ebook img

High Angular Resolution School PDF

35 Pages·2010·0.37 MB·French
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Angular Resolution School

High Angular Resolution School THE FRENCH AEROSPACE LAB Introduction to inverse problems. Application to deconvolution t ONERA / Dep Optique Théorique & Appliquée, HAR team 0 1 0 2 r e b m http://www.onera.fr/dota e v o n – r [email protected] e i n g u M . L 1 High Angular Resolution School Context o Aim of this talk: introduction to methods for solving “inverse problems”, including image deconvolution; o Common framework for problems and methods in a wide variety of fields: + X-ray tomography; + ultrasound echography (medical diagnosis, Non-Destructive Testing); + computer vision (stereo, etc.); + geophysics; 0 1 0 2 + r wavefront sensing (Hartmann-Shack, curvature, phase diversity); e b m + e image restoration, e.g., for imaging through turbulence (w/ or without AO); v o n + – image reconstruction in interferometry, r e i n + g etc. u M . L THE FRENCH AEROSPACE LAB 2 High Angular Resolution School Inverse problem: a contrario definition o Wavefront sensing by Shack-Hartmann Unknowns: wavefront (phase) Measurements: local slopes Lenslet array Sensor 0 o 1 image restoration 0 2 r e object → atmosphere+telescope+camera → image b m e v o o n image reconstruction in long baseline optical interferometry – r e ni object → atmosphere+interferometer → visibilities g u M L. Physics → model the data, i.e., compute the direct problem. THE FRENCH AEROSPACE LAB 3 High Angular Resolution School Considered “direct model”, i.e. model of the data o linear model: y = Hx + n, H linear operator (matrix in finite dimension), y , vector of measurements (image pixels, S-H slopes,...), x , vector of unknowns (object, wavefront, etc.), n measurement noise. o convolution case: 0 1 20 + H linear and shift-invariant ⇔ Hx = h ⋆ x r e b + m h : point spread function (PSF) : x = δ ⇒ h ⋆ x = h. e v no + h˜ = FT(h) : transfer function. – r + ˜ ie Direct model: y = h ⋆ x + n where y˜ = h.x˜ + n˜ n g u M . L THE FRENCH AEROSPACE LAB 4 High Angular Resolution School “Classical” resolution of an inverse problem o One searches for xˆ ; y = Hxˆ existence o Invertible (linear) problem ∀y: ( uniqueness o If dim(x) > dim(y), not enough measurements for a unique solution. o 0 If dim(x) < dim(y), usually no solution: noise makes it impossible to fit all 1 0 2 r data. e b m e o v existence and uniqueness ∀y ⇔ H square and invertible o n – er o i Not often the case + accomodating more data is desirable! n g u M . L THE FRENCH AEROSPACE LAB 5 High Angular Resolution School Least Squares method One searches for xˆ that minimizes the Least Squares criterion: 2 2 ky − Hxˆk = inf ky − Hxk (1) x Legendre (1805) and Gauss (between 1795 and 1809) → (estimation of the Earth’s ellipticity from arc measurements definition of the meter) o existence guaranteed (in finite dimension): (1) ⇔ Py = Hxˆ, where P projector on Im(H). o uniqueness guaranteed: ⊥ if N(H) 6= {0} one projects xˆ onto N(H) → LS solution of minimal norm xˆ , or Generalized Inverse. min 0 norm 1 20 o analytical solution: xˆ = (HtH)−1Hty (generally) r e b m e v x y o T N(H) n – r H Im H nie x^min x^ g norm Py u M H N(H) . L THE FRENCH AEROSPACE LAB 6 High Angular Resolution School Hartmann-Shack Wave Front Sensor incident wavefront Sub−images Microlens array (cid:0)(cid:1) Sensor (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) 0 αf 1 0 2 α f r e b m o e Principle: measurement of local slopes of wavefront; v o n – o r e Works with point sources and extended objects, w/ large spectral bandwidth; i n g u M o Estimation of wavefront from local slopes. . L THE FRENCH AEROSPACE LAB 7 High Angular Resolution School Hartmann-Shack: direct problem and LS solution o Data: K sub-apertures → 2 K slopes y = y u/v,i 1 ∂φ(u, v) (cid:8) (cid:9) y = du dv + noise u,i S ∂u i S Z i o Linear direct model: y = Hx + n with: ← −→ j j max max x = {x }, φ(u, v) = x Z (u, v), H = 2Kx .  j j j  0 1  0 j=2 2 X  .  er   b m   e o  ov Problem: estimate the wavefront x from the measureyd slopes y n – r nie o LS solution: xˆ = (HtH)−1Hty g u M . L THE FRENCH AEROSPACE LAB 8 High Angular Resolution School Hartmann-Shack simulation o 20 × 20 sub-apertures, central obstruction d/D = 0.33 ; o K = 276 illuminated sub-apertures ⇒ 2.K = 552 slope measurements; o n zero-mean white Gaussian (and 0 1 0 2 approximately stationary), such that r e b m SNR = 1 ; e slopes v o n – r e i n g u M . L THE FRENCH AEROSPACE LAB 9 High Angular Resolution School LS wavefront reconstructions True phase LS j = 3 LS j = 21 max max 0 1 0 2 r e b m e v o LS j = 55 LS j = 105 LS j = 210 n max max max – r e i Reconstruction quality depends on j n max g u M optimal j depends on SNR . max slopes . L THE FRENCH AEROSPACE LAB 10

Description:
ONERA / Dep t. Optique Théorique & Appliquée, HAR team http://www.onera.fr/dota. [email protected]. THE FRENCH AEROSPACE LAB. L.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.