ebook img

High Efficiency DC/AC Power Converter for Photovoltaic Applications PDF

218 Pages·2010·14.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Efficiency DC/AC Power Converter for Photovoltaic Applications

High Efficiency DC/AC Power Converter for Photovoltaic Applications by Aleksey Trubitsyn B.S., Boston University (2008) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology June 2010 (cid:13)c Massachusetts Institute of Technology, MMX. All rights reserved. Author Department of Electrical Engineering and Computer Science May 21, 2010 Certified by David J. Perreault Associate Professor of Electrical Engineering Thesis Supervisor Accepted by Terry P. Orlando Chairman, Department Committee on Graduate Students High Efficiency DC/AC Power Converter for Photovoltaic Applications by Aleksey Trubitsyn Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2010, in partial fulfillment of the requirements for the degree of Master of Science Abstract This thesis presents the development of a microinverter for single-phase photovol- taic applications that is suitable for conversion from low-voltage (25-40V) DC to high voltage AC (e.g. 240V ). The circuit topology is based on a full-bridge AC,RMS series resonant inverter, a high-frequency transformer, and a novel half-wave cyclo- converter. The operational characteristics are analyzed, and a multidimensional con- trol technique is utilized to achieve high efficiency, encompassing frequency control and inverter and cycloconverter phase shift control. An experimental prototype is demonstrated in DC/DC conversion mode for a wide range of output voltages. The proposed control strategy is shown to allow for accurate power delivery with minimal steps taken towards correction. The prototype achieves a CEC averaged efficiency of approximately 95.1%. Guidelines for optimization are presented along with experi- mental results which validate the method. Thesis Supervisor: David J. Perreault Title: Associate Professor of Electrical Engineering Acknowledgements IwanttothankBrandonPierquetforansweringallofmyquestionsaboutthisproject, at absolutely any time, and no matter how trivial or off-point they were. I sincerely appreciate his endless willingness to help me understand the concepts of this project and I certainly would not have been able to get through this thesis without his help. I want to thank Alexander Hayman for all the practical information that he taught me in the several months that we worked together. I learned most of what I know about dealing with hardware from him and this was a crucial skill to have for advancing the prototype. I want to thank Professor David Perreault for bringing me onto this project and being very guiding, knowledgeable and extremely supportive during the last two years. Also very noteworthy is his willingness to stay late in lab, beyond regular hours, and helping us debug our projects. Many thanks go out to Enphase Energy and Dr. Landsman for their funding of my education. I want to thank the many members of LEES that made the lab a fun, coherent and productive work environment: George Hwang, Grace Cheung, Jackie Hu, Makiko Wada, Ben Cannon, Ian Smith, and Justin Burkhart. I also appreciate the numerous times that Anthony Sagneri and Robert Pilawa offered very helpful advice on my work. Many thanks to Allan Hutchison-Maxwell for proofreading a large portion of this thesis! Finally, I want to extend special thanks to my girlfriend, Maria, and my family, Anton, Mariam and Yuriy for their continued love and support throughout my college career!! – 5 – Contents 1 Introduction 15 1.1 Solar inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Thesis scope and organization . . . . . . . . . . . . . . . . . . . . . . 17 2 System Overview 19 2.1 Soft switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Grid tie power delivery . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 CEC efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.3 Switching cycle averaged quantities . . . . . . . . . . . . . . . 24 2.3 Circuit topology and overview . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Operating a half-bridge under ZVS . . . . . . . . . . . . . . . . . . . 26 3 Design 33 3.1 Component description . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.1 Full-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1.1 Full-bridge losses . . . . . . . . . . . . . . . . . . . . 37 3.1.1.2 Component selection . . . . . . . . . . . . . . . . . . 39 3.1.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2.1 Transformer losses . . . . . . . . . . . . . . . . . . . 40 3.1.3 Resonant tank . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.3.1 Resonant tank losses . . . . . . . . . . . . . . . . . . 45 – 7 – Contents 3.1.4 Cycloconverter . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.4.1 Cycloconverter losses . . . . . . . . . . . . . . . . . . 50 3.1.5 Component Selection . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6 Capacitor banks . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.6.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.6.2 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.6.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.6.4 Capacitor losses . . . . . . . . . . . . . . . . . . . . . 53 4 Control and Optimization 55 4.1 Inverter control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Full bridge phase shift . . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.3 Cycloconverter phase shift . . . . . . . . . . . . . . . . . . . . 58 4.1.4 Burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Optimal control strategy . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Equivalent circuit model . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.2 Ideal diode rectifier . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.3 Diode rectifier with non-zero capacitance . . . . . . . . . . . . 67 4.3.4 Extension to the real inverter . . . . . . . . . . . . . . . . . . 70 4.3.4.1 Equivalent charge . . . . . . . . . . . . . . . . . . . . 72 4.3.4.2 Critical angles for ZVS . . . . . . . . . . . . . . . . . 73 4.3.4.3 Deadtime requirements . . . . . . . . . . . . . . . . . 75 4.3.4.4 Cycloconverter turn on time . . . . . . . . . . . . . . 76 4.3.5 Other considerations . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 – 8 – Contents 4.4.1 Resonant components . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.2 Transformer turns ratio . . . . . . . . . . . . . . . . . . . . . . 83 4.4.3 MOSFET selection . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.4 Loss breakdown and efficiency . . . . . . . . . . . . . . . . . . 86 4.4.5 Sloshing boundary . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Verification 93 5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 94 5.1.2 Selection of operating points . . . . . . . . . . . . . . . . . . . 98 5.2 Results I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3 Results II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.1 Resonant tank placement . . . . . . . . . . . . . . . . . . . . . 107 5.4 Loss estimates using thermal measurements . . . . . . . . . . . . . . 107 6 Conclusion 111 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 A Converter models: MATLAB 115 A.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 B Converter models: LTspice 127 B.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C Optimization scripts 141 C.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 – 9 – Contents D Experimental setup scripts 175 D.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 D.2 FPGA software description . . . . . . . . . . . . . . . . . . . . . . . . 175 D.3 MATLAB scripts for FPGA . . . . . . . . . . . . . . . . . . . . . . . 177 D.4 MATLAB scripts for efficiency measurements . . . . . . . . . . . . . 189 D.5 Verilog code for FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . 193 E Thermal measurements 207 E.1 Thermal characterization . . . . . . . . . . . . . . . . . . . . . . . . . 207 E.2 Thermal impedance matrices . . . . . . . . . . . . . . . . . . . . . . . 209 F Prototype hardware 211 F.1 Parts list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 F.2 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography 217 – 10 –

Description:
switching. The general approach is to use a resonant network of passive components . Design decisions embodied in this topology focus on.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.