ebook img

Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal ... PDF

226 Pages·2016·7.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal ...

WWrriigghhtt SSttaattee UUnniivveerrssiittyy CCOORREE SScchhoollaarr Browse all Theses and Dissertations Theses and Dissertations 2015 HHiieerraarrcchhiiccaall PPoorroouuss SSttrruuccttuurreess wwiitthh AAlliiggnneedd CCaarrbboonn NNaannoottuubbeess aass EEffifficciieenntt AAddssoorrbbeennttss aanndd MMeettaall--CCaattaallyysstt SSuuppppoorrttss Hema Vijwani Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Engineering Commons RReeppoossiittoorryy CCiittaattiioonn Vijwani, Hema, "Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst Supports" (2015). Browse all Theses and Dissertations. 1309. https://corescholar.libraries.wright.edu/etd_all/1309 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst Supports A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Hema Vijwani M.S., Wright State University, 2011 2015 Wright State University WRIGHT STATE UNIVERSITY THE GRADUATE SCHOOL May 21, 2015 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Hema Vijwani ENTITLED Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst Supports BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. _________________________________ Sharmila M. Mukhopadhyay, Ph.D. Dissertation Director ___________________________________ Ramana V. Grandhi, Ph.D. Director, Ph.D. in Engineering Program _________________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Committee on Final Examination ________________________________ Sharmila M. Mukhopadhyay, Ph.D. ________________________________ Mallikarjuna N. Nadagouda, Ph.D. ________________________________ Amir A. Farajian, Ph.D. ________________________________ Hong Huang, Ph.D. ________________________________ Mark N. Goltz, Ph.D. ABSTRACT Vijwani, Hema. Ph.D., Department of Mechanical and Materials Science Engineering, Engineering Ph.D. Program, Wright State University, 2015. Title: Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst Supports. The overall goal of this study is two-fold: synthesis of multiscale nanostructures by growing aligned carbon nanotubes on porous foam substrates and investigation of their applicability as adsorbents and catalyst supports for environmental remediation applications. High purity, vertically-aligned arrays of carbon nanotubes (CNT) are grown on open-cell interconnected porous carbon foams by pre-activating them with an oxide buffer layer followed by chemical vapor deposition (CVD). This type of hierarchical morphology provides the capability of increasing surface area by several orders of magnitude, while tuning its morphology for targeted applications. Analytical models are also proposed in this study for specific surface area calculations, those agree well with the experimental measurements. These hierarchical carbon materials are seen to be powerful adsorbents of aqueous pollutants such as methylene blue dye. Their monolayer adsorption capacities correlate very well with the total CNT surface area determined from analytical models and with BET measurements, indicating full utilization of the nanotube surfaces. The hierarchical structures can also serve as base supports for attachment of metal nanoparticle catalysts. The catalysts investigated in this study are metallic palladium (Pd), oxidized palladium (PdO), and silver-palladium (Ag-Pd) nanoparticles combination. These are suitable for a variety of industrial applications such as hydrocarbon conversion, hydrogen storage, fuel cell electrodes and pollutant degradation. The current architecture iii allows synthesis of highly active catalyst structures utilizing very small quantities of precious metal that make the catalyst component significantly lighter and more compact than conventional systems. Detailed characterization of structure and surface chemical states of these nano-catalysts have been performed and their catalytic activities are tested by measuring the degradation kinetics of organic contaminants via bench-scale experiments. Catalytic degradation of atrazine, an emerging problematic contaminant, was quantified using high-performance liquid chromatography. Among Pd, PdO, and Ag- Pd nanoparticles, PdO in the presence of hydrogen was seen to provide the most rapid reaction rate. These nanocatalysts also enable rapid degradation of chlorinated hydrocarbons such as trichloroethylene and trichloroethane quantified using head-space gas chromatography, with PdO providing the fastest kinetic route. Durability tests indicated that the nano-particles and nanotubes are robust, and remain attached to the base support after long periods of rapid rotation in water. These results imply that such materials can provide compact and powerful surface active materials in future applications such as adsorbents, catalysts, porous electrodes, and energy storage devices. iv TABLE OF CONTENTS 1. Chapter 1: Introduction and Background .................................................................... 1 1.1 Importance of Surface Area ................................................................................. 1 1.2 Porous Materials ................................................................................................... 2 1.3 Hierarchical (Multi-Scale) Materials ................................................................... 3 1.3.1 Nature Inspired Hierarchical Materials ......................................................... 3 1.3.2 Emerging Hierarchical Materials .................................................................. 3 1.4 Current Trends in Water Treatment Applications ................................................ 4 1.4.1 Water Contamination and Purification Issues............................................... 4 1.4.2 Nanomaterials used in Water Purification .................................................... 5 1.5 Research Objectives ............................................................................................. 7 1.6 Dissertation Outline.............................................................................................. 7 2 Chapter 2: Materials and Methods ............................................................................ 10 2.1 Chemicals ........................................................................................................... 10 2.2 Porous Materials used in this Study ................................................................... 10 2.2.1 Micro-Cellular Carbon Foam (Ce-Foam) ................................................... 10 2.2.2 Reticulated Vitreous Carbon Foam (RVC-Foam) ...................................... 11 2.3 Experimental Methods ....................................................................................... 13 2.3.1 Fabrication of Carbon Nanotubes on Porous Structures ............................. 13 2.3.2 Synthesis of Supported Palladium Nano-Particles ..................................... 17 2.4 Characterization Techniques .............................................................................. 18 2.4.1 Scanning Electron Microscopy (SEM) ....................................................... 18 2.4.2 Energy Dispersive X-Ray Spectroscopy (EDS) ......................................... 19 2.4.3 X-Ray Photoelectron Spectroscopy (XPS) ................................................. 19 v 2.4.4 X-Ray Diffraction (XRD) ........................................................................... 20 2.4.5 UV-Vis Spectrophotometry (UV-Vis) ........................................................ 20 2.4.6 Brunauer-Emmett-Teller Surface Area Analysis (BET) ............................. 20 2.4.7 Gas Chromatography – Mass Spectrometry (GC-MS) ............................... 20 2.4.8 Liquid Chromatography – Mass Spectrometry (LC-MS) ........................... 21 3 Chapter 3: Fabrication of Vertically Aligned Carbon Nanotubes through the Porous Materials ........................................................................................................................... 22 3.1 Introduction ........................................................................................................ 22 3.1.1 Chemical Vapor Deposition ........................................................................ 25 3.2 Experimental ...................................................................................................... 26 3.2.1 Materials ..................................................................................................... 26 3.2.2 Support Details............................................................................................ 26 3.2.3 Synthesis of Vertically Aligned CNT on 3D Porous Structures ................. 26 3.2.4 Controlling CNT Fabrication Process Parameters ...................................... 28 3.3 Results and Discussion ....................................................................................... 30 3.3.1 Nanotubes Arrays on Porous Carbon Structures ........................................ 30 3.3.2 Structural and Chemical Characterization .................................................. 36 3.4 Factors Influencing CNT Growth Quality ......................................................... 37 3.4.1 Run-to-Run Variation – System Factors ..................................................... 37 3.4.2 Study of Key Process Parameters ............................................................... 40 3.5 Conclusion .......................................................................................................... 45 4 Chapter 4: Analysis of Specific Surface Area of CNT-Foam Structures ................. 46 4.1 Introduction ........................................................................................................ 46 4.2 Experimental ...................................................................................................... 47 4.2.1 Support Details............................................................................................ 47 vi 4.2.2 Varying Amount of CNT Coating .............................................................. 49 4.2.3 Estimating the Surface Area of CNT Arrays .............................................. 49 4.2.4 BET Characterization Method .................................................................... 50 4.3 Results and Discussion ....................................................................................... 50 4.3.1 Controlling CNT Carpet Length/Height ..................................................... 50 4.3.2 Estimating the Surface Area of CNT Arrays .............................................. 53 4.3.3 BET Measurements ..................................................................................... 60 4.4 Conclusion .......................................................................................................... 65 5 Chapter 5: Adsorption of Methylene Blue Dye Compound ..................................... 66 5.1 Introduction ........................................................................................................ 66 5.2 Experimental ...................................................................................................... 69 5.2.1 Materials and Chemicals ............................................................................. 69 5.2.2 Supports Used ............................................................................................. 69 5.2.3 Batch Studies – Adsorption, Desorption, and Repeatability Studies .......... 70 5.2.4 Data Treatment – Rate Kinetics and Adsorption Isotherms ....................... 71 5.3 Results and Discussion ....................................................................................... 75 5.3.1 Adsorption of Methylene Blue.................................................................... 75 5.3.2 Kinetics Analysis ........................................................................................ 79 5.3.3 Adsorption Isotherms .................................................................................. 80 5.3.4 Desorption of MB and Regeneration of the Adsorbent .............................. 86 5.3.5 Repeatability Test ....................................................................................... 86 5.4 Conclusion .......................................................................................................... 90 6 Chapter 6: Palladium and Palladium-Oxide Nanoparticles on Hierarchical Carbon Nanostructures .................................................................................................................. 91 6.1 Introduction ........................................................................................................ 91 vii 6.2 Experimental ...................................................................................................... 92 6.2.1 Materials ..................................................................................................... 92 6.2.2 Support Preparation .................................................................................... 93 6.2.3 Synthesis of Supported Palladium Nano-Particles ..................................... 93 6.2.4 Synthesis of Supported Palladium-Oxide Nanoparticles ............................ 93 6.2.5 Materials Characterization .......................................................................... 93 6.3 Results and Discussion ....................................................................................... 94 6.3.1 Crystal Structure Characterization – XRD ................................................. 94 6.3.2 Microstructure Characterization – Pd on Various Porous Structures ......... 96 6.3.3 Microstructure of Pd-O Nanoparticles ........................................................ 97 6.3.4 Chemical State of Pd and Pd-O Nanoparticles ........................................... 97 6.4 Conclusion ........................................................................................................ 112 7 Chapter 7: Bimetallic Nanoparticles: Palladium – Silver Bimetallic Nanoparticles on Hierarchical Carbon Nanostructures ............................................................................... 113 7.1 Introduction ...................................................................................................... 113 7.2 Experimental .................................................................................................... 114 7.2.1 Materials ................................................................................................... 114 7.2.2 Synthesis of Silver-Palladium Bimetallic Nanoparticles .......................... 114 7.3 Results and Discussion ..................................................................................... 118 7.4 Conclusion ........................................................................................................ 125 8 Chapter 8: Catalytic Dechlorination of Trichloroethylene and Trichloroethane using Palladium Based Catalysts .............................................................................................. 126 8.1 Introduction ...................................................................................................... 126 8.2 Experimental .................................................................................................... 129 8.2.1 Chemicals .................................................................................................. 129 8.2.2 Stock Solution and Standards ................................................................... 129 viii 8.2.3 Batch Experiments .................................................................................... 130 8.3 Results and Discussion ..................................................................................... 131 8.3.1 Trichloroethylene (TCE) Experiments ..................................................... 131 8.3.2 Trichloroethane (TCA) Experiments ........................................................ 144 8.3.3 Dechlorination Mechanisms with the Pd/H System ................................ 154 2 8.4 Conclusion ........................................................................................................ 155 9 Chapter 9: Catalytic Degradation of Emerging Contaminants – Atrazine using Palladium Based Catalysts .............................................................................................. 156 9.1 Introduction ...................................................................................................... 156 9.2 Experimental .................................................................................................... 163 9.2.1 Materials and Chemicals ........................................................................... 163 9.2.2 Substrates used .......................................................................................... 163 9.2.3 Batch Degradation Studies ........................................................................ 163 9.2.4 Standard Concentration Analysis .............................................................. 165 9.2.5 Chemical Analysis – HPLC ...................................................................... 165 9.3 Results and Discussion ..................................................................................... 166 9.3.1 Atrazine Degradation ................................................................................ 166 9.3.2 Catalyst Chemical Analysis ...................................................................... 170 9.3.3 Daughter Products Formation ................................................................... 175 9.3.4 Atrazine Degradation Mechanism with Pd/H System ............................. 175 2 9.4 Conclusion ........................................................................................................ 176 10 Summary ................................................................................................................. 178 11 Future Work ............................................................................................................ 180 12 Bibliography ........................................................................................................... 182 Appendix A: Methylene Blue Removal - using supported Pd-NPs ............................... 199 ix

Description:
SUPERVISION BY Hema Vijwani ENTITLED Hierarchical Porous Structures with Engineering Ph.D. Program, Wright State University, 2015.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.