Kyung-Hyun Cho High-Density Lipoproteins as Biomarkers and Therapeutic Tools Volume 1. Impacts of Lifestyle, Diseases, and Environmental Stressors on HDL High-Density Lipoproteins as Biomarkers and Therapeutic Tools Kyung-Hyun Cho High-Density Lipoproteins as Biomarkers and Therapeutic Tools Volume 1. Impacts of Lifestyle, Diseases, and Environmental Stressors on HDL Kyung-Hyun Cho LipoLab, Yeungnam University Gyeongsan-si, Gyeongsangbuk-do South Korea ISBN 978-981-13-7386-2 ISBN 978-981-13-7387-9 (eBook) https://doi.org/10.1007/978-981-13-7387-9 © Springer Nature Singapore Pte Ltd. 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface This book is designed to demonstrate many aspects of high-density lipoprotein (HDL) in human growth, human disease, and aging process under different environ- mental changes. Because HDL is dynamic and reversible, it can be changed upon various health statuses, such as exercise, dietary patterns, exposure of infections, and environmental pollutions. HDL can be a good biomarker to diagnose many diseases and its progression via the monitoring of changes in its antioxidant and anti-inflammation abilities. HDL can be used for therapeutic tools and vehicle for drug delivery. HDL is a potent antioxidant, anti-inflammatory macromolecule in body fluids to maintain human health. Advantageous activities of HDL are well known as anti- atherosclerotic and antidiabetic activity and recently expand to antiaging activities. The advanta- geous virtues of HDL are highly dependent on its lipids, proteins, apolipoproteins, and enzymes, specifically their compositions and ratios. In normal state, the HDL particle is constituted with cholesterol, triacylglyceride (TG), and several HDL- associated enzymes and apolipoproteins, including paraoxonase, lecithin/choles- terol acyltransferase, and cholesteryl ester transfer protein (CETP). HDL cholesterol (HDL-C) level should be more than 40 and 50 mg/dL for men and women, respectively, to maintain healthy state. Lower HDL-C levels (<40 mg/ dL) have been recognized as an independent risk factor for coronary artery disease, as well as a known component of metabolic syndrome. In addition to HDL-C, func- tional and structural changes of HDL have also been recognized as factors pivotal to the evaluation of HDL quality. HDL are susceptible to structural modifications induced via several mechanisms, including oxidation, glycation, nitration, or pro- tein degradation upon external stress such as infection of virus and bacteria, inflam- mation, and pollutant exposure. The modification resulted in severe loss of advantageous functions of HDL regarding anti-senescence and antidiabetic and anti-atherosclerosis activity due to functional and structural modification with increased protein degradation. In order to replace the dysfunctional HDL, blood infusion of reconstituted HDL (rHDL) caused reduction of plasma glucose levels by increasing plasma insulin in pancreatic beta cells, which raised the feasibility of a wider clinical application of rHDL from cardiovascular disease to diabetes. v vi Preface In this book, I have elected to focus on functional and structural correlations of HDL and apoA-I in various health statuses and the roles of HDL-associated apoli- poproteins and enzymes as therapeutic tools. Interestingly, HDL and apoA-I can be found in many important body fluids in all age, including breast milk, cord blood, vessel blood, lymph, and cerebrospinal fluid. Several clinical applications of HDL have also been reviewed herein, particularly the therapeutic targeting of HDL metabolism and reconstituted HDL, as these techniques represent promising emerg- ing strategies for the treatment of diabetes and cardiovascular disease and for drug- delivery. Herein are many aspects of HDL in diseases and environmental stresses to change quantity and quality of HDL as shown in the illustration below. A reconsti- tuted HDL can be synthesized with many other ingredients to test functionality or drug delivery as shown in the left side. Many HDL from various subjects and patients were characterized to compare native HDL and dysfunctional HDL as shown in the right side. Actually, HDL is a dynamic macrocomplex, which is not fixed in certain struc- ture and functions. It has energetic structural and functional features of HDL depends on health status and environmental circumstances, as well as change of HDL by lifestyle and various diseases, we will see impairment of HDL by environ- Preface vii mental pollutant and food ingredient to produce dysfunctional HDL, which can exacerbate pre-existed diseases. However, HDL functionality can be enhanced by consumption of functional food, such as vitamin C and policosanol. The enhanced HDL functionality is accompanied with reducing aortic stiffness and blood pressure. Finally, we would take a look about HDL quality and quantity to maintain our healthy life and longevity. I do believe this book provides new aspects of HDL in healthy aging and unique insight of HDL field. Gyeongsan-si, Gyeongsangbuk-do Kyung-Hyun Cho South Korea Contents 1 Understanding HDL: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 HDL and Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Dysfunctional HDL and Diseases . . . . . . . . . . . . . . . . . . . . 2 1.2 HDL Functions and Clinical Applications . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Functional and Structural Correlations of HDL. . . . . . . . . . 6 1.2.2 Anti-atherosclerotic Function of HDL . . . . . . . . . . . . . . . . . 7 1.2.3 Antioxidant Properties of HDL . . . . . . . . . . . . . . . . . . . . . . 7 1.2.4 Anti-inflammatory Function of HDL . . . . . . . . . . . . . . . . . . 8 1.3 HDL Composition: Apolipoproteins and Enzymes . . . . . . . . . . . . . 8 1.3.1 Apolipoprotein A-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Apolipoprotein A-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 Apolipoprotein C-I, C-II and C-III . . . . . . . . . . . . . . . . . . . 10 1.3.4 Cholesteryl Ester Transfer Protein (CETP) . . . . . . . . . . . . . 11 1.3.5 Lecithin:Cholesterol Acyltransferase (LCAT) . . . . . . . . . . . 11 1.3.6 Paraoxonase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.7 Platelet Activating Factor-Acetyl Hydrolase (PAF-AH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Maturation of HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 HDL and Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Change of HDL by Life Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Exercise and HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Serum Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Particle Distribution of VLDL, LDL, and HDL. . . . . . . . . . 24 2.1.3 Ferric Reducing Ability (FRA) as Antioxidant Ability . . . . 26 2.1.4 LCAT Ability and Protein Expression in HDL . . . . . . . . . . 27 3 2.1.5 Paraoxonase Ability and Protein Expression . . . . . . . . . . . . 28 2.1.6 CETP Activity and Protein Expression . . . . . . . . . . . . . . . . 28 2.1.7 Expressional Level of apoA-I and A-II in HDL Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ix x Contents 2.1.8 Runners and Wrestlers Had the Biggest HDL Size . . . . . . 30 2 2.2 Smoking and HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Blood Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Serum Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Lipoprotein Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Lipoproteins from Smokers Are More Oxidized . . . . . . . . . 36 2.2.6 Glycated Species and Modification of Electrophoretic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.7 CETP Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.8 Cellular Uptake of LDL into Macrophages . . . . . . . . . . . . . 40 2.3 Elderly’s HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.1 Recruitment of Elderly Subjects . . . . . . . . . . . . . . . . . . . . . 44 2.3.2 Serum Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.3 Reduced Antioxidant Ability in the Elderly Group . . . . . . . 45 2.3.4 PON Activity Was Reduced in the Elderly Group . . . . . . . . 46 2.3.5 CE-Transfer Ability Was Increased in the Elderly Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3.6 Expression of apoA-I in HDL and LPDS . . . . . . . . . . . . . . 48 2.3.7 The Elderly Group Showed Truncation of the C-Terminal of A-I in HDL . . . . . . . . . . . . . . . . . . . . 50 3 2.3.8 The Elderly Group Showed Increased Glycated Levels of apoA-I in HDL . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 2.3.9 HDL Particle Size Was Decreased in the Elderly . . . . . . . . 52 2 2.3.10 The Level of Expression of SAA and apoC-III . . . . . . . . . . 52 2.4 HDL Depends on Body Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.4.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.2 BMI and Serum HDL-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.4.3 Serum Lipid Level and Body Weight . . . . . . . . . . . . . . . . . . 57 2.4.4 CETP Mass and Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.5 Correlation of HDL-C and Body Shape. . . . . . . . . . . . . . . . 58 2.4.6 Correlation of HDL-C and Blood Pressure . . . . . . . . . . . . . 60 2.4.7 Antioxidant Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.8 Compositions of Lipoproteins . . . . . . . . . . . . . . . . . . . . . . . 61 2.4.9 Modification of Lipoproteins . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.10 Expression Level of apoA-I in HDL . . . . . . . . . . . . . . . . . . 63 2.4.11 HDL Particle Size and Cholesterol Efflux . . . . . . . . . . . . . 64 2 2.5 HDL from Obese but Healthy Subject . . . . . . . . . . . . . . . . . . . . . . . 67 2.5.1 Blood Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5.2 Ultracentrifugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.5.3 Serum Profiles of the Hypolipidemic Obese Patient . . . . . . 69 2.5.4 Different Apolipoprotein Expression Levels in HDL and HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2 3 2.5.5 Particle Size Distribution of Lipoproteins . . . . . . . . . . . . . . 71 2.5.6 Composition of apoA-I and A-II in HDL Subtypes . . . . . . . 71 Contents xi 2.5.7 LCAT Ability and Protein Levels in HDL-Subspecies . . . . 73 2.5.8 The Obese Patient Lacked CETP Activity . . . . . . . . . . . . . . 74 2.5.9 The Obese Subject Had Larger HDL and HDL 2 3 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.6 HDL and apoA-I in Smokers’ Breast Milk . . . . . . . . . . . . . . . . . . . 76 2.6.1 Recruiting of Breast Milk Donor . . . . . . . . . . . . . . . . . . . . . 78 2.6.2 Microinjection of Zebrafish Embryos . . . . . . . . . . . . . . . . . 78 2.6.3 Higher Body Fat in Smokers . . . . . . . . . . . . . . . . . . . . . . . . 79 2.6.4 Compositional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.6.5 Embryo Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.6.6 Developmental Speed and ROS Production . . . . . . . . . . . . 81 2.6.7 Electrophoretic Analysis of Protein Composition . . . . . . . . 82 2.6.8 Expressional Level of apoA-I . . . . . . . . . . . . . . . . . . . . . . . 82 2.6.9 Influential Factors for Embryo Survivability . . . . . . . . . . . . 84 2.7 Breast Milk from Frequent Trans-fatty Acid Consumers . . . . . . . . 88 2.7.1 Recruiting of Breast Milk Donor . . . . . . . . . . . . . . . . . . . . . 89 2.7.2 Composition Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.7.3 Embryo Survivability and Developmental Speed . . . . . . . . 90 2.7.4 Electrophoretic Analysis of Protein Composition . . . . . . . . 91 2.7.5 Expression Level of apoA-I . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.7.6 Influential Factors for Embryo Survivability . . . . . . . . . . . . 92 2.8 HDL in Cord Blood from Small Neonates . . . . . . . . . . . . . . . . . . . 95 2.8.1 Collection of Umbilical Cord Blood . . . . . . . . . . . . . . . . . . 96 2.8.2 Lipid Parameters in Cord Serum . . . . . . . . . . . . . . . . . . . . . 97 2.8.3 Lipoprotein Profile in Cord Blood . . . . . . . . . . . . . . . . . . . . 99 2.8.4 SGA Shows Lower Antioxidant Ability . . . . . . . . . . . . . . . . 100 2.8.5 Expression Level of Growth Hormones and IL-6 in Cord Serum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.8.6 Expression of apoA-I, Apo-B, and apoC-III in Lipoproteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2.8.7 Glycation and Oxidation Extent of HDL . . . . . . . . . . . . . . . 103 2.8.8 Antioxidant Ability of Lipoproteins . . . . . . . . . . . . . . . . . . 103 2.8.9 Higher Atherogenic Properties . . . . . . . . . . . . . . . . . . . . . . . 104 2.8.10 Diminished apoA-I Expressional in Amniotic Fluid of SGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3 Change of HDL in Various Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.1 HDL from Patients with Myocardial Infarction . . . . . . . . . . . . . . . . 119 3.1.1 Patients and Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.1.2 Plasma and Lipoprotein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.1.3 Serum Lipid Profile and Inflammatory Markers . . . . . . . . . 121 3.1.4 TG and apoC-III Were Elevated in Lipoproteins from MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.1.5 Increase of CETP Protein and Ability . . . . . . . . . . . . . . . . . 123