ebook img

Higgs Phenomenology of Minimal Universal Extra Dimensions PDF

0.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Higgs Phenomenology of Minimal Universal Extra Dimensions

Higgs Phenomenology of Minimal Universal Extra Dimensions Genevie`veBe´langer1,a,AlexanderBelyaev2,b,MatthewBrown3,c,MitsuruKakizaki4,d,andAlexanderPukhov5,e 1 LAPTH,Universite´ deSavoie,CNRS,B.P.110,F-74941Annecy-le-VieuxCedex,France 2 NExTInstitute,SchoolofPhysicsandAstronomy,UniversityofSouthampton,UK 3 SchoolofPhysicsandAstronomy,UniversityofSouthampton,UK 4 DepartmentofPhysics,UniversityofToyama,3190Gofuku,Toyama930-8555,Japan 5 SkobeltsynInstituteofNuclearPhysics,MoscowStateUniversity,Moscow119992,Russia 2 1 Abstract. TheminimalmodelofUniversalExtraDimensions(MUED)isbrieflyreviewed.Weexplainhow 0 thecross-sectionsforHiggsproductionviagluonfusionanddecayintophotonsaremodified,relativethethe 2 StandardModel(SM)values,byKKparticlesrunninginloops,leadingtoanenhancementofthegg→h→γγ n and gg → h → W+W− cross-sections. ATLAS and CMS searches for the SM Higgs in these channels are a reinterpretedinthecontextofMUEDandusedtoplacenewlimitsontheMUEDparameterspace.Onlyasmall J regionofbetween1and3GeVaroundmh = 125GeVfor500GeV < R−1 < 1600GeVremainsopenatthe 6 95%confidencelevel. 2 ] h 1 Introduction nances(thelightestnewparticlespredictedbyMUED)can p onlybepairproducedandn = 2resonancesaretypically - The idea of extra dimensions of space is conceptually in- tooheavytobeproducedon-shellatLHCenergies.How- p triguingandprovidesarichframeworkforbuildingmod- ever,KKparityensuresthatthelightestn=1KKparticle e h elsthatgobeyondtheStandardModel(SM).Oneclassof (the“LKP”inanalogytotheLSPinSUSY)isstable;for [ extra-dimensionaltheories,proposedbyAppelquist,Cheng much of the parameter space the LKP is neutral and so it andDobrescu[1]in2001,involvesuniversalextradimen- providesanexcellentDarkMatterWIMPcandidate.This 1 sions(UED).Insuchmodelsallparticlescanpropagatein isthemainmotivationforMUED. v alldimensions(i.e.inthe“bulk”),andtheextradimensions Likeallgaugetheoriesingreaterthanfourdimensions, 2 8 arehiddenbycompactifyingthemonadistancescaletoo MUEDisperturbativelynon-renormalisable;thetheorymust 5 smalltobeprobedbyourcurrentexperiments. be cut off at a momentum scale Λ above which the new 5 In this note we focus on the simplest possible UED physics of the UV completion is expected to become no- . model, Minimal UED (MUED), which has one extra di- ticeable. Discounting the mild cutoff dependence at LHC 1 0 mension compactified on a circle. The circle has transla- energyscales,MUEDhastwoparameterswithvaluesnot 2 tional symmetry and so there is conserved momentum in completelyconstrainedbyexperiment:theHiggsmassmh 1 the 5th dimension which is discretised because of the pe- andtheinversecompactificationradiusR−1. : riodicboundaryconditions;onethereforetalksaboutcon- The R−1 parameter is already bounded to be less than v served “Kaluza-Klein” (KK) number n. The extra dimen- i around1600GeVbyWMAPobservationsbecauseitsets X sion is then further compactified onto an S1/Z orbifold 2 the scale of the Dark Matter (DM): if DM were heavier r (essentially a line segment with particular boundary con- it would lead to the Universe having a measurable posi- a ditions for the fields ). This “orbifolding” is necessary to tivecurvature.Also,m isboundedfromabovebythere- h obtainchiralmatter,anditbreaksthetranslationalinvari- quirement that DM be neutral. These DM considerations ancesoKKnumberisonlyconservedattreelevel.There are discussed in detail in [2] and shown in Fig. 4 of this isaremnantreflectionsymmetryoftheorbifoldaboutits note. midpoint which leads to a KK “parity” (−1)n being con- TheHiggsmassisrequiredtobegreaterthan114.1GeV servedatallordersinperturbationtheory. bytheLEP2HiggssearchesandR−1 (cid:38) 300GeVinorder WhenMUEDisexpressedasa4Deffectivetheory,the not to conflict with electroweak precision measurements different possible KK numbers of a 5D particle manifest [3]. themselvesasatowerofprogressivelyheavierseparate4D Inthispaperweplacenewconstraintsontheparameter particles, one for each KK number. The zero mode parti- space using data from the latest ATLAS and CMS Higgs clesareidentifiedwithSMparticles. searches.Thisideahasbeenattemptedbefore[4],butwith- KKparityconservationmakesMUEDparticularlyhard outtakingintoaccounttheeffectofMUEDonHiggsde- to observe at the LHC because it means that n = 1 reso- cay to two photons.1 This is explained more fully in the a e-mail:[email protected] followingsections. b e-mail:[email protected] c e-mail:[email protected] 1 Whilstwehavebeenpreparingtheseproceedings,Nishiwaki d e-mail:[email protected] etalhaveproducednewworkthatincludesKKsuppressionof e e-mail:[email protected] theh→γγvertex[9]. EPJWebofConferences 2 Higgs production and decay vertices that can be as large as 50 % of the leading order values,althoughthesecancelintheratiosplottedinFig.2. For low and intermediate m , the most important Higgs h productionprocessattheLHCisgluon-gluonfusion.The lowestorderFeynmandiagramcontributingtothisprocess 1.30 istheoneshowninFig.1(top),withquarksrunninginthe gg h triangle loop. For low m , Higgs decay to two photons is 1.25 → h themostimportantchannelduetoitssmallbackground.In 1.20 Fig.1(bottom),twoleadingordercontributionsareshown. | h Thereareactuallymanyotherone-loopdiagramsinvolving gg 1.15 W± bosonsthatarenotshown;forthefulldetailssee[5]. R But essentially there is tension between the quark/lepton |1.10 (dominated by the top quark) and the W contributions to 1.05 the decay, with the W contribution being dominant in the SM. 1.00 100 150 200 250 300 350 400 450 500 g mh [GeV] 1.20 R 1 =500 GeV h γγ − q h 1.15 R−1 =750 GeV → R 1 =1000 GeV − |1.10 R−1 =1250 GeV hγγ R−1 =1500 GeV g R 1.05 γ γ | 1.00 h W± h q,(cid:96)± 0.95 100 150 200 250 300 350 400 450 500 m [GeV] h γ γ 1.40 1.35 gg h γγ → → Fig.1.RepresentativediagramsinvolvedinHiggsproductionby |1.30 γ gluonfusion(top)andsubsequentdecaytophotons(bottom). γ h 1.25 R ×1.20 In MUED, KK particles can also flow in the loops. gh 1.15 g These enhance each of the diagrams shown. The rate of R 1.10 | HiggsproductionisthereforeincreasedrelativetotheSM. 1.05 TheopposingfermionandWcontributionstothediphoton decayareeachenhanced,butthefermionenhancementis 1.00 100 150 200 250 300 350 400 450 500 greater than the W and so the partial decay width to pho- m [GeV] tonsisdecreasedformostoftherelevant(m ,R−1)param- h h eterspace.Thematrixelementsforproductionanddecay bothtaketheform Fig. 2. Ratios of the scalar parts of matrix elements for Higgs productionanddecay,whereR=M˜ /M˜ .Foreachgraph, MUED SM M=M˜ ×m2hgµν−pνqµ(cid:15)µ(cid:15)ν, oofn5th0e0,R7H50S,,1fr0o0m0,t1o2p5t0oabnodtt1o5m0,0thGeecVu.rvesrepresentR−1values 2 wherethe(cid:15)four-vectorsaregluonorphotonpolarisations. Wehaveapproximatedexternalparticlesasbeingonshell. Overall,theenhancementoftheHiggsproductionam- ThescalarpartsM˜ ofthematrixelementsforg,g→hand plitude is greater than the suppression of the Higgs de- h→γ,γareplottedinFig.2(topandmiddle)asmultiples cay to two photons and so the MUED cross-section for oftheSMvaluesforvariousvaluesofm andR−1. gg → h → γγisalwaysenhancedrelativetotheStandard h WeusedourownimplementationoftheMUEDmodel Model’s. This is shown the bottom graph in Fig. 2. This intheLanHEPandCalcHEPsoftwarepackagesinorderto meansthatourmodelismoresensitivetoexperimentally- calculate these matrix elements and, later, cross-sections. determined Higgs mass limits that the SM and this sensi- Unlikeotherimplementations,oursincludestheeffectsof tivitycanbeusedtoconstraintheparameterspacefurther. radiativecorrectionstoKKparticlemassesatone-loopbe- Inadditiontogg → h → γγ,wealsolookedatgg → causethesecorrectionsplayavitalroleduetothehighly- h → W+W−, which is particularly important in the inter- degeneratetree-levelMUEDmassspectrum[6].Ourmodel mediate Higgs mass range. The gluon fusion part of the alsoincludestwo-loopSMcorrectionstothegghandhγγ process is enhanced as before, but decay to two Ws can HadronColliderPhysicsSymposium2011 proceed via a tree-level diagram so KK particles have no ) leadingordereffectonthedecaypart. eV 2000 G ( 1800 WMAP excluded 1 -R 3 Limits on parameter space 1600 n 1400 sio Charged DM WelookedatthelatestATLASandCMSSMHiggssearches clu and reinterpreted the analyses for MUED. The results of 1200 ex ed the searches are expressed in terms of µ ≡ σ95%/σSM, 1000 arch allow AEWllo wpreedc ibsyion fits wduhcetrieonσ9a5n%didsethcaeycrporsosc-seescstitohnatfohrasapcuarrtriecnutllayrbHeiegngsruplreod- 800 ggs se EHxigcglusd LeHdC b ys ecaormchbeinsed outatthe95%confidencelevel,andσSMistheSMcross- 600 2 Hi P sectionforthatsameprocess. E OnecanplacelimitsonMUEDbycalculatingµ = 400 L σ /σ for different values of (m ,R−1) andMsUeEeDing 100 120 140 160 180 200 220 240 260 280 300 MUED SM h whether it is larger than the existing limit. We used the MH (GeV) latest limits shown in Fig. 3 of [7] for ATLAS and Fig. 6 Fig.4.ConstraintsonMUEDparameterspace.Purpleandpink (top)of[8]forCMS.Wecombinedthelimitsfromthetwo showregionsruledoutbyDMconsiderations.Golddenotesthe experiments statistically for each of channels of interest regionexcludedbytheHiggssearchanalysispresentedhereand (diphotonandW+W−)using also the existing LEP2 limit. Points between the blue hyper-  −1 boloidsagreewithLEPEWprecisionfitstoa95%CL. µcomb =µ21 + µ21  2 . ATLAS CMS 4 Conclusions This does not take into account systematic errors but it does give a good estimate of the combination in lieu of We have used the latest ATLAS and CMS Higgs search theofficialcombinationfromATLASandCMS. datatoconstraintheparameterspaceofMUED.Wehave improvedonanearlieranalysisbyincludingtheeffectsof theKKmodesontheHiggsdecaytotwophotonsandby 1600 alsoincludingtheradiativecorrectionstotheKKmasses. Fulldetailswillbegivenin[5]. 1400 We eagerly await the official limit combination from ATLASandCMS,althoughdetailsofthecombinationwill 1200 el become moot (for our purposes!) if the 125 GeV excess n V] an goesawaywhenextradataiscollectedin2012.Ifthishap- Ge 1000 ch Ruled out by pens,wewillbeabletoruleoutMUEDcompletelyatthe 1[ γγ W+W− channel 3σlimitbytheendoftheyear.Iftheexcessremainsand − R 800 by wediscovertheHiggsthere,thisshouldallowustomake t apredictionastothevalueofR−1. u o 600 d e ul R References 400 100 150 200 250 300 1. T.Appelquist,H.-C.Cheng,andB.A.Dobrescu,Phys.Rev. m [GeV] D64no.3,(2001)035002 h 2. G.Belanger,M.Kakizaki,andA.Pukhov, arXiv:1012.2577 [hep-ph] Fig.3.RegionsofMUEDparameterspaceruledoutatthe95% 3. I.GogoladzeandC.Macesanu,Phys.Rev.D74(2006) confidence level by combination of ATLAS and CMS Higgs 093012,arXiv:hep-ph/0605207 searchesusingthediphoton(red)andW+W−(blue)channels. 4. K.Nishiwaki,K.-y.Oda,N.Okuda,andR.Watanabe, arXiv:1108.1764v1 [hep-ph] 5. G.Belanger,A.Belyaev,M.Brown,M.Kakizaki,and TheparameterspaceruledoutbytheHiggssearchdata A.Pukhov,“Inpreparation” is shown in Fig. 3. All of the parameter space for m > 6. H.-C.Cheng,K.T.Matchev,andM.Schmaltz,Phys.Rev. h 111 GeV is ruled out except for a small region around D66(2002)036005,arXiv:hep-ph/0204342 125 GeV – this is due to the excess of events observed 7. TheATLASCollaboration,Tech.Rep. byATLASandCMSrecentlyinthisregion. ATLAS-CONF-2011-163,(December2011) Forcompleteness,inFig.4weshowthelimitsonthe 8. TheCMSCollaboration,CMS-PAS-HIG-11-032,(December 2011) MUEDparameterspacefromtheHiggsanalysispresented 9. K.Nishiwaki,K.-y.Oda,N.Okuda,andR.Watanabe, heretogetherwithexistinglimitsfromotherconstraints.In Phys.Lett. B707(2012)506–511 addition to those constraints described in Section 1, elec- troweakprecisionfitsfromLEPpreferaHiggswithamass inthewindowdelineatedonthegraphbythetwobluehy- perboloids. Acknowledgements Whatisleftisaverynarrowregionofparameterspace ABandMBthankRoyalSocietyforpartialfinancialsupport.AB withm around125GeVand700GeV<R−1 <1600GeV. alsodoessowiththeNExTInstituteandSEPnet. h

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.