-rayspectra at & 10 GeV due to ion-neutralcolli- Galaxy [e.g., 65, 78]. ULXs are known to be hosted by low- sions,astheexpansionvelocityisslowerthan120kms 1.Such metallicitygalaxiesatthemetallicityofZ .1/2Z [61]. Thus, − slowlyexpandingnebulaewouldbedifficulttobeobservedby ⊙ ǫ wouldbelowerthanthatinourgalaxy.However,itisknown M CTA. that a galaxy is not chemically homogeneous and can have Figure2showstheexpectedneutrinosignalperflavourfrom metallicitydispersionbyafactorof10inagalaxy[e.g.67,73]. thenebulasurroundingS26togetherwiththeIceCubesensitiv- WenotethatanX-raymeasurementoftheULXNGC1313X-1 ity[2]. Ifthegasdensityisashighasn = 3cm 3,anorder revealedthatthelocaloxygenabundanceis 50%ofthesolar gas − ∼ ofmagnitudesensitiveneutrinodetectorswillbeabletoseethe valueusingthelowenergyX-rayabsorptionfeature[64]. signal. Wecanalsoevaluatetheexpectedneutrinofluxperflavoras Bordasetal.[15]reportedthemarginaldetectionofgamma E dN /dE 2 E dN /dE (E =0.5E ),or γ γ γ ≈ × ν ν ν ν γ rays from the direction of the Galactic microquasar SS 433 Eν2ddNEν ∼ 5.6×10−14ergcm−2s−1 1C2!−1 2Mdpc!−2 ν 3https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performanc × ξcr,−1R3b,20.8v2s,7.1n2gas,0.5. (18) 4https://portal.cta-observatory.org/Pages/CTA-Performance.aspx 3 10-10 regime[22]. TheICfluxisapproximately 10-11 Eγ2ddNEγ ∼ 1.4×10−13ergcm−2s−1 1C2!−1 2Mdpc!−2 γ 2g/cm/s) 10-12 × Kep,−2ξcr,−1R3b,20.8v2s,7.1ng7a/4s,0Eγ1/,122, (20) er E ( Therefore, the IC contribution from primary electrons would N/d 10-13 become important at E 1 TeV if K & 0.01. Since d γ ep 2E secondary electrons carry∼only 0.8% of the primary pro- ∼ 10-14 S26 (ngas = 1 cm-3) ton energy, their contribution would be less important. If the ngas = 3 cm-3 local optical or infrared (IR) photon energy density is com- IceCube (Northern Sky) IceCube (Southern Sky) parable to the CMB energy density, the total IC contribution 10-15 102 103 104 105 106 107 108 would be enhanced. The local nebular luminosity of S26 is Energy (GeV) 5 1039ergs 1[23]correspondingtothephotonenergyden- − ∼ × sityof 0.020eVcm 3.Thus,theICfluxforS26wouldnotbe − ∼ significantlyenhancedevenifwetakeintoaccountlocalphoton Figure 2: Expected neutrino spectrum per flavorfromthe nebula associated withmicroquasar S26. Thethickanddashedcurverepresents thecase with fieldsotherthanCMBphotons. ngas = 1cm−3 and3cm−3,respectively. Thesensitivities ofIceCubeforthe northernskyandthesouthernsky[2]arealsoshown,respectively. 3. Discussions and the related supernova remnant W50 using Fermi. These gamma-raysignalsmay arise fromthe particle accelerationin 3.1. SpectralIndexofAcceleratedCosmicRays theassociatednebula. However,theshellexpansionvelocityis knowntobe16 40kms 1 [57]whichwouldbeinefficientto Inthispaper,weassumethespectralindexof2foracceler- − − accelerateparticlesintheexpandingshell. ated particles. This assumption would be violated by various Electrons are also expected to be accelerated together with possible mechanisms. As the source S26 expands at the ve- protons. To evaluate the leptonic contribution, we need an locity of 250 kms−1 correspondingto the sonic and Alfve´nic electron-to-protonratio K , where K is defined as the ratio mach number of 17 and 35, respectively, we can expect the ep ep of electron spectrum dN /dp and proton spectrum dN /dp at compression ratio r 4 for the sources S26 in NGC 7793. e p ∼ p = 1 GeVc 1. In this paper, we take K = 0.01 as the However,forsourceshavinglowerexpansionvelocity,thecom- − ep fiducialvalue,sincethisvalueisfavoredforGalacticSNRsin pressionratiowouldbecomesmallerresultinginsofterspectra thehadronuclearscenario[5]. Theexpectedradiosynchrotron [e.g.17]. Inadditiontothiseffect,theion-neutralcollisionef- flux by electrons is given by f cσ U γ3 N (γ )/6πd2 fect[36,56, 74]andtheeffectoffinitevelocityofthecounter e,syn ≈ T B e,s e e,s [22].Thus,theradiofluxbyprimaryelectronsisapproximately streamingmagneticturbulenceinfrontoftheshock[e.g.16,55] givenas wouldsteepenthecosmic-rayspectralindex. Onthecontrary, in the radiative region, we expect a larger compression ratio Eγ2ddNEγγ ∼ 1.2×10−16ergcm−2s−1 1C2!−1 2Mdpc!−2 4th.3an×r1=0−42.n−gTa1sh,0e.5svi2sz,27e/.51opfct,hwehraildeiatthievesirzeegioofnthiselaracdc≈elevrsattriaod/n4re∼- × Kep,−2ξcr,−1R3b,20.8v2s,7.1n7ga/4s,0ν1s,/92.7, (19) gthioenspiseclatrccal≈invdsetaxccw∼ou4l.d8b×ec1o0m−2eZh−a1rnd−gea1sr/,02t.h5va−sn,172.1Eabcro,1v0e.5pc3.0TGheuVs, ∼ andmorephotonswouldbedetectableattheTeVband. where ν is a frequency of the synchrotron component. By s adoptingtheparametersforS26andassumingK = 0.01,we ep get 2.6mJyand 2.0mJyat5.5and9.0GHz,respectively, 3.2. CosmicGamma-rayandNeutrinoBackgroundRadiation ∼ ∼ withn = 3cm 3 whichareconsistentwiththemeasuredra- gas − diofluxofS26of2.1mJyat5.5GHzand1.6mJyat9.0GHz ThecosmicGeVgamma-raybackgroundradiationisknown [77]. Thus,determinationofgamma-rayspectrumwillbealso to be composed of blazars [e.g. 9, 43], radio galaxies [39], usefultounderstandtheoriginoftheradioemissionandtocon- and star forming galaxies [6]. However, there is still an un- strain the environmentof the nebula. If the downstreammag- resolvedcomponentatthefluxlevelof7.2 10 6cm 2s 1sr 1 − − − − × neticfieldisamplifiedbyAlfve´n-waveturbulence,therequired above 0.1 GeV [4]. If nebulae associated with microquasars K becomes7 10 5 tobeconsistentwiththeradioobserva- andULXsemitgammarays,theywouldalsocontributetothe ep − × tions. unresolvedcosmicgamma-raybackgroundradiation. Here, the inverseCompton(IC) flux by electronsscattering ThelocalX-rayluminosityfunctionsofULXsarewellstud- thecosmicmicrowavebackground(CMB)photonsisgivenas iedinliterature[e.g.32,62,80,85]. Thelocalnumberdensity f cσ γ3 N (γ )u /6πd2,whereamonochromaticradi- of ULXs is n 1.5 10 2 Mpc 3 [80]. Then, the cos- IC ≈ T e,s e e,s CMB ULX ∼ × − − ationfieldassumedfortheCMBandweassumetheThomson micgamma-raybackgroundfluxfromULX/microquasarnebu- 4 laecanbeestimatedas may accelerate particles near the polar cap region of the pul- sars. However,& 10GeV gammaraysfromthe polarcapre- E2 dIγ 1ctHξzǫMξcrPkinnULXmin[1, fpp] (21) gion emission will be attenuated due to one-photon pair cre- γdE ≈ 3 4π γ C ation. The threshold magnetic field strength is B & 0.1BQ 5.2 10−6MeVcm−2s−1sr−1 ξz −1 C −1 [21,35],whereBQ =m2ec3/e=4.4×1013G.Therefore,strong ∼ × (cid:18)3(cid:19) 12! gamma-rayemissionwouldnotbeexpectedforhighmagnetic ξ R3 v2 n2 n , (22) fieldULXpulsars. × cr,−1 b,20.8 s,7.1 gas,0.5 ULX,−1.8 where t 13.8 Gyr is the Hubble timescale assuming H = H ∼ 0 4. Conclusions 67.8 kms 1 Mpc 1 and Ω = 0.308 [71]. ξ is a factor ac- − − M z counting cosmological evolution of the source. We assume Inthe comingdecade, CTA willdeepenourunderstandings vs 120kms−1 forallsources. Therefore,ULX/microquasar ofhighenergyastrophysicalphenomena. Inthispaper,wein- ≥ nebulaewouldcontribute5.2 10−7cm−2s−1sr−1above0.1GeV vestigatehighenergysignalsfromnebulaeassociatedwithmi- × ( 7%oftheunresolvedbackgroundflux). croquasarsand ULXs in the nearby Universe whose available ∼ Thecosmicneutrinobackgroundfluxwouldbecome poweris&1039ergs 1. − Eν2ddEIνν ∼ 2.6×10−9GeVcm−2s−1sr−1 (cid:18)ξ3z(cid:19)−1 1C2!−1 speonwAseilttrihfvouiutlygnhaenbgudalaamnemgausalsaorracryieassteofdrlouwmtioitnhhoamslltiocgwraolquausxaytosaidtrsseetalefncdteaxUnisLdt,XreCss.ToFAlvo’esr × ξcr,−1R3b,20.8v2s,7.1n2gas,0.5nULX,−1.8, (23) example, the nebula associated with the microquasar S26 in NGC7793[70]willbeagoodtargetwhoseexpectedgamma- where we note that the neutrino spectra from ULX nebulae rayfluxis 1 10 13–1 10 12ergcm 2s 1extendingtosev- wouldhaveacutoffatseveraltensTeV(seeEquation12). Due ∼ × − × − − − eraltensTeVwithaphotonindexof 2. At& 1TeV,theIC tothiscutoff,thenebulaewouldnotcontributetotheIceCube ∼ contributionwouldbecomeimportantif K & 0.01. We note detected neutrino fluxes [1]. However, if Alfve´n-wave turbu- ep that the spectral index of cosmic rays would be harder than 2 lenceattheshockisfullygenerated,sub-PeVneutrinoscanbe above 30GeVsinceitistheradiativeshock. Wealsofound affordable. ∼ thattheexpectedsynchrotronradiationfluxfromprimaryelec- trons is consistent with the measured radio flux. If all micro- 3.3. Gamma-rayEmissionandAttenuationinHostGalaxies quasarsandULXsareassociatedwithpowerfulexpandingneb- The total IR luminosity of NGC 7793 which hosts the mi- ulae,theywouldmake 7%oftheunresolvedcosmicgamma- croquasar S26 is 2.07 109L [29]. Adopting the scaling re- ∼ ray background flux. However, they would not significantly × ⊙ lation between gamma-ray and IR luminosities [6], we have contribute to the TeV-PeV neutrino background flux reported L 3.8 1038 ergs 1 for galactic diffuse emission leading γ − byIceCubeduetocutoffsatseveraltensTeVinneutrinospec- ∼ × EγdNγ/dEγ 2.2 10−13 ergcm−2s−1 which is comparable tra. If the expansionvelocity is v . 120 kms 1, ion-neutral to expectedfl∼uxfro×mS26 assumingn = 1cm 3. Here, the s − gas − collisionswillsuppressefficientparticleaccelerationandresult angularsizeofNGC7793is93 63andS26locatesattheout- ′ ′ infainterTeVgamma-rayfluxabove 10GeV. × skirtregionofthegalaxy( 3arcminawayfromthenucleus). ∼ ∼ Given the CTA angular resolutionof . 3 arcminat & 1 TeV, Acknowledgements: gamma-raysignalsfromS26canbedistinguishedfromgamma The authors thank Chris Done for useful comments and rays due to galactic cosmic rayswhich would be brightin the discussions. YI is supported by the JAXA international top starformingnucleusregion. young fellowship and JSPS KAKENHI Grant Number 420 Itiswell-knownthatgammarayspropagatingtheintergalac- JP16K13813. ticspaceareattenuatedbythecosmicoptical/IRbackgroundra- diationfieldviathepairproductionprocess[31,45,79]. Since we are consideringthe local universe. 10 Mpc, the gamma- References rayattenuationbythecosmicoptical/IRbackgroundisnegligi- [1] Aartsen, M.G., Ackermann, M., Adams, J., et al., 2014a. Ob- ble[e.g.41].However,ifULXsandmicroquasarsareformedin servation of High-Energy Astrophysical Neutrinos in Three thestarformingregions,internalgamma-rayattenuationbythe Years of IceCube Data. Physical Review Letters 113, 101101. interstellarradiationfieldswillsuppressgamma-rayfluxabove doi:10.1103/PhysRevLett.113.101101,arXiv:1405.5303. [2] Aartsen, M.G., Ackermann, M., Adams, J., et al., 2014b. Searches 10TeV[seee.g.,40]. for Extended and Point-like Neutrino Sources with Four Years of Ice- Cube Data. ApJ 796, 109. doi:10.1088/0004-637X/796/2/109, 3.4. ULXpulsars arXiv:1406.6757. [3] Acero, F., Bamba, A., Casanova, S., et al., 2013. Gamma- Recently,someULXsarediscoveredtobehostedbyaccret- ray signatures of cosmic ray acceleration, propagation, and con- ingpulsars[11,28,44]. PhysicalpropertiesofULXpulsarsare finement in the era of CTA. Astroparticle Physics 43, 276–286. still open questions. Magnetic fields of M82 X-2 are ranging doi:10.1016/j.astropartphys.2012.05.024,arXiv:1209.0582. 109G. B.1014Ginliteratures[18,25,49,53,54,66,82]. [4] Ackermann, M., Ajello, M., Albert, A., et al., 2015. The Spec- trum of Isotropic Diffuse Gamma-Ray Emission between 100 MeV If we assume that X-ray emissions from ULX pulsars are and 820 GeV. ApJ 799, 86. doi:10.1088/0004-637X/799/1/86, generated at accreting column [e.g. 50], the accretion shock arXiv:1410.3696. 5 [5] Ackermann,M.,Ajello,M.,Allafort, A.,etal.,2013. Detectionofthe e-printsarXiv:1609.07129. Characteristic Pion-Decay Signature in Supernova Remnants. Science [29] Galametz,M.,Kennicutt,R.C.,Calzetti,D.,etal.,2013. Calibrationof 339,807–811. doi:10.1126/science.1231160,arXiv:1302.3307. the total infrared luminosity of nearby galaxies from Spitzer and Her- [6] Ackermann,M.,Ajello,M.,Allafort,A.,etal.,2012. GeVObservations schelbands. MNRAS 431,1956–1986. doi:10.1093/mnras/stt313, ofStar-formingGalaxieswiththeFermiLargeAreaTelescope.ApJ 755, arXiv:1302.4363. 164.doi:10.1088/0004-637X/755/2/164,arXiv:1206.1346. [30] Gladstone, J.C., Roberts, T.P., Done, C., 2009. The [7] Ackermann, M., Ajello, M., Atwood, W.B., et al., 2016. 2FHL: ultraluminous state. MNRAS 397, 1836–1851. The Second Catalog of Hard Fermi-LAT Sources. ApJS 222, 5. doi:10.1111/j.1365-2966.2009.15123.x,arXiv:0905.4076. doi:10.3847/0067-0049/222/1/5,arXiv:1508.04449. [31] Gould, R.J., Schre´der, G., 1966. Opacity of the Universe to [8] Actis,M.,Agnetta,G.,Aharonian,F.,etal.,2011. Designconceptsfor High-Energy Photons. Physical Review Letters 16, 252–254. theCherenkov Telescope ArrayCTA:anadvanced facility forground- doi:10.1103/PhysRevLett.16.252. basedhigh-energygamma-rayastronomy. ExperimentalAstronomy32, [32] Grimm, H.J., Gilfanov, M., Sunyaev, R., 2003. High-mass X-ray bi- 193–316. doi:10.1007/s10686-011-9247-0,arXiv:1008.3703. naries as a star formation rate indicator in distant galaxies. MN- [9] Ajello, M., Gasparrini, D., Sa´nchez-Conde, M., et al., 2015. RAS 339, 793–809. doi:10.1046/j.1365-8711.2003.06224.x, The Origin of the Extragalactic Gamma-Ray Background and Im- arXiv:astro-ph/0205371. plications for Dark Matter Annihilation. ApJL 800, L27. [33] Grise´, F., Kaaret, P., Pakull, M.W., Motch, C., 2011. Optical Proper- doi:10.1088/2041-8205/800/2/L27,arXiv:1501.05301. tiesoftheUltraluminous X-RaySourceHolmbergIXX-1andItsStel- [10] Allen,M.G.,Groves,B.A.,Dopita,M.A.,Sutherland,R.S.,Kewley,L.J., larEnvironment. ApJ 734,23. doi:10.1088/0004-637X/734/1/23, 2008. The MAPPINGS III Library of Fast Radiative Shock Models. arXiv:1104.5523. ApJS 178,20–55.doi:10.1086/589652,arXiv:0805.0204. [34] H.E.S.S.Collaboration,Abdalla,H.,Abdalla,H.,etal.,2016.H.E.S.S. [11] Bachetti,M.,Harrison,F.A.,Walton,D.J.,etal.,2014.Anultraluminous observationsofRXJ1713.7-3946withimprovedangularandspectralres- X-raysourcepoweredbyanaccretingneutronstar.Nature 514,202–204. olution; evidence forgamma-rayemissionextending beyondtheX-ray doi:10.1038/nature13791,arXiv:1410.3590. emittingshell. ArXive-printsarXiv:1609.08671. [12] Bell, A.R., 1978a. Theacceleration ofcosmic rays inshockfronts. I. [35] Harding, A.K., Lai, D., 2006. Physics of strongly magnetized MNRAS 182,147–156. doi:10.1093/mnras/182.2.147. neutron stars. Reports on Progress in Physics 69, 2631–2708. [13] Bell, A.R.,1978b. Theacceleration ofcosmicraysinshockfronts.II. doi:10.1088/0034-4885/69/9/R03,arXiv:astro-ph/0606674. MNRAS 182,443–455. doi:10.1093/mnras/182.3.443. [36] Hollenbach, D., McKee, C.F., 1989. Molecule formation and infrared [14] Bell, A.R., 2004. Turbulent amplification of magnetic field and dif- emissioninfastinterstellarshocks.III-ResultsforJshocksinmolecular fusive shock acceleration of cosmic rays. MNRAS 353, 550–558. clouds. ApJ 342,306–336. doi:10.1086/167595. doi:10.1111/j.1365-2966.2004.08097.x. [37] Hunt, L.K., Hirashita, H., 2009. The size-density rela- [15] Bordas, P., Yang, R., Kafexhiu, E., Aharonian, F., 2015. Detection of tion of extragalactic H II regions. A&A 507, 1327–1343. PersistentGamma-RayEmissionTowardSS433/W50. ApJL 807,L8. doi:10.1051/0004-6361/200912020,arXiv:0910.2804. doi:10.1088/2041-8205/807/1/L8,arXiv:1411.7413. [38] Inoue, S., Granot, J., O’Brien, P.T., et al., 2013a. Gamma-ray burst [16] Bykov, A.M., Ellison, D.C., Osipov, S.M., Vladimirov, A.E., 2014. science in the era of the Cherenkov Telescope Array. Astroparticle Magnetic Field Amplification in Nonlinear Diffusive Shock Acceler- Physics43,252–275.doi:10.1016/j.astropartphys.2013.01.004, ation Including Resonant and Non-resonant Cosmic-Ray Driven In- arXiv:1301.3014. stabilities. ApJ 789, 137. doi:10.1088/0004-637X/789/2/137, [39] Inoue, Y., 2011a. Contribution of Gamma-Ray-loud Radio Galax- arXiv:1406.0084. ies’ Core Emissions to the Cosmic MeV and GeV Gamma-Ray Back- [17] Caprioli, D., Spitkovsky, A., 2014. Simulations of Ion Acceleration groundRadiation. ApJ 733,66. doi:10.1088/0004-637X/733/1/66, at Non-relativistic Shocks. I. Acceleration Efficiency. ApJ 783, 91. arXiv:1103.3946. doi:10.1088/0004-637X/783/2/91,arXiv:1310.2943. [40] Inoue, Y., 2011b. High Energy Gamma-ray Absorption and Cas- [18] Chen,W.C.,2016. ConstrainingthedipolarmagneticfieldofM82X-2 cade Emission in Nearby Starburst Galaxies. ApJ 728, 11. bytheaccretionmodel. ArXive-printsarXiv:1609.05706. doi:10.1088/0004-637X/728/1/11,arXiv:1011.6511. [19] Crutcher,R.M.,1999. MagneticFieldsinMolecularClouds: Observa- [41] Inoue, Y., Inoue, S., Kobayashi, M.A.R., Makiya, R., Niino, Y., tionsConfrontTheory.ApJ 520,706–713. doi:10.1086/307483. Totani, T., 2013b. Extragalactic Background Light from Hierarchi- [20] Cseh, D., Corbel, S., Kaaret, P., et al., 2012. Black Hole Pow- cal Galaxy Formation: Gamma-Ray Attenuation up to the Epoch ered Nebulae and a Case Study of the Ultraluminous X-Ray Source of Cosmic Reionization and the First Stars. ApJ 768, 197. IC 342 X-1. ApJ 749, 17. doi:10.1088/0004-637X/749/1/17, doi:10.1088/0004-637X/768/2/197,arXiv:1212.1683. arXiv:1201.4473. [42] Inoue, Y., Tanaka, Y.T., Isobe, N., 2016. Binary black hole [21] Daugherty,J.K.,Harding,A.K.,1982. Electromagneticcascadesinpul- mergerratesinferredfromluminosityfunctionofultra-luminous X-ray sars.ApJ 252,337–347. doi:10.1086/159561. sources. MNRAS 461, 4329–4334. doi:10.1093/mnras/stw1637, [22] Dermer, C.D., Menon, G., 2009. High Energy Radiation from Black arXiv:1602.05554. Holes:GammaRays,CosmicRays,andNeutrinos. [43] Inoue, Y., Totani, T., 2009. The Blazar Sequence and the Cosmic [23] Dopita, M.A., Payne, J.L., Filipovic´, M.D., Pannuti, T.G., Gamma-rayBackgroundRadiationintheFermiEra.ApJ 702,523–536. 2012. The physical parameters of the microquasar S26 in the doi:10.1088/0004-637X/702/1/523,arXiv:0810.3580. Sculptor Group galaxy NGC 7793. MNRAS 427, 956–967. [44] Israel, G.L., Belfiore, A., Stella, L., et al., 2016. ULX-1 in doi:10.1111/j.1365-2966.2012.21947.x,arXiv:1208.3500. NGC5907: how bright can anaccreting pulsar shine? ArXive-prints [24] Draine,B.T.,2011.PhysicsoftheInterstellarandIntergalacticMedium. arXiv:1609.07375. [25] Eks¸i, K.Y., Andac¸, ˙I.C., C¸ıkıntog˘lu, S., Genc¸ali, A.A., Gu¨ngo¨r, [45] Jelley, J.V., 1966. High-Energy γ-Ray Absorption in Space by a C., O¨ztekin, F., 2015. The ultraluminous X-ray source NuSTAR 3.5degK Microwave Field. Physical Review Letters 16, 479–481. J095551+6940.8:amagnetarinahigh-massX-raybinary.MNRAS 448, doi:10.1103/PhysRevLett.16.479. L40–L42.doi:10.1093/mnrasl/slu199,arXiv:1410.5205. [46] Kafexhiu,E.,Aharonian,F.,Taylor,A.M.,Vila,G.S.,2014.Parametriza- [26] Fan,Z.,Liu,S.,Fryer,C.L.,2010.Stochasticelectronaccelerationinthe tion of gamma-ray production cross sections for p p interactions in a TeVsupernovaremnantRXJ1713.7-3946:thehigh-energycut-off.MN- broad proton energy range from the kinematic threshold to PeV ener- RAS 406, 1337–1349. doi:10.1111/j.1365-2966.2010.16767.x, gies. Phys.Rev.D90,123014. doi:10.1103/PhysRevD.90.123014, arXiv:0909.3349. arXiv:1406.7369. [27] Feng, H., Soria, R., 2011. Ultraluminous X-ray sources in the Chan- [47] Kaiser, C.R., Alexander, P., 1997. A self-similar model dra and XMM-Newton era. New Astronomy Review 55, 166–183. for extragalactic radio sources. MNRAS 286, 215–222. doi:10.1016/j.newar.2011.08.002,arXiv:1109.1610. doi:10.1093/mnras/286.1.215. [28] Fuerst,F.,Walton,D.J.,Harrison,F.A.,etal.,2016.Discoveryofcoherent [48] Kamae,T.,Karlsson,N.,Mizuno,T.,Abe,T.,Koi,T.,2006. Parameter- pulsationsfromtheUltraluminousX-raySourceNGC7793P13. ArXiv izationofγ,e+/ ,andNeutrinoSpectraProducedbyp-pInteraction in − 6 AstronomicalEnvironments.ApJ 647,692–708.doi:10.1086/505189, [68] Ohira, Y., Murase, K., Yamazaki, R., 2010. Escape-limited arXiv:astro-ph/0605581. model of cosmic-ray acceleration revisited. A&A 513, A17. [49] Karino, S., Miller, J.C., 2016. Accretion mode of the ultra- doi:10.1051/0004-6361/200913495,arXiv:0910.3449. luminous X-ray source M82 X-2. MNRAS 462, 3476–3482. [69] Pakull,M.W.,Mirioni,L.,2003. BubbleNebulaearoundUltraluminous doi:10.1093/mnras/stw1180,arXiv:1605.05723. X-RaySources,in:Arthur,J.,Henney,W.J.(Eds.),RevistaMexicanade [50] Kawashima,T.,Mineshige,S.,Ohsuga,K.,Ogawa,T.,2016.Aradiation- AstronomiayAstrofisicaConferenceSeries,pp.197–199. hydrodynamicsmodelofaccretioncolumnsforultra-luminousX-raypul- [70] Pakull,M.W.,Soria,R.,Motch,C.,2010. A300-parsec-longjet-inflated sars.PASJ 68,83.doi:10.1093/pasj/psw075,arXiv:1608.04211. bubble around a powerful microquasar in the galaxy NGC 7793. Na- [51] Kawashima,T.,Ohsuga,K.,Mineshige,S.,Yoshida,T.,Heinzeller, D., ture 466,209–212.doi:10.1038/nature09168. Matsumoto, R., 2012. Comptonized Photon Spectra of Supercritical [71] Planck Collaboration, Ade, P.A.R.,Aghanim, N., et al., 2016. Planck BlackHoleAccretion Flows withApplication toUltraluminous X-Ray 2015 results. XIII. Cosmological parameters. A&A 594, A13. Sources.ApJ 752,18.doi:10.1088/0004-637X/752/1/18. doi:10.1051/0004-6361/201525830,arXiv:1502.01589. [52] Kelner, S.R., Aharonian, F.A., Bugayov, V.V., 2006. Energy spectra [72] Poutanen, J., Fabrika, S., Valeev, A.F., Sholukhova, O., Greiner, J., ofgammarays, electrons, andneutrinos produced atproton-proton in- 2013. OntheassociationoftheultraluminousX-raysourcesintheAn- teractions in the very high energy regime. Phys. Rev. D 74, 034018. tennae galaxies with young stellar clusters. MNRAS 432, 506–519. doi:10.1103/PhysRevD.74.034018,arXiv:astro-ph/0606058. doi:10.1093/mnras/stt487,arXiv:1210.1210. [53] King, A., Lasota, J.P., 2016. ULXs: Neutron stars versus black [73] Rolleston, W.R.J.,Smartt, S.J.,Dufton, P.L.,Ryans, R.S.I.,2000. The holes. MNRAS 458, L10–L13. doi:10.1093/mnrasl/slw011, Galacticmetallicitygradient. A&A 363,537–554. arXiv:1601.03738. [74] Shull, J.M., McKee, C.F., 1979. Theoretical models of interstellar [54] Kluz´niak, W., Lasota, J.P., 2015. An ultraluminous nascent millisec- shocks.I-Radiative transferandUVprecursors. ApJ 227, 131–149. ondpulsar. MNRAS 448, L43–L47. doi:10.1093/mnrasl/slu200, doi:10.1086/156712. arXiv:1411.1005. [75] Skilling,J.,1975. Cosmicraystreaming.I-EffectofAlfvenwaveson [55] Lee, S.H.,Ellison, D.C., Nagataki, S., 2012. AGeneralized Modelof particles. MNRAS 172,557–566. doi:10.1093/mnras/172.3.557. NonlinearDiffusiveShockAccelerationCoupledtoanEvolvingSuper- [76] Sol, H., Zech, A., Boisson, C., et al., 2013. Active Galactic Nu- novaRemnant. ApJ 750,156. doi:10.1088/0004-637X/750/2/156, clei under the scrutiny of CTA. Astroparticle Physics 43, 215–240. arXiv:1203.3614. doi:10.1016/j.astropartphys.2012.12.005,arXiv:1304.3024. [56] Lee,S.H.,Patnaude,D.J.,Raymond,J.C.,Nagataki,S.,Slane,P.O.,El- [77] Soria, R., Pakull, M.W., Broderick, J.W., Corbel, S., Motch, C., lison, D.C.,2015. ModelingBrightγ-RayandRadioEmissionatFast 2010. Radio lobes and X-ray hotspots in the microquasar S26. MN- Cloud Shocks. ApJ 806, 71. doi:10.1088/0004-637X/806/1/71, RAS 409, 541–551. doi:10.1111/j.1365-2966.2010.17360.x, arXiv:1504.05313. arXiv:1008.0394. [57] Lockman, F.J., Blundell, K.M., Goss, W.M., 2007. The distance to [78] Stecker, F.W., 1970. The Cosmic γ-Ray Spectrum from Secondary SS433/W50 and its interaction with the interstellar medium. MN- Particle Production in Cosmic-Ray Interactions. Ap&SS 6, 377–389. RAS 381, 881–893. doi:10.1111/j.1365-2966.2007.12170.x, doi:10.1007/BF00653856. arXiv:0707.0506. [79] Stecker, F.W.,deJager,O.C.,Salamon, M.H.,1992. TeVgammarays [58] Lozinskaya, T.A.,Moiseev, A.V.,2007. Asynchrotron superbubble in from3C279-Apossibleprobeoforiginandintergalacticinfraredradia- the IC10 galaxy: a hypernova remnant? MNRAS 381, L26–L29. tionfields. ApJL 390,L49–L52.doi:10.1086/186369. doi:10.1111/j.1745-3933.2007.00359.x,arXiv:0708.0626. [80] Swartz, D.A.,Soria, R.,Tennant, A.F.,Yukita, M.,2011. AComplete [59] Makishima,K.,Kubota,A.,Mizuno,T.,etal.,2000.TheNatureofUltra- Sample ofUltraluminous X-ray Source Host Galaxies. ApJ 741, 49. luminousCompactX-RaySourcesinNearbySpiralGalaxies. ApJ 535, doi:10.1088/0004-637X/741/1/49,arXiv:1108.1372. 632–643. doi:10.1086/308868,arXiv:astro-ph/0001009. [81] Swartz, D.A., Tennant, A.F., Soria, R., 2009. Ultraluminous X-Ray [60] Malkov, M.A., Diamond, P.H., Sagdeev, R.Z., 2011. Mechanism for Source Correlations with Star-Forming Regions. ApJ 703, 159–168. spectral break in cosmic ray proton spectrum of supernova remnant doi:10.1088/0004-637X/703/1/159,arXiv:0907.4718. W44. Nature Communications 2, 194. doi:10.1038/ncomms1195, [82] Tsygankov, S.S., Mushtukov, A.A., Suleimanov, V.F., Poutanen, J., arXiv:1004.4714. 2016. Propeller effect inaction intheultraluminous accreting magne- [61] Mapelli,M.,Ripamonti,E.,Zampieri,L.,Colpi,M.,Bressan,A.,2010. tarM82X-2.MNRAS 457,1101–1106. doi:10.1093/mnras/stw046, Ultra-luminousX-raysourcesandremnantsofmassivemetal-poorstars. arXiv:1507.08288. MNRAS 408,234–253. doi:10.1111/j.1365-2966.2010.17048.x, [83] Uchiyama, Y., Aharonian, F.A., Tanaka, T., Takahashi, T., Maeda, Y., arXiv:1005.3548. 2007.Extremelyfastaccelerationofcosmicraysinasupernovaremnant. [62] Mineo, S., Gilfanov, M., Sunyaev, R., 2012. X-ray emission Nature 449,576–578. doi:10.1038/nature06210. from star-forming galaxies - I. High-mass X-ray binaries. MN- [84] Wakely,S.P.,Horan,D.,2008. TeVCat:AnonlinecatalogforVeryHigh RAS 419, 2095–2115. doi:10.1111/j.1365-2966.2011.19862.x, EnergyGamma-RayAstronomy. InternationalCosmicRayConference arXiv:1105.4610. 3,1341–1344. [63] Mirabel, I.F., Rodr´ıguez, L.F., 1999. Sources of [85] Walton, D.J., Roberts, T.P., Mateos, S., Heard, V., 2011. 2XMM Relativistic Jets in the Galaxy. ARA&A 37, ultraluminous X-ray source candidates in nearby galaxies. MN- 409–443. doi:10.1146/annurev.astro.37.1.409, RAS 416, 1844–1861. doi:10.1111/j.1365-2966.2011.19154.x, arXiv:astro-ph/9902062. arXiv:1106.0197. [64] Mizuno,T.,Miyawaki,R.,Ebisawa,K.,etal.,2007.SuzakuObservation [86] Weaver, R., McCray, R., Castor, J., Shapiro, P., Moore, R., 1977. In- ofTwoUltraluminousX-RaySourcesinNGC1313.PASJ 59,257–267. terstellar bubbles. II - Structure and evolution. ApJ 218, 377–395. doi:10.1093/pasj/59.sp1.S257. doi:10.1086/155692. [65] Mori, M., 2009. Nuclear enhancement factor in calculation of Galac- ticdiffusegamma-rays: AnewestimatewithDPMJET-3. Astroparticle Physics31,341–343.doi:10.1016/j.astropartphys.2009.03.004, arXiv:0903.3260. [66] Mushtukov,A.A.,Suleimanov,V.F.,Tsygankov,S.S.,Poutanen,J.,2015. Onthemaximumaccretionluminosityofmagnetizedneutronstars:con- nectingX-raypulsarsandultraluminousX-raysources. MNRAS 454, 2539–2548. doi:10.1093/mnras/stv2087,arXiv:1506.03600. [67] Niino,Y.,2011. Revisiting themetallicity oflong-durationgamma-ray bursthostgalaxies: theroleofchemicalinhomogeneitywithingalaxies. MNRAS 417,567–572. doi:10.1111/j.1365-2966.2011.19299.x, arXiv:1103.1293. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.