ebook img

Hierarchical fragmentation and differential star formation in the Galactic "Snake": infrared dark cloud G11.11-0.12 PDF

1.5 MB·
by  Ke Wang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hierarchical fragmentation and differential star formation in the Galactic "Snake": infrared dark cloud G11.11-0.12

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed7February2014 (MNLATEXstylefilev2.2) Hierarchical fragmentation and differential star formation in the Galactic “Snake”: infrared dark cloud G11.11–0.12 Ke Wang,1,2,3,4,⋆ Qizhou Zhang,2 Leonardo Testi,1,5,6 Floris van der Tak,3,7 Yuefang Wu,4 Huawei Zhang,4 Thushara Pillai,8 Friedrich Wyrowski,9 4 Sean Carey,10 Sarah E. Ragan,11 and Thomas Henning11 1 0 2 1EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748GarchingbeiMu¨nchen,Germany b 2Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,CambridgeMA02138,USA e 3KapteynAstronomicalInstitute,UniversityofGroningen,Landleven12,9747ADGroningen,TheNetherlands F 4DepartmentofAstronomy,SchoolofPhysics,PekingUniversity,Beijing100871,China 5ExcellenceClusterUniverse,Boltzmannstr.2,85748GarchingbeiMu¨nchen,Germany 6 6INAF–OsservatorioastrofisicodiArcetri,LargoE.Fermi5,50125Firenze,Italy 7SRONNetherlandsInstituteforSpaceResearch,Landleven12,9747ADGroningen,TheNetherlands ] A 8CaliforniaInstituteofTechnology,1200ECaliforniaBlvd,Pasadena,CA91125,USA 9Max-Planck-Institutfu¨rRadioastronomie,AufdemHo¨gel69,D-53121Bonn,Germany G 10SpitzerScienceCenter,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA . 11Max-PlanckInstitutefu¨rAstronomie,Ko¨nigstuhl17,D-69117Heidelberg,Germany h p Accepted2014January16.Received2014January15;inoriginalform2013October31 - o r t ABSTRACT s a We presentSMAλ = 0.88and1.3mmbroad-bandobservations,andVLAobservationsin [ NH3 (J,K) =(1,1)upto(5,5),H2OandCH3OHmaserlinestowardthetwomostmassive molecularclumpsinIRDCG11.11–0.12.Sensitivehigh-resolutionimagesrevealhierarchical 2 fragmentation in dense molecular gas from the ∼1 pc clump scale down to ∼0.01 pc con- v 7 densationscale. Ateachscale,the massofthefragmentsisordersofmagnitudelargerthan 5 theJeansmass.ThisiscommontoallfourIRDCclumpswestudied,suggestingthatturbu- 1 lence plays an important role in the early stages of clustered star formation. Masers, shock 4 heated NH3 gas, and outflows indicate intense ongoing star formation in some cores while . nosuchsignaturesarefoundinothers.Furthermore,chemicaldifferentiationmayreflectthe 1 0 differenceinevolutionarystagesamongthesestarformationseeds.We findNH3 ortho/para 4 ratiosof1.1±0.4,2.0±0.4,and3.0±0.7associatedwiththreeoutflows,andtheratiotends 1 to increase along the outflows downstream. Our combined SMA and VLA observations of : severalIRDCclumpspresentthemostindepthviewsofaroftheearlystagespriortothehot v corephase,revealingsnapshotsofphysicalandchemicalpropertiesatvariousstagesalongan i X apparentevolutionarysequence. r a Key words: ISM: individual (G11.11–0.12)– ISM: jets and outflows – stars: formation – stars:early-type–masers–accretiondisks 1 INTRODUCTION coined “infrared-dark clouds” (IRDCs; Perault et al. 1996; Egan etal.1998; Hennebelleet al.2001; Simonetal.2006a,b; Peretto Becausehigh-massstarsformdeeplyembeddedindensegasand &Fuller2009).ThecolddustinIRDCstransitionstoemissionat in distant clustered environments, observational studies face se- longer wavelengths, from far-infrared to sub-millimeter and mil- verelimitationsofopticaldepthandspatialresolution.Heavydust limeter wavelengths (Molinari et al. 2010; Schuller et al. 2009; extinction (N ∼ 1023cm−2, A > 100 mag) obscures the H2 v Rosolowskyetal.2010;Aguirreetal.2011).Onekeyoutcomeof forming young protostars and also the Galactic background radi- therecentHerschelsurveyshasbeentheidentificationofapopula- ation even at mid-infrared wavelengths (Churchwell et al. 2009; tionofdeeplyembeddedprotostellarcores,whichappearaspoint Carey et al. 2009), when viewed against the Galactic plane. This sources(∼ 0.1pcattypical3kpcdistancetoIRDCs)intheHer- iswhat ledtothecloud complexes containing such regions tobe schelPACSbands(Henningetal.2010;Raganetal.2012a).How- ever, detailed case studies beyond the core scale, the key to un- derstandtheearlyfragmentationthat directlyinitiatessubsequent ⋆ E-mail:[email protected] (cid:13)c 0000RAS 2 KeWanget al. -00.05° e d u t ti a L 9(P1) tic -00.10° c a al 18(P6) G -00.15° 5pc 11.30° 11.25° 11.20° 11.15° 11.10° 11.05° 11.00° Galactic Longitude Figure1.ASpitzercompositeimage(red/green/blue=24/8/4.5 µm)ofthe‘Snake’nebula.TheSpitzerdataaretakenfromtheGLIMPSEandMIPSGAL legacyprojects(Churchwelletal.2009;Careyetal.2009).Thescalebarindicatesthespatialextentof5pcatthesourcedistanceof3.6kpc.Thearrowspoint totwomid-IRsources,orprotostars,asidentifiedbyHenningetal.(2010).TheirIDnumbers(9,18)andassociatedclumps(P1,P6)arelabelledaccordingly. NotethisfigureisplottedintheGalacticcoordinatesystem,whileotherfiguresinthispaperareintheJ2000Equatorialsystem. clustered star formation, are only possible by deep interferomet- isstructuredasfollows.Afteradescriptionofthetargets(§2)and ricimaging.Tomaximizethemasssensitivity,thepreferredwave- observations(§3),wepresent resultsin§4onhierarchicalstruc- length of observations isinthesub-millimeter regime, accessible tures (§4.1), masers (§4.2), outflows (§4.3), chemical differenti- bytheSubmillimeterArray(SMA)andbytherecentlyinaugurated ationof the cores (§4.4), and NH emission (§4.5), followed by 3 AtacamaLargeMillimeter/submillimeterArray(ALMA). discussion in §5 on hierarchical fragmentation (§5.1), shock en- Comparedtothenumerousinterferometricstudiesonmassive hanced NH3 ortho/pararatio(§5.2),apossible proto-binarywith proto-clusters(e.g.,Rathborneetal.2008;Hennemannetal.2009; anoutflow/discsystem(§5.3),andaglobalevolutionarysequence Beuther&Henning2009;Longmoreetal.2011;Palauetal.2013) ofcoresandclumps(§5.4).Finally,wesummarizethemainfind- andNH observationsofIRDCs(Wangetal.2008; Devineetal. ingsin§6. 3 2011;Raganetal.2011,2012b;Wangetal.2012),therehavebeen fewhighangularresolutionstudiesdedicatedtopre-clusterclumps in the literature (Rathborne et al. 2007; Swift 2009; Zhang et al. 2 TARGETS:DENSECLUMPSINIRDCG11.11–0.12 2009;Busquetetal.2010;Zhang&Wang2011;Wangetal.2011; G11.11–0.12,alsoknownasthe“Snake”nebula,isoneofthefirst Pillai et al. 2011; Beuther et al. 2013; Lee et al. 2013). Among IRDCsidentifiedbyEganetal.(1998)fromtheMidcourseSpace these,onlyasmallportionreachedaresolutionbetterthanthe0.1 Experiment imagesowingtoitsremarkablesinuousdarkfeatures pccorescale.Therefore,inthepastyearswehaveusedSMAand in the mid-IR (see Fig. 1 for an overview). Shortly after the dis- VLAtopeerintoseveralIRDCclumpstostudytheirfragmentation coveryof Eganetal.(1998), Careyet al.(1998) observed H CO (Zhangetal.2009;Zhang&Wang2011;Wangetal.2011,2012, 2 lineemission,atracerofdensegas,inthecentralpartoftheSnake, 2013). We use SMA dust continuum emission to resolve hierar- andthusdirectlyconfirmed(inadditiontotheinfraredextinction) chicalstructures,andVLANH inversiontransitionstoprecisely 3 the existence of dense gas in the IRDC. A kinematic distance of measurethegastemperature.Westrictlylimitoursampletodense 3.6kpcwastheninferredbasedontheradialvelocityoftheH CO molecularclumpsthatrepresenttheextremeearlyphases(priorto 2 line, putting theSnake on the near side of theScutum-Centaurus theappearanceofhotmolecularcores).Thismakesourprogramme arm[seeTackenbergetal.(2012)andGoodmanetal.(2013)1 for uniqueinprobingtheearlyfragmentation. a Galactic illustration]. Later, Carey et al. (2000) and Johnstone In one of our studies of G28.34-P1, we found hierarchical et al. (2003) obtained JCMT 450 and 850µm continuum images fragmentation where turbulent pressure dominates over thermal fortheentireSnake,andidentifiedsevenmajoremissionclumpsP1 pressure.Thisisincontrastwithlow-massstarformationregions throughP7.Pillaietal.(2006a,b)mappedtheentirecloudinNH wherethermalJeansfragmentationmatcheswellwithobservations 3 using the Effelsberg 100-m Radio Telescope and found a consis- (e.g., Lada et al. 2008), and isconsistent withstudies that turbu- tentV around29.8kms−1alongtheSnake,thustheelongated lencebecomesmoreimportantinhigh-massstarformationregions LSR (aspectratio28pc/0.77pc=36:1)cloudisindeedaphysicallyco- (Wangetal.2008,2009,andreferencestherein).Whetherthiskind herententity,notachancealignment. of fragmentation isa common mode of the initial fragmentation, andhowthefragmentsgrowphysicallyandchemically,areofgreat importance,yetremainunexplored.Inthispaper,weaddressthese 1 See a paper in preparation at https://www.authorea.com/ questions byextending our studytotwoearlyclumps. Thepaper users/23/articles/249 (cid:13)c 0000RAS,MNRAS000,000–000 HierarchicalfragmentationinIRDC G11.11–0.12 3 AsademonstrationcasefortheHerschelkeyproject“Earliest GHzrangesfrom0.05to0.12duringthefourtracks.Thefullwidth Phases of StarFormation” (EPoS),Henning et al. (2010) studied athalf-maximum(FWHM)primarybeamisabout 52′′ attheob- G11.11–0.12 withdeepHerschel imagesinmultiplewavelengths servedfrequencies.Table1summarizestheobservations. and identified 18 protostellar “cores” along the Snake filament, The visibility data were calibrated using the IDL superset which they call “seeds of star formation”. By fitting the spectral MIR3.Calibratedvisibilitydatawerethenexportedoutforimaging energy distributions (SEDs) of individual cores, Henning et al. andanalysisinMIRIAD4(Saultetal.1995)andCASA5(Petry& (2010) obtained physical parameters including dust temperature, CASADevelopmentTeam2012).Datafromdifferenttrackswere mass,andluminosity.Amongallthesecores,two(#9and#18;see calibrated separately, and then combined in the visibility domain Fig. 1 for their locations) massive and luminous cores stand out. forimaging.Continuumemissionwasgeneratedbyaveragingline Withmassesof240and82M⊙andluminositiesof1.3×103and freechannelsinthevisibilitydomain.Table2liststhesynthesized 1.4×102 L⊙ respectively, the two cores distinguish from other beamand1σRMSnoiseoftheimages. cores of much lower mass and luminosity, and therefore are the most likely sites to form massive stars in the entire cloud. The 3.1.2 345GHzBand twocoresresideinclumpsP1andP6respectively,coincidentwith twomid-IRpoint sourceswhichdominatetheluminositiesofthe In2011, werevisited P1and P6withSMA at the345GHzband clumps.P1andP6lieinthecentreandtheheadoftheSnakere- in two tracks, one in subcompact and another in extended ar- spectively. Theseclumps, withsizes lessthan 1pc, arelikely re- ray configuration. The two tracks used the same correlator setup sultsofglobalfragmentation(see§5.1.2),whilefurtherfragmen- which covers rest frequencies 333.7–337.7GHz in the LSB, and tationtowardssmallerscalesarelessaffectedbytheglobal envi- 345.6–349.6GHzintheUSB,withauniformspectralresolutionof ronmentbutratherdependonlocalpropertiesoftheclumpsthem- 0.812MHz (or 0.7 km s−1) across the entire band. System tem- selves(Kainulainenetal.2013).Bothclumpshaveamassreservoir peratures were in the range of 200–300 K, and the zenith opac- of ∼ 103M⊙ within 1 pc (§5.1). Therefore, P1 and P6 are two ityτ225GHz wasstableat0.06duringtheobservations. Otherpa- massive, relatively low-luminosity molecular clumps that are the rametersarelistedinTable1.Thedatawerereducedandimaged mostlikelysitesofhigh-massstarformationinthe“Snake”IRDC. in the same way as the 230GHz data. Additionally for P1, we Hence,resolvingtheinitialstarformationprocessesinP1andP6 made an image using data from the extended configuration only isofgreatinterest. andachievedahigherresolution(see§4.3.1).Imagepropertiesare AlthoughG11.11–0.12isoneofthemostwellstudiedIRDCs, tabulatedinTable2. previousstudiesaremostlylimitedtoangularresolutionachieved withsingledishtelescopes(Careyetal.1998,2000;Johnstoneetal. 2003; Pillaietal.2006a; Tackenbergetal.2012). Theonlyinter- 3.2 VeryLargeArray ferometricstudiesarestillyettoresolveunderlyingfinestructures The Karl G. Jansky Very Large Array (VLA) of NRAO6 was (Pillaietal.2006b;Go´mezetal.2011).Here,wepresentnewSMA pointedtowardsP1initsDconfigurationintwoobservationruns andVLAobservationsofP1andP6whichresolvegreatdetailsof in 2001 to observe the NH (J,K) = (1,1) transition (project 3 the star formation activities that capture the growth of these star AW571,PI:FriedrichWyrowski).The3.125MHzbandwassplit formationseedsinaction. into 128 channels with a channel spacing of 24.4 kHz (or 0.3 km s−1). In 2004, P1 was revisited with another phase centre to obtain 22 GHz H O maser and NH (2,2) and (3,3) transitions 2 3 3 OBSERVATIONS (projectAP475,PI:ThusharaPillai).TheH Omaserwasobserved 2 inasingleIF,dualpolarizationmode,withthesamebandwidthand 3.1 SubmillimeterArray channelspacingasthe2001observations.TheNH (2,2)and(3,3) 3 3.1.1 230GHzBand wereobservedina2IF,dualpolarizationmode,splittingthe3.125 MHzbandinto64channels,eachwitha0.6 kms−1channelwidth. TheSubmillimeterArray2 (SMA;Hoetal.2004)waspointedto- ObservationsofP6werecarriedoutusingtheexpandedVLA, wards G11.11–0.12 P1 and P6 to obtain continuum and spectral orEVLA,initsCconfigurationinthreeobservationrunsduringthe line emission in the 230 GHz band during four tracks in 2010, EVLAearlysciencephasein2010–2011,andtworunsinthe2013 whenSMAwasinitssubcompact,compact,andextendedconfig- Dconfiguration.Thankstotheflexibilityofthenewcorrelator,we urations. Time-dependent antenna gains were monitored by peri- observedtheNH (1,1),(2,2),(3,3),(4,4),and(5,5)transitionsas odicobservationsofquasarsNRAO530andJ1911-201;frequency- 3 well as 22 GHz H O maser and 25 GHz class I CH OH maser dependent bandpassresponseswerecalibratedbyquasars3C273, 2 3 lines, with various bandwidth and spectral resolutions (see Table 3C279and3C454.3;andabsolutefluxwasscaledbyobservedcor- 1). relatorcountswithmodelledfluxesofSolarsystemmoonsTitan, For all the experiments, gain, bandpass, and flux variations Callisto, and Ganymede. The empirical flux uncertainty is about werecalibratedby strong, point-like quasars. SeeTable1for de- 15%.Forthefourtracks,weusedthesamecorrelatorsetupwhich tails.ThevisibilitydatawerecalibratedusingCASA,andthenim- covers 4 GHz in each of the lower and upper sidebands (LSB, aged and analyzed in MIRIAD and CASA. Data from different USB),withauniformchannelwidthof0.812MHz(equivalentve- locity1.1 kms−1at230GHz)acrosstheentireband.Systemtem- peratures varied from 80 to 150K, and the zenith opacity at 225 3 http://www.cfa.harvard.edu/˜cqi/mircook.html 4 http://www.cfa.harvard.edu/sma/miriad,http: //www.astro.umd.edu/˜teuben/miriad 2 TheSubmillimeterArrayisajointprojectbetweentheSmithsonianAs- 5 http://casa.nrao.edu trophysical Observatory andtheAcademiaSinica Institute ofAstronomy 6 TheNationalRadioAstronomyObservatoryisafacilityoftheNational and Astrophysics and is funded by the Smithsonian Institution and the Science Foundationoperated undercooperative agreement byAssociated AcademiaSinica. Universities,Inc. (cid:13)c 0000RAS,MNRAS000,000–000 4 KeWanget al. Table1.Observations Telescope Date Pointinga Lines Calibratorb Bandwidth Chan.widthc Pol. Int.Time Config. (UT) Gain Flux Bandpass (MHz) (kms−1) (min) (E)VLAKband(primarybeam2′) VLA-D 2001-Oct-27 P1.I NH3(1,1) Q1 Q6 Q5 3.125 0.3 1 10 VLA-D 2001-Nov-11 P1.I NH3(1,1) Q3 Q6 Q5 3.125 0.3 1 22 VLA-D 2004-Aug-24 P1.II H2O Q1 Q6 Q1,Q6 3.125 0.3 2 20 VLA-D 2004-Aug-24 P1.II NH3(2,2),(3,3) Q1 Q6 Q1,Q6 3.125 0.6 2 50 VLA-D 2004-Aug-29 P1.II NH3(2,2),(3,3) Q1 Q6 Q1,Q6 3.125 0.6 2 50 EVLA-C 2010-Dec-24 P6.I H2O,CH3OH Q1 Q6 Q4 4 0.8 4 10,6 EVLA-C 2010-Dec-28 P6.I NH3(1,1),(2,2) Q1 Q6 Q4 4 0.2 2 7,8 EVLA-C 2011-Jan-18 P6.I NH3(2,2),(3,3) Q1 Q6 Q4 4 0.4 2 20 EVLA-D 2013-Mar-17 P6.I NH3(1,1)to(5,5),H2O Q1 Q8 Q7 4/8 0.1/0.2 2 45 EVLA-D 2013-Apr-18 P6.I NH3(1,1)to(5,5),H2O Q1 Q8 Q7 4/8 0.1/0.2 2 45 SMA230GHz(1.3mm)band(primarybeam52′′) SMA-Sub 2010-Mar-19 P1.III,P6.II Many,seeTable5 Q1,Q2 M1 Q4 2×4000 1.1 1 5.8/6.2hrd SMA-Com 2010-Jun-15 P1.III,P6.II Many,seeTable5 Q1,Q2 M1 Q5,Q7 2×4000 1.1 1 SMA-Ext 2010-Aug-27 P1.III,P6.II Many,seeTable5 Q1,Q2 M2,M3 Q7 2×4000 1.1 1 SMA-Ext 2010-Sep-20 P1.III,P6.II Many,seeTable5 Q1,Q2 M2,M3 Q7 2×4000 1.1 1 SMA345GHz(880µm)band(primarybeam34′′) SMA-Sub 2011-Mar-15 P1.IV,P6.III Many,seeTable5 Q1,Q2 M1 Q5 2×4000 0.7 1 2.2/3.5hrd SMA-Ext 2011-Jul-22 P1.IV,P6.III Many,seeTable5 Q1,Q2 M3 Q5 2×4000 0.7 1 Note: aPhase centres in J2000 Equatorial coordinates: P1.I= 18:10:28.3, -19:22:29; P1.II=18:10:30.475, -19:22:29.39; P1.III= 18:10:28.4, -19:22:38; P1.IV= 18:10:28.21,-19:22:33.34;P6.I=18:10:07.42,-19:29:07.7,P6.II=18:10:07.2,-19:28:59;P6.III=18:10:07.38,-19:29:08.00. bCalibratorsareQuasarsandMoons:Q1=NRAO530(J1733-130),Q2=J1911-201,Q3=J1743-038,Q4=3C273,Q5=3C279,Q6=3C286,Q7=3C454.3, Q8=3C48;M1=Titan,M2=Callisto,M3=Ganymede. cNativechannelwidth,subjecttosmoothingforsomelines(§3.2). dTotalon-sourceintegrationtimecombiningdatafromallSMAarrayconfigurationsforP1andP6,respectively. Table2.ImageProperties P1 P6 Imagea Beam RMSb Beam RMSb 1.3mmcontinuum 2′′.2×1′′.6 0.9 2′′.1×1′′.5 0.9 1.3mmspec.linesc 2′′.7×1′′.7 25–30 sameasP1 880µmcontinuum 1′′.6×1′′.2 3.3 1′′.2×1′′.0 2.3 0′′.8×0′′.6 1.7 880µmspec.linesa 2′′.1×1′′.3 110 sameasP1 NH3(1,1) 5′′×3′′ 14 7′′.1×2′′.8 4 NH3(2,2) 5′′×3′′ 3.5 6′′.1×2′′.7 2.5 NH3(3,3) 5′′×3′′ 6.5 6′′.9×2′′.9 2.8 NH3(4,4) Nodata 7′′.7×3′′.0 2.3 NH3(5,5) Nodata 6′′.7×3′′.0 2.5 H2Omaser 5′′×3′′ 13 2′′.4×1′′.0 2.7 7′′.0×3′′.2 4 7′′.2×3′′.2 2 CH3OHmaserclassI Nodata 2′′.0×0′′.9 2.2 Note: aAllimagesaremadewithnaturalweightingtoachievethehighestsensitivity. b1σRMSnoisein mJybeam−1. cForspectrallineimages,beamvariesslightlyfromlinetoline,henceatypical beamislisted. (cid:13)c 0000RAS,MNRAS000,000–000 HierarchicalfragmentationinIRDC G11.11–0.12 5 Figure2.HierarchicalstructuresinG11.11-P1(a–c)andG11.11-P6(d–f),asseenbyJCMTat850 µm,SMAat1.3mm,andSMAat880 µm(contours), superposedonSpitzer8 µmimage(colorscale).TheJCMTcontinuumemissioniscontouredat0.3Jybeam−1.TheSMA1.3mmemissioniscontouredat ±(3,6,9,...)σ,whereσ=0.9mJybeam−1forbothP1andP6.TheSMA880 µmemissioniscontouredat±(3,5,7,...)σ,whereσ=3.3mJybeam−1 forP1andσ=2.3mJybeam−1forP6.Theshadedellipseinthebottomleftcornerofeachpanelrepresentsthebeamsizeofthecontouredimage.Thered starsmarkdominantcondensationsidentifiedfromtheSMA880 µmimages.Thescalebarsrepresentaspatialscaleof0.1pcatthesourcedistanceof3.6 kpc.Negativecontoursaredashedthroughoutthispaper. observationrunswerecalibratedseparately,andthencombinedin of∼1pc,acoreasastructurewithasizeof∼0.1pc,andacon- thevisibilitydomainforimagingwiththeexceptionformaserfor densationasasubstructureof∼0.01pcwithinacore.Aclumpis which we make individual images from different observing runs, capableofformingaclusterofstars,acoremayformoneorasmall toinvestigatepotentialtimevariations.Thefinalimagecubeskeep groupofstars,andacondensationcantypicallyformasinglestar thenativechannelwidthlistedinTable1,exceptfortheNH (1,1), or amultiple-star system. These structuresare dense enough that 3 (2,2),and(3,3)imagesofP6wherethefinalchannelwidthis0.4 gasand dust arewellcoupled (Goldsmith2001), thusweusethe kms−1inordertoincludeboththeCandDconfigurationdata.Ob- NH gastemperatureasadirectmeasureofthedusttemperature 3 servationalparametersaresummarizedinTable1andimageprop- throughoutthispaper. ertiesarelistedinTable2. Dust continuum images at various resolutions reveal hierar- chicalstructuresinP1andP6.Figure2plotsJCMT850µm,SMA 1.3mm,andSMA880µmimagessuperposedonSpitzer8µmim- 4 RESULTS ages.TheJCMTimagesoutlineIRDCclumpsP1andP6,whereP1 exhibitsabrightMIRsource(protostar#9inFig.1)initscentre, 4.1 HierarchicalStructure whileP6showsalessbrightMIRsource(protostar#18inFig.1) Intheliterature,therehavebeendifferentdefinitionsforaclump, initssouthernpart.Astheresolutionincreases,structuresatdiffer- core, and condensation when describing the spatial structure of entscalesarehighlighted:from∼1pcscaleclumpsseeninJCMT molecular clouds. For consistency, we adopt the terminology of 850µm images,tothe∼0.1pcscalecoresresolved bytheSMA clump, core, and condensation suggested by Zhang et al. (2009) 1.3mmimages,andtothe∼0.01pcscalecondensationsresolved andWangetal.(2011).Wereferaclumpasastructurewithasize by the SMA 880µm images. These structures show in general a (cid:13)c 0000RAS,MNRAS000,000–000 6 KeWanget al. Table3.PhysicalParametersoftheCondensations Source RA Dec Fluxa T Massb Sizec ID (J2000) (J2000) (mJy) (K) (M⊙) Maj.(′′) Min.(′′) PA(◦) P1-SMA 1 18:10:28.27 -19:22:30.9 205.0 25 14.1 2.1 1.3 114 2 18:10:28.19 -19:22:33.2 46.7 19 4.7 1.9 0.4 86 3 18:10:28.09 -19:22:35.7 197.0 17 23.7 3.4 1.7 69 4 18:10:28.15 -19:22:27.0 57.6 18 6.3 2.5 1.2 99 5 18:10:28.56 -19:22:31.9 53.5 18 5.9 2.1 1.1 60 6 18:10:28.27 -19:22:39.7 54.5 15 8.0 2.3 1.6 156 P6-SMA 1 18:10:07.80 -19:29:01.2 109.7 11 27.9 1.1 0.9 147 1b 18:10:07.83 -19:28:59.3 83.8 11 21.3 3.4 1.3 48 2 18:10:07.39 -19:28:58.3 78.8 10 24.2 1.5 1.1 135 2b 18:10:07.58 -19:28:57.9 33.0 10 10.1 1.5 0.7 167 2c 18:10:07.22 -19:29:00.6 38.2 10 11.7 2.1 0.6 131 2d 18:10:07.30 -19:29:00.8 54.9 10 16.9 2.5 1.0 91 2e 18:10:07.39 -19:29:01.3 35.2 10 10.8 2.5 0.7 109 3 18:10:07.12 -19:29:04.3 66.4 14 10.9 1.7 1.2 55 4 18:10:07.10 -19:29:06.8 35.3 15 5.2 1.0 1.0 83 5 18:10:07.25 -19:29:09.0 82.1 21 7.2 1.6 0.8 143 5b 18:10:07.32 -19:29:10.8 30.9 21 2.7 1.4 1.2 16 5c 18:10:07.27 -19:29:11.0 21.5 21 1.9 1.7 1.1 23 6 18:10:07.25 -19:29:17.6 157.0 19 15.9 1.4 1.0 105 6b 18:10:07.51 -19:29:13.5 29.0 19 2.9 1.3 0.7 50 6c 18:10:07.46 -19:29:14.3 44.5 19 4.5 2.0 0.9 41 6d 18:10:07.39 -19:29:15.4 28.7 19 2.9 1.3 1.0 35 6e 18:10:07.06 -19:29:18.4 32.7 19 3.3 1.5 0.6 36 Note: aIntegratedfluxobtainedfrom2DGaussianfittingandcorrectedforprimarybeamattenuation. b Masscomputedassumingdustopacityindexβ = 1.5.Themassscales withβ inaformof M ∝3.5β.Forreference,ifβ=2,themasswillbe1.87timeslarger. cDeconvolvedsourcesize. goodspatialcorrelationwiththeHerschel70µmemissionandthe exceptone(P6-SMA4)“major”condensations(redstarsinFig.2) Spitzer8/24µmextinction,wheretwoIR-brightprotostarshaveal- coincidewiththecoresresolvedintheSMA1.3mmimages.Con- readydeveloped(Fig.2;Henningetal.2010;Raganetal.2012a). densation P1-SMA1 is coincident with protostar #9 identified by Weidentifythesmalleststructure,condensations,basedonthe Henningetal.(2010)frommulti-bandHerschelimages,andcon- highestresolutionSMA880µmimagesasshowninFig.2(c,f).All densationP6-SMA6iscoincidentwiththeprotostar#18. featuresabove5σ rmsareidentifiedasinWangetal.(2011) and Dustmassisestimatedwiththeassumptionthatdustemission Zhangetal.(2009).Wefirstidentify“major”emissionpeakswith isopticallythin(whichisvalidat0.88and1.3mm),following fluxes> 9σ (the4thcontour) andassignthemasSMA1,SMA2, S d2 SMA3,...,inorderfromeasttowestandfromnorthtosouth.Three Mdust = B (Tν )κ , (1) majorpeaksareidentifiedinP1andsixidentifiedinP6,denotedby ν dust ν redstarsinFig.2.Thenweidentify“minor”emissionpeakswith where M is the dust mass, S is the continuum flux at fre- dust ν fluxes>5σ(the2ndcontour).Threeminorpeaksareidentifiedin quencyν,disthesourcedistance,B (T )isthePlanckfunction ν dust P1, and we assign them as SMA4, SMA5, SMA6, from north to atdusttemperatureT ,andκ = 10(ν/1.2THz)β cm2g−1is dust ν south.InP6,11minorpeaksareidentified.Theseemissionpeaks the dust opacity (Hildebrand 1983). In the calculation we adopt arerelativelyweakandareassociatedinpositionwiththe6major thetemperaturemeasuredfromNH (§4.5.2) andthedustopac- 3 peaks. We thus assign these minor peaks to the associated major ity index β = 1.5. If β = 2 the mass would be a factor of 2 peaks.Forinstance,thetwominorpeaksassociatedwithP6-SMA5 larger. Dust mass is then translated to gas mass accounting for a areassignedasP6-SMA5bandP6-SMA5c.Alltheidentifiedmajor gas:dustratioof100.Thecomputedtotalmassforeachcondensa- andminorpeaksareofthesizeofcondensations.Associatedcon- tionisreportedinTable3. Notethatinterferometricimagesfilter densationsmayhavebeenfragmentedfromacommonparentcore. out relatively smooth emission due to imperfect (u,v) sampling, Insummary,weidentify6condensationsinP1whichmaybelong leading to“missing flux”. Thus thetotal mass of thedense cores to6cores(P1-SMA1,2,3,4,5,6),respectively,and17condensations orcondensationsrevealedbySMA(Fig.2)islessthantheclump inP6whichmaybelong to6cores (P6-SMA1,2,3,4,5,6),respec- massdeterminedfromsingledishJCMTobservations.Ouranalysis tively.Foreachcondensation,wefita2DGaussianfunctiontothe (§5.1)doesnotrelyonthesmoothemissionbutonclumpystruc- observed SMA 880µm image and list the results in Table 3. All tures,thereforeisnot affectedbythemissingflux.Forreference, (cid:13)c 0000RAS,MNRAS000,000–000 HierarchicalfragmentationinIRDC G11.11–0.12 7 theSMA880µmimagesrecover7%and14%ofthetotalJCMT of outflow tracers (Carey et al. 2000; Pillai et al. 2006b; Leurini 850µmfluxinP1andP6,respectively.Thisisconsistentwiththe etal.2007;Cyganowskietal.2008;Go´mezetal.2011).Ourhigh- factthatP6containsmorecompactstructuresthanP1(Fig.2). sensitivity,high-resolution,broad-bandSMAobservationsdirectly Thesensitivityinthe880µmimages(Figure2,Table2)cor- revealthisoutflowinmultipletracersforthefirsttime,providing respondsto0.2–0.5M⊙forthe15–25KgastemperatureintheP1 criticalsupportforapreviouslyspeculatedoutflow-discsystemin clump(§4.5.2),and0.2–0.7M⊙ inP6fora10–21Ktemperature P1(§5.3). range(§4.5.2).Therefore,theidentifiedcondensationiscomplete The SiO outflow extends 0.3 pc away from the protostar in toa5σmasslimitof1–3.5M⊙,dependingonthetemperature. theeast-westdirection(Fig.3).Whilethebluelobefurtherpropa- gatestowardstheeasternedgeofthemainfilament,itinducedthe NH emissionpeaksA,BandD,andprobablyexcitedthewater 3 4.2 H2OandCH3OHMasers maserW1(seefirstparagraphin§4.5.1).Theprojectedseparation oftheNH peaksarel = 0.3pc,andl = 1pc(Fig.6),i.e., No H O or CH OH maser line emission was detected above 3σ 3 AB AD 2 3 themolecularoutflowextendsatleast1pcawayfromthedriving inP6.InP1,wedetecttwo22GHzH Omaserswhichwename 2 sourceintheeasternlobe.Furthertotheeast fromD,thereisno asW1andW2,indecreasingorderofbrightness(whiteandblack densegastobeheatedandshocked.Inthewesternlobe,however, crossesinFig.6).W1islocatedat(RA,Dec) =(18:10:32.902, J2000 thereisnodensegasbeyondtheredshiftedSiOlobewhichis0.3 -19:22:23.339), close to the eastern border of the dark filament. It has a flux of 3 Jy at V = 30.5 km s−1. W2 is located at pcfromtheprotostar.Becausethepoweringsourceislocatednear LSR theedgeofthedensefilament,thereismoredensegasintheeastern (RA, Dec) = (18:10:28.298, -19:22:30.759), coincident with J2000 lobetobeheated(andthereforebeingdetected)thaninthewestern P1-SMA1. It has a flux of 0.25 Jy and is seen at V = 37.5 LSR kms−1.BothW1andW2show atypicalmaser spectrumwitha lobe.Thespeciallocationandorientationofthisoutflowprovides auniquecasetostudyenvironmentdependenceofoutflowchem- singlevelocitycomponentandhasanarrowlinewidth(FWHM< 1 kms−1).Thespectralprofileisnotresolvedatthe0.3 kms−1 istry,whichdeservesfurtherstudy. WecomputeoutflowparametersassumingLTEandoptically channelwidth. thinSiOemissioninthelinewings,followingtheformulasgiven In addition to the two water masers, Pillaiet al. (2006b) re- in Wang et al. (2011). We adopt an abundance of [SiO/H ] = porteda6.7GHzclassIICH OHmaserusingtheAustraliaTele- 2 3 5×10−10 based on recent chemistrysurveys towardsIRDCsby scopeCompactArray(ATCA),whichweassignasM1.Locatedat (RA,Dec) =(18:10:28.248,-19:22:30.45),M1is0′′.7(2500 Sanhueza et al. (2012). The inclination angle of this outflow can J2000 beinferredbasedontheCH OHmasersdiscoveredbyPillaietal. AU)westofW2(Figs.3,10,11).Unlikeasinglevelocitycompo- 3 (2006b).Themasersoutline(partof)anellipsewithaneccentric- nent seen in the water masers, M1 has multiple velocity compo- nents ranging from 22 to 34 km s−1. Pillai et al. (2006b) noted ity of ∼ 0.2. Suppose the masers trace a circular disc, we infer an inclination angle of ∼ 77◦ between the axis of the disc (also thatM1consistsofsixmaserspotswhicharespatiallydistributed alonga0′′.3north-southarc,andexhibitsanorderedvelocityfield theoutflowjet)andthelineofsight.Therefore,thediscisalmost edge-ontousandtheoutflowjetisalmostparalleltotheplaneof red-shiftingfromnorthtosouth.Basedonthepositionandvelocity sky.Table4showsthederivedoutflowparameterswithandwith- distribution,Pillaietal.(2006b)suggestedthattheCH OHmaser 3 outcorrectionforinclination.TheP1-SMA1outflowisamassive spotstracearotatingKepleriandiscseenedge-on.Ourdetectionof outflowjudgingfromitsenergetics,incomparisonwithotherout- anEast-Westmolecular outflow centred onW2stronglysupports flowsemanatingfromhighmassprotostellarobjects(Beutheretal. thisspeculation(see§4.3.1). 2002;Zhangetal.2005). 4.3 ProtostellarOutflows 4.3.2 OutflowsDrivenbyP6-SMA2,5,6 4.3.1 OutflowdrivenbyP1-SMA1 WealsodetectmolecularoutflowsinP6.Theseoutflowsareseen Our SMA observations clearly reveal a bipolar outflow oriented inmanymoleculartracersincludingCO,SO,SiO,H CO,butare 2 east-west in P1. The outflow is seen in many molecular tracers best seen in CH OH. Fig.4 shows channel maps of CH OH (4– 3 3 including CO,SO, SiO,H CO, and CH OH, but only inSiO do 3), where one can see that SMA2,5,6 drive relatively collimated 2 3 both the blue and red lobes appear; other tracers only reveal the outflows. Outflows associated with SMA2 and SMA6 show both blue(eastern)lobe.Fig.3plotstheblueshiftedSiOemission(18– blueandredshiftedlobesextendingabout0.1–0.3pc,whereasthe 28km s−1, blue contours) to the east, the SiO emission close to SMA5outflowonlyshowsabluelobeapproximately0.3pclong. the systemic velocity (29–31km s−1, gray background), and red All these outflowsare oriented in aNE-SWdirection, coincident shiftedSiOemission(32–39kms−1,redcontours)tothewest,in withemissionfromtheNH (3,3)andhighertransitions(Fig.7). 3 comparisonwiththeSMA880µmcontinuum(blackcontours).A The outflow parameters (Table 4) are also calculated in a similar bipolarSiOoutflowisclearlydefinedbytheblue/redlobeswithre- wayasfor P1.Theinclinationanglesfor theP6outflowsareun- specttothedustcontinuum,whichisprobablyproducedinshocks known.Welistoutflowparameterswithoutcorrectionandwithcor- by an underlying jet. We schematically draw the axis of the out- rectionfor aninclination of 57.3◦,the most probable value for a flow on the plot, and measure aposition angle of 94±12◦. The randomdistributionofoutfloworientations(Bontempsetal.1996; geometriccentreoftheoutflowisclosetoP1-SMA1,andwespec- Semeletal.2009).ComparedwithoutflowP1-SMA1,theP6out- ulate that the outflow driving source is a protostar embedded in flowsareslightlylessenergeticbutarestillcomparablewithother the dust condensation P1-SMA1, likely the #9 protostar identi- high-massoutflows(Beutheretal.2002;Zhangetal.2005). fied by Henning et al. (2010). (See more discussion on the driv- ThecoresinG11.11-P1andG11.11-P6exhibitsimilarcharac- ingsourcelaterin§5.3).Previousstudieshaveshownindirectev- teristics(mass,size,andglobalmassreservoir)tothoseinG28.34- idence of an outflow associated withP1, for example broadening P1.Thecoresdrivingpowerfuloutflowsareundergoingaccretion oflinewings,possibleextended4.5µmemission,andenrichment to build up stellar mass. With a typical star formation efficiency (cid:13)c 0000RAS,MNRAS000,000–000 8 KeWanget al. Red Blue Figure 3. The SiO(5–4) outflow in G11.11-P1. Blue/red contours show the blue-/red-shifted SiO emission integrated over [18, 28]km s−1 and [32, 39]kms−1,respectively,whereastheblackcontoursrepresentSiOemissionnearthesystemicvelocityintegratedover[29,31]kms−1.TheSiOcontours are±(3,4,5,...)σ,whereσ = 85mJykms−1.Forcomparison,theSMA880µmcontinuumimageisshownasgreyscaleinthebackground.Labelled symbolsdenoteH2OmaserW2(+),classIICH3OHmaserM1(×),andthethree2MASSpointsources(◦).Inthebottomrightcornertheopen/filledellipses representsynthesizedbeamsoftheSiO/880µmimages.Thethickgreylinemarksschematicallytheunderlyingbipolarjetthatpropelstheobservedmolecular outflow.ThegreylinecentresonW2andextends0.3pceastboundandwestbound,respectively. Table4.OutflowParameters Parametera P1-SMA1 P6-SMA2 P6-SMA5 P6-SMA6 Blue Red Blue Red Blue Blue Red Tracer SiO SiO CH3OH CH3OH CH3OH CH3OH CH3OH Fractionalabundance[X/H2]b 5×10−10 5×10−10 5×10−8 5×10−8 5×10−8 5×10−8 5×10−8 ExcitationtemperatureTex(K) 25 25 21 21 21 21 21 Inclinationangleθ(degree)c 77 77 57.3 57.3 57.3 57.3 57.3 Velocityrange(kms−1) [18,28] [32,39] [22,29] [31,35] [22,29] [22,29] [31,35] TotalmassM(M⊙) 2.0 1.1 1.1 0.4 2.1 1.2 0.1 MomentumP (M⊙ kms−1) 10.8/48.2 4.6/20.7 1.8/3.3 0.8/1.5 6.1/11.3 4.1/7.5 0.3/0.5 EnergyE(M⊙km2s−2) 40.0/791.0 12.4/245.6 1.8/6.2 1.0/3.4 12.3/42.3 8.8/30.3 0.4/1.4 LobelengthLflow(pc) 0.30/0.31 0.30/0.31 0.17/0.20 0.07/0.08 0.24/0.29 0.28/0.34 0.08/0.10 Dynamicalagetdyn(103yr) 24.9/5.7 31.9/7.4 20.8/13.3 12.5/8.0 30.2/19.4 35.7/22.9 15.8/10.1 Outflowrate M˙out(10−5 M⊙yr−1) 8.0/34.8 3.3/14.3 5.4/8.4 3.2/5.1 6.9/10.8 3.5/5.4 0.7/1.1 Note: aParameterscorrectedforinclinationfollowafterthe“/”. bAdoptedabundancesarebasedonSanhuezaetal.(2012)andLeurinietal.(2007)forSiOandCH3OH,respectively. cAnglebetweenoutflowaxisandthelineofsight,see§4.3.1and§4.3.2. of 30% in dense gas and a standard stellar initial mass function, P6.Table5listsalldetectedlinesandFig.5plotsspectraofthenine the∼103 M⊙clumpswilleventuallyformmassivestarsinsome “major”cores.BesidesCOisotopologues,P1andP6showseveral of the cores once the protostellar accretion is completed. At that complexmolecularlineslikeOCS,HNCO,CH CN,andCH OH, 3 3 time,theseclumpswillbecomemassivestarclusters.Onekeydif- and molecules enriched by outflow shocks like SOand SiO.The ferenceisthatwedetectcopiousmolecularemissioninthecoresin number of detected lines vary from core to core and may reflect G11.11-P1andG11.11-P6,whichwecanusetoassesstheirevolu- chemicalevolution,despitethatthecoresarefragmentedfromthe tionarystate(§4.4). sameparentclumps.TypicalhotcorelinesCH CNand/orCH OH 3 3 areseentowardscoresP1-SMA1,2,P6-SMA6,2,5,suggestingtheir protostellar nature. Thisisconsistent withthedetection of proto- 4.4 ChemicalDifferentiation stellaroutflowsemanatingfrommostofthesecores.DeepHerschel 70µmimagerevealedpointsourcescoincidentwithP1-SMA1and Our SMA broad-band observations covered a total of 16GHz in P6-SMA6andrelativelydiffuse70µmemissioningoodagreement twoobservingbands,anddetectedmanymolecularlinesinP1and (cid:13)c 0000RAS,MNRAS000,000–000 HierarchicalfragmentationinIRDC G11.11–0.12 9 Figure4.ChannelmapsofCH3OH(4−3)inG11.11-P6.Allpanelssharethesamecoordinatesaslabelledonthelower-leftpanel.Centralvelocity(kms−1) ofeachchannelislabelledontheupperleftcorner.Thecontoursare±(3,4,5,6,...)σ,whereσ = 25mJykms−1.Thestarsdenotesixcoresidentified inG11.11-P6(SMA1–6,labelledinthelastpanel).SMA2,SMA5,andSMA6driveeitherbipolaroruni-polaroutflows,asoutlinedbyschematiclines.The filledellipserepresentssynthesizedbeam. withour SMA 1.3mm images of P1 and P6, suggesting that P1- 4.5 NH EmissionandTemperature 3 SMA1andP6-SMA6havedevelopedanincreasedluminositythan theirfellowcores(Raganetal.2012a). 4.5.1 ShockHeatedNH 3 The diagnosis in outflow, hot core lines, and 70µm emis- sion show that P1-SMA1,2, P6-SMA6,2,5 are protostellar cores, We detect ammonia emission in all the observed transitions both whiletheothercoresP1-SMA3,P6-SMA1,4,3arelikelyofprestel- inP1andP6.Figure6(leftpanel)showstheNH integratedim- 3 larnature.Moreover,thelinerichnessandstrengthrevealdetailed ages of P1 superposed on Spitzer 24µm and JCMT 850µm im- chemicaldifferentiation,likelyreflectinganevolutionarysequence ages.ThesensitiveSpitzer24µmimagerevealsdetailsinthecen- fromcoretocore,asweplotinorderinFig.5.Ideally,onewould tralpartoftheSnakeNebula:afilamentarysystemthatconsistsofa compare cores with the same/similar mass, as a lower mass core mainNE-SWorienteddarkfilamentandtwominorfilamentsjoin- can be more evolved but does not have detectable line emission. ing from the South. Thisconfiguration resembles the filamentary However, this does not seem to affect our results, since the most system discussed by Myers (2009) and may arise from compres- massivecoreP6-SMA1isnotmostevolved,andthemostevolved sionofanelongatedclumpembeddedinathincloudsheet,asseen coreP1-SMA1isnotmostmassive.P1-SMA1isina“warmcore” inIRDCG14.225–0.506(Busquetetal.2013).Densegastracedby phase because it has not yet reached the hot core phase defined theJCMTdustimageismostlyconcentratedonthemainfilament, by Cesaroni (2005): temperature > 100 K, size < 0.1 pc, mass andNH appearsonlyonthemainfilament.TheNH (1,1)emis- 3 3 10−1000M⊙, and luminosity > 104 L⊙. The prestellar cores sionisrelativelycontinuous,whereasNH3(2,2)and(3,3)emission all show H CO, a mid-product along the sequential hydrogena- arehighlyclumpy.WeidentifyfourrepresentativeNH emission 2 3 tion from CO to CH OH (Zernickel et al. 2012), thus they are peaks A, B,C, and D, and plot thecorresponding spectra inFig. 3 slightlymore evolved than the cores inIRDC clumps G28.34-P1 6(rightpanel).PeakAshowsthestrongestNH emission,andis 3 andG30.88-C1 whereonly12COisdetected(Zhangetal.2009; associatedwiththeIRpointsource(#9),dustcoreP1-SMA1,and Zhang&Wang2011;Wangetal.2011).Distanceeffectcannotex- masersW2andM1.FollowingA,peaksB,C,andDareroughly plainthedifference,seediscussionin§5.4.Withineachcore,the alignedonalineeastwardinsidethemainfilament,withDlocated groupedcondensationsshowsimilarchemicaldifference. neartheeasternedgeofthedensefilamentclosetothewatermaser (cid:13)c 0000RAS,MNRAS000,000–000 10 KeWanget al. Figure5.SMA230GHzspectraextractedfromthe“major”cores,plottedininverseorderofevolution.Thebrightnesstemperaturehasbeencorrectedfor theprimarybeamattenuation.Thesmallgapsaround218.75and230.75 GHzareduetoourcorrelatorsetup,whilethelargergapseparatesLSBandUSB. Detectedmoleculesarelabelled. (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.