metals Article Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications SaadAl-Saadi1,ParamaChakrabortyBanerjee1,2,M.R.Anisur1andR.K.SinghRaman1,2,* ID 1 DepartmentofMechanicalandAerospaceEngineering,MonashUniversity,ClaytonVIC-3800,Australia; [email protected](S.A.-S.);[email protected](P.C.B.); [email protected](M.R.A.) 2 DepartmentofChemicalEngineering,MonashUniversity,ClaytonVIC-3800,Australia * Correspondence:[email protected],Tel.:+61-399-053-671 Received:27September2017;Accepted:7November2017;Published:23November2017 Abstract:Magnesiumanditsalloysareattractivepotentialmaterialsforconstructionofbiodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesiumalloysurfacewasmodifiedbyhexagonalboronnitride(hBN)-impregnatedsilanecoating. ThecoatingwaschemicallycharacterisedbyRamanspectroscopy. Potentiodynamicpolarisation andelectrochemicalimpedancespectroscopy(EIS)ofthecoatedalloyinHanks’solutionshowed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosionanalysescorroboratedtheelectrochemicaldataandprovidedamechanisticinsightof theimprovementprovidedbythecompositecoating. Keywords: magnesium; hexagonalboronnitride; silanecoating; Ramanspectroscopy; electrochemical impedancespectroscopy 1. Introduction Potentialuseofmagnesium(Mg)alloysastemporaryimplants(suchasplates,screws,pins,wires, etc.) hasbeenattractingincreasinginterest[1–5],primarilybecauseuseofsuchalloyscouldcompletely avoid the need for a second surgery. A second surgery is commonly required for removal of the temporaryimplantsconstructedoutoftraditionalalloys,suchastitaniumalloys/stainlesssteels,after theimplanthasaccomplisheditsfunctionandthetissueshavehealed. Thefundamentalpropertiesof Mgarequitesuitablefortheirapplicationastemporaryimplants. Infact,Mgisalsoessentialtothe humanmetabolism[6];furthermore,theMg2+generateduponbio-degradationduetohumanbody fluidhasbeenreportedtoaidtissuegrowthandhealing[7]. Whilethebio-degradationproductsof Mgarenotatalltoxictothehumanphysiology,anyexcessMg2+isharmlesslyexcretedthroughthe renalsystem[7]. Mganditsalloysalsopossessthebestmechanicalcompatibilitywithhumanbones; theirdensity(ρ=1.74–2.0g·cm−3)andelasticmodulus(E=41–45GPa)arebothsimilartothoseof humanbones(ρ =1.8–2.1g·cm−3; E=3–20GPa, respectively)[7,8], whichconsiderablydecreases theriskofstressshielding[8]. WZ21isoneoftheAl-freealloysthatweredesignedfortemporary implantapplications[9]. Besidestheirsuitablemechanicalproperties,thesealloysalsoshowgood cytocompatibility,andtheirhydrogengenerationrateisatacceptablelevelsforthispurpose[10,11]. However,despitetheseattractiveproperties,therehasbeenextremelylimitedsuccessintheuseof Mg alloys for human implants, primarily due to their unacceptably high corrosion rate in human Metals2017,7,518;doi:10.3390/met7120518 www.mdpi.com/journal/metals Metals2017,7,518 2of13 bodyfluid[7,12]. Itisintriguingthatmagnesiumalloysareattractiveastemporaryimplantsprimarily becausetheycanharmlesslycorrodeawayaftertheyhaveservedtheirpurpose,therebyavoiding the need of a second surgery. However, they corrode rapidly in body fluid, which will seriously compromise the mechanical integrity of the implant, and thereby compromise the tissue-healing process. Therefore,itisessentialtofindasuitablecoatingthatcanprovideeffectiveprotectionagainst corrosion in presence of body fluid, at least for the first few days, when the chances of secondary inflammationsarehigh. Inselectingsuchcoatings,twocriteriaarecritical: (a)thecoatingmustbe biocompatiblewiththehumanbody,and(b)thedurationforwhichprotectionagainstcorrosionis requiredwillvarydependingonthenatureoftheuseoftheimplant. Toelaboratethesecondpoint, differentimplants(e.g.,apinandaplate)mayberequiredtolastfordifferentdurations. Also,the same implant may be required to last for different durations, depending on the age of the patient (e.g.,animplantwillberequiredforamuchshorterdurationforachildthanforanelderlypatient). Silane coatings have emerged as an attractive coating system, and can significantly improve the corrosion resistance of various metals and alloys, including magnesium alloys [13–20]. Additionally, silane coatings are generally biocompatible [21]. The biocompatibility test of amine silane-treatedbio-glassfibresshowednonegativeeffectonthebiologicalresponse[22]. Significant increases in cell adhesion and proliferation were detected on stainless steel surfaces coated with collagen and immobilised with an amino silane [23]. As a bioactive and biocompatible binder, glycidoxypropyltrimethoxysilanewasusedasaprecursorforsynthesisofaporousgelatine-siloxane hybridsforbonetissues[24,25]. Incorporation of suitable biocompatible additives can improve the mechanical integrity, biocompatibilityandcorrosionresistanceofsilanecoatings. Differentbiocompatibleadditives(i.e., Ca(NO ) asasourceforCa2+,hydroxyapatite,andzinc-incorporatedhydroxyapatite)wereusedas 3 2 fillersincomposites,tofabricateahybridscaffoldtoenhancethebiocompatibilityand/ortoimprove thecorrosionresistanceofimplantsinsimulatedbodyfluid[24,26–30]. Inthepresentresearch,boron nitride(BN)wasimpregnatedintoasilanecoating. Hexagonalboronnitride(BN)isalayeredmaterialconsistingoftwo-dimensional,atomicallythin hexagonallayers. PropertiesofBNincludenon-toxicity,chemicalinertness,highthermalconductivity, low thermal expansion, high electrical resistance, low dielectric constant and good thermal shock resistance. Also, density (ρ = 1.9 g/cm3) and elastic moduli (E = 46.9 GPa in parallel direction and73.8GPainperpendiculardirection)ofBNareclosetothecorrespondingpropertiesofhuman bone. BN has been used as a filler in polymeric composite to improve thermal, mechanical and otherproperties [31–37]. However, there islittlereportedontheincorporationof BNwithsilanes forformationofacompositebiocompatiblecoatingtoimprovecorrosionresistanceofMgalloysin physiological environments. In the present study, a composite coating of hexagonal boron nitride (hBN)-impregnatedsilanewasdevelopedonWZ21alloywiththeaimofimprovingthecorrosion resistanceofthisalloyinHanks’solution. Theelectrochemicaldegradationofthecompositecoatingof BN-impregnatedsilaneonWZ21wasinvestigatedbyelectrochemicalimpedancespectroscopy(EIS) andpotentiodynamicpolarisationtests. Additionally, post-corrosionmorphologicalandchemical characterisationwereundertakentovalidatetheelectrochemicaldata. 2. MaterialsandMethods 2.1. CompositeCoatingPreparation Silane coating solution was prepared by mixing glycidoxypropyltrimethoxysilane (GPTMS, XIAMETER, Dow Corning, Auburn, MI, USA), propanol and deionised (DI) water in a ratio of 5:5:90(V/V).ThepHofthesolutionwasadjustedtobe~4.5byaddingaceticacid. Thesilanemixture wasstirredfor1h,andthenheldstillfor3h. Forimpregnationofhexagonalboronnitride(hBN)into silanecoating,100mgofhBN(procuredfromSigmaAldrich,Munich,Germany;1µm)wasdispersed in90mLofDIwater(atpH∼4.5). Subsequently, thismixturewassonicatedatroomtemperature Metals2017,7,518 3of13 for5h. TheextendedsonicationatroomtemperaturemaycauseexfoliationofhBNinwater[38]. TheexfoliatedhBNwasheldstillandsubsequently,5mlofeachofpropanolandGPTMSsilanewas added. Thismixturewasstirredfor1hatroomtemperatureandthenheldstillfor3hforcompletion ofthehydrolysisofGPTMS. 2.2. SamplePreparationandCoatingProcedure The magnesium alloy WZ21 was used in extruded form, with an average grain size of 7 µm. Thenominalchemicalcomposition(inwt%)isZn1%,Ca0.25%,Mn0.15%andY2%[39]. Couponsof magnesiumalloyWZ21weregroundwithSiCpapersdownto2500gritsize,ultrasonicallycleaned withacetoneandethanol(10minforeachstep),rinsedwithDIwater,anddriedusingcompressedair. ThecoatingwascarriedoutbydippingtheWZ21couponsfor1heitherintheGPTMSsolutionorthe hBN-impregnatedsilanesolution(preparationofwhichisdescribedintheprecedingsection).Thecoupons werethentakenoutofthesolution,keptinairfor15min,anddriedinanovenfor1hat130◦C. 2.3. ElectrochemicalMeasurements Potentiodynamicpolarisation(PDP)andelectrochemicalimpedancespectroscopy(EIS)werecarried out using a Bio-Logic VMP3 multi-channel potentiostat and a three-electrode electrochemical cell. Couponsofthebarealloy(WZ21),silane-coatedalloy(S_WZ21)andhBN-impregnatedsilane-coated alloy(BNS_WZ21)wereusedastheworkingelectrodesinseparateexperiments,whereasasaturated calomel electrode (SCE) was used as the reference electrode, and a platinum mesh as the counter electrode. Theareaoftheworkingelectrodeexposedtotheelectrolytewas0.785cm2. Hanks’solution, whichsimulateshumanbodyfluid,wasusedaselectrolyte. TheHanks’solutioncontained:D-Glucose (5.551 mmol/L), KCl (5.365 mmol/L), MgSO ·7H O (0.811 mmol/L), KH PO (0.441 mmol/L), 4 2 2 4 Na HPO .2H O(0.337mmol/L)andNaCl(136.893mmol/L),CaCl (2.163mmol/L)andNaHCO 2 4 2 2 3 (4.169mmol/L). Opencircuitpotential(OCP)wasmonitoredfor1.5h,i.e.,untilthepotentialattainedstability, and electrochemical measurements were subsequently performed. A fluctuation of OCP within 10 mV for a period of 1000 s was considered to be a stable potential. Electrochemical impedance spectroscopy(EIS)wasperformedafterdifferenttimesofimmersioninHanks’solution,byapplying asinusoidalpotentialperturbation(amplitudeof10mV)atOCP.Theimpedancewasmeasuredat frequenciesbetween1and10mHz,recording10pointsperdecadeoffrequencyusingaBio-Logic VMP3multi-channelpotentiostat(BioLogicScienceInstruments,Seyssinet-Pariset,France).Impedance analysiswascarriedoutusingEC-LabelectrochemistrypackageforWindows,generallyforfrequencies between10kHzand50mHztopreventmisinterpretationofanyartefactsthatmaybepresentinthe high-frequencyregion,orthescatterinthelow-frequencyregion. Potentiodynamicpolarisationwas carriedoutatascanrateof0.5mV/s, startingatapotentialof250mVmorenegativetotheOCP. Allthemeasurementswererepeatedatleastthricetoexaminereproducibility. 2.4. SurfaceMorphologyandCoatingCharacterisation 2.4.1. RamanSpectroscopy RamanspectrumoftheBNS_WZ21wasobtainedusingRenishawInviaRamanspectrometerequipped with514nmwavelengthgreenlaser(10%oflaserpower)and1µmspotsizeundera50×objective. 2.4.2. ScanningElectronMicroscopy(SEM)andEnergyDispersiveX-raySpectroscopy(EDS) ThemorphologyandelementalanalysisoftheWZ21andBNS_WZ21specimensbeforeandafter exposuretoHanks’solutionwereexaminedusingJEOLJSM-7001FFEGSEM(JEOLLtd.,Tokyo,Japan) equippedwithanEDSanalyseratanacceleratingvoltageof15kV. Metals2017,7,518 4of13 3. ResultsandDiscussion 3.1. ChemicalandMorphologicalCharacterisation The Raman spectroscopy of BNS_WZ21 in Figure 1 has the G-band peak at ∼1368 cm−1 that confirmsthepresenceofhBNinthecoating[40]. The1256cm−1 bandisduetothesymmetricring stretchoftheepoxygroupinGPTMSsilane[41]. Thepeaksat∼3000cm−1and3070cm−1aredueto CH andCHstretchingmodesconnectedtoepoxygroups[41]. Thetwopeaksat2924and2928cm−1 2 areassignedtothehydroxylstretching[42]. Figure1.RamanspectroscopyofthehBNimpregnatedsilane-coatedWZ21(BNS_WZ21)specimen. Figure2a,bpresentstheSEMmicrographsoftheWZ21andBNS_WZ21specimens. Onlyscratch marksfromthegrindingprocesswerevisibleontheWZ21specimens,whereasauniformlycoated surfacewithcluster-likeformationwasobservedinthecaseofBNS_WZ21. Theaveragediameterof theseclusters(markedwithdottedline)was~100µm. TheEDSanalysisofBNS_WZ21(Figure2d) confirmsthepresenceofSi,O,BandN,whereasonlyMgandYttrium(Y)peakswereprominentin caseoftheWZ21specimen(Figure2c). Figure2.Cont. Metals2017,7,518 5of13 Figure2. (a,b)ScanningElectronMicroscopy(SEM)imagesofWZ21andBNS_WZ21(cluster-like formation of hBN is marked with red circles), (c,d) Energy Dispersive X-ray (EDS) of bare and BNS_WZ21,(e,f)cross-sectionalthicknessofsilane-andhexagonalboronnitride-impregnatedsilane compositecoatings. Figure 2e,f reveal the cross-sectional thickness of the developed coatings (i.e., silane and the hexagonalboronnitrideimpregnatedsilanecomposite)onWZ21. Whiletheaveragethicknessofthe silanecoatingwas~1.61µm,thehexagonalboronnitride-impregnatedsilanecompositecoatingwas relativelythicker(~1.9µm). 3.2. ElectrochemicalCharacterisation Figure3showsthepotentiodynamicpolarisationcurvesofWZ21,S_WZ21andBNS_WZ21in Hanks’ solution after pre-exposure to the same Hanks’ solution for 1.5 h. Although the corrosion potential(E )forthecoatedspecimens(i.e.,S_WZ21andBNS_WZ21)shiftedslightlytothenegative corr direction,indicatingalittleincreaseintheirsusceptibilitytocorrosion,thecorrosioncurrentdensities (i ) of both of these specimens were lower than the i for the WZ21. The i of WZ21 was corr corr corr 4 times higher than that of BNS_WZ21, and twice that of the S_WZ21. These results suggest that thehBN-impregnatedsilanecoatingsignificantlyimprovedthecorrosionresistanceofWZ21alloy in Hanks’ solution by retarding the cathodic reaction. Such behaviour could be attributed to the formationofaprotectivelayeronthecathodicactivesitesonWZ21surface. TheE andthei data corr corr asgeneratedfromthepotentiodynamicpolarisationtestsarepresentedinTable1. Metals2017,7,518 6of13 Figure3.PotentidynamicpolarisationplotsofWZ21,S_WZ21andBNS_WZ21pre-immersedfor1.5h inHank’ssolution. Table1.Corrosionpotential(Ecorr)andcorrosioncurrentdensity(icorr)dataforWZ21,S_WZ21and BNS_WZ21couponsexposedtoHanks’solutionfor1.5h. Sample Ecorr(VSCE) icorr(µA/cm2) WZ21 −1.525(±0.0083) 1.217(±0.269) S_WZ21 −1.546(±0.009) 0.538(±0.059) BNS_WZ21 −1.594(±0.007) 0.292(±0.006) TheEISdatafortheWZ21,S_WZ21andBNS_WZ21inHanks’solutionwithpre-exposuretothe sameHanks’solutionfor1.5hareshowninNyquistandBodephaseplotsinFigure4a,b. Consistent withpolarisationresults(Figure3),thesilanecoating(S_WZ21)improvedthecorrosionresistanceof thealloyby2.5times,assuggestedbytheincreaseinimpedanceatalowestfrequencyof11kΩ·cm2 forthebarealloyto27kΩ·cm2 forthesilane-coatedalloy. However,theimpregnationofthesilane coatingwithhBN(BNS_WZ21)furtherimprovedthecorrosionresistance(by>5times),assuggested bytheimpedance(57kΩ·cm2). Figure4.(a)Nyquistand(b)phaseplotsforWZ21,S_WZ21andBNS_WZ21pre-immersedfor1.5hin Hanksolution. For S_WZ21 and BNS_WZ21, two distinct time constants can be observed in Figure 4b. Thehigh-frequencyregimetimeconstantisgenerallyattributedtotheelectrochemicalresponseatthe coatings/electrolyteinterface[19,20,43–49],whereasthetimeconstantinthelow-frequencyregimeis commonlyattributedtotheelectrochemicalresponseatthemetal/electrolyteinterface[19,20,45–51]. Thehigh-frequencyregimetimeconstantismuchprominentinthecaseofBNS_WZ21. TheWZ21 showedasingletimeconstant,i.e.,atlowfrequencies. Metals2017,7,518 7of13 AclassicRandlescircuit(Figure5a)couldexplaintheelectrodekineticsoftheWZ21exposedto theHanks’solution,whereR representstheelectrolyteresistance. R representsthechargetransfer s ct resistance and Q is the constant phase element of the alloy/electrolyte interface. However, an dl electricalequivalentcircuit(EEC)withanadditionaltimeconstant(R Q )wasrequiredtoexplainthe C C kineticsofS_WZ21andBNS_WZ21(Figure5b)duringimmersioninHank’ssolution. Thesimulated impedancedatawereingoodagreementwiththeexperimentaldata,asshowninFigure5c. Inthe EECs,inFigure5a,b,aconstantphaseelement(Q)isusedinsteadofacapacitor(C)inordertoaccount for the surface reactivity, heterogeneity, roughness, electrode porosity and current and potential distributionsassociatedwiththeelectrodegeometry[43]. Table2presentsthevaluesofEISparameters oftheWZ21,S_WZ21andBNS_WZ21after1.5hofimmersioninHanks’solution. R wasconsiderably c higherforBNS_WZ21thanthatforS_WZ21,whereastheQ washigherforS_WZ21alone,which c indicatesthehigherporeresistanceandlowernumberofconductivepathwaysthroughtheBNS_WZ21. Additionally,theBNS_WZ21showsconsiderablyhigherR (~59kΩ·cm2)thantheWZ21(~11kΩcm2) ct andS_WZ21(~30kΩ·cm2),whichfurthersupportsthattheadditionofhBNdecreasesthecorrosion rate of WZ21 alloy. Further, the lowest value of Q for BNS_WZ21 indicates a lesser area at the dl coating/metalinterfacegettingincontactwiththeelectrolytethanothersamples. Figure5.(a)Electricalequivalentcircuit(EEC)thatfitsdataforWZ21,and(b)EECthatfitsdatafor S_WZ21andBNS_WZ21,pre-immersedfor1.5hinHanks’solution.(c)Theagreementbetweenthe experimentalandfitteddataofEISmeasurements(linesrepresenttheexperimentaldataandsymbols representthefitteddata). Table2.Electrochemicalimpedancespectroscopy(EIS)resultsforthecorrosionofWZ21,S_WZ21and BNS_WZ21couponsexposedtoHanks’solutionfor1.5h. Sample Qc(S·sn·cm−2) nc Rc(Ω·cm2) Qdl(Ssncm−2) ndl Rct(Ω·cm2) WZ21 - - - 2.639×10−5 0.7 11,048 S_WZ21 2.164×10−6 0.6 213 1.106×10−5 0.9 29,736 BNS_WZ21 5.169×10−8 0.9 403 8.735×10−6 0.9 59,364 In order to investigate the durability of the barrier properties of the hBN-impregnated silane coating, EIS was performed on the BNS_WZ21 alloy after different durations of immersion in Hanks’ solution. Figure 6a compares the Bode plots of the WZ21 at 1.5 h of immersion Metals2017,7,518 8of13 with the BNS_WZ21 after different durations of immersion (i.e., 5–96 h) in Hanks’ solution. After 5 h of immersion, the corrosion resistance of the BNS_WZ21 specimen (~57 kΩ·cm2) was nearly5timeshigherthanthatoftheWZ21specimen(~11kΩ·cm2). However,thecorrosionresistance oftheBNS_WZ21graduallydecreasedwithincreasingimmersiontime. Nevertheless,thecorrosion resistance of the BNS_WZ21 even after 96 h (~16 kΩ·cm2) was 1.5 times higher than that of the WZ21specimen(~11kΩ·cm2)immersedjustfor1.5h. Figure6bshowsthephaseangleplotsofthe BNS_WZ21afterdifferentdurationsofimmersioninHanks’solution. Smallchangesinthemagnitude, aswellasthenature,ofboththelow-andhigh-frequencytimeconstantswithincreasingimmersion timesuggestaslowdegradationrateforthecoating. Figure6.(a)Bodeand(b)phaseplotsoftheWZ21pre-immersedfor1.5hinHank’ssolutionandthe BNS_WZ21pre-immersedupto96h. The impedance data of the BNS_WZ21 immersed in Hanks’ solution for different durations (5–96 h) were fitted with the simulation data generated using the equivalent electrical circuit (ECC)inFigure5b. Evolutionoftheelectrochemicalparametersatthecoating/electrolyteandthe metal/electrolyteinterfacesduring96himmersionareshowninFigure7. Thecoatingresistance(R ) c graduallydecreasedinthefirst50handthencontinuouslyincreased. Thedecreaseinporeresistance duringthefirst50hsuggestsanincreaseintheconductivepathwaysinthecoating[19,20],whichis supportedbytheincreaseintheconstantphaseelement(Q )thatresultsfromincreasedactivityatthe c coating/electrolyteinterface(Figure7b). Theinitialdecreaseinporeresistanceandthecorresponding increaseinnumberofconductivepathwaysthroughthecoatingexplainthedecreaseinchargetransfer resistance(R )atthemetal/electrolyteinterface(Figure7c),aswellastheincreaseinthedoublelayer ct capacitance(Q ). Thisisconsistentwiththedeteriorationinsilanecoatingwithincreasingdurationof dl immersioninthecorrosivesolution,asreportedintheliterature[19,20]. Figure7.Cont. Metals2017,7,518 9of13 Figure7. Evolutionof(a,b)thecoating/electrolyteand(c,d)themetal/electrolyteinterfacesofthe hBN-impregnatedsilane-coatedWZ21(BNS_WZ21)pre-immersedupto96h. 3.3. Post-CorrosionMorphologyofBareWZ21andBNS_WZ21 Figure8showsthepost-corrosionmorphologiesandsurfacechemicalanalysisoftheWZ21and BNS_WZ21 specimens pre-exposed to Hanks’ solution for 96 h. The entire surface of WZ21 was coveredwiththickcorrosionproducts(Figure8a),whereasconsiderablylessamountsofcorrosion productscouldbeobservedontheBNS_WZ21(Figure8b). Thecracksinbothsamplesresultedfrom theirexposuretothehighvacuumintheSEMchamber,whichiswellknowntorapidlydehydrate thesurfacefilms,therebycausingcracks. ItiswellknownthatwhenamagnesiumalloyisexposedtoHanks’solution,calciumphosphate depositionoccursattheexpenseofmagnesiumoxideformation[52]. TherelativequantitiesofCa and Si to Mg on the WZ21 and the BNS_WZ21 specimens after exposure to Hanks’ solution were characterisedbyEDSanalysis. Asexpected,theCa-to-Mgratioofthedepositedcorrosionproductsfor WZ21washigherthanthatforBNS_WZ21(Figure8c). Additionally,theSi-to-Mgratiowasprominent inthecaseofBNS_WZ21(Figure8c),suggestingthatthesilane-containingcompositecoatingwas present on the alloy even after 96 h exposure to simulated human body fluid (Hanks’ solution). Figure8dshowsthecross-sectionofthehexagonalboronnitride-impregnatedsilanecompositecoating developed on WZ21 alloy after exposure to Hanks’ solution for 96 h. Despite scattered corrosion products with average thickness (~1.16 µm) being visible on the top of the developed composite coatinglayer,nocorrosionproductsordelaminatedcoatingwerenoticedatthecoating/metalinterface. Theaveragethicknessofthecompositecoatingafter96hofexposuretoHanks’solutionwasfoundto be~1.793µm,whichissmallerthantheaveragethicknessoftheintactcompositecoating(~1.9µm) priortoexposuretoHanks’solution. Figure8.Cont. Metals2017,7,518 10of13 Figure8.SEMmicrographsandchemicalelementratiosofEDSofWZ21andBNS_WZ21specimens afterexposuretoHanks’solution:(a,b)SEMimagesofWZ21andBNS_WZ21;(c)Theratiosofchemical elementsobtainedbyEDSanalysisafterexposuretoHanks’solution;(d)Thecross-sectionalthickness ofthehexagonalboronnitride-impregnatedsilanecompositecoatingonWZ21alloypre-exposedto Hank’ssolution. 4. Conclusions Hexagonalboronnitride(hBN)wasimpregnatedsuccessfullyintosilaneforthedevelopmentof atwo-dimensionalbiocompatiblecompositecoatingonWZ21Mgalloy,whichsignificantlyimproved thecorrosionresistanceanddurabilityofthealloyinaphysiologicalenvironment. Potentiodynamic polarisationandelectrochemicalimpedancespectroscopy(EIS)analysesconfirmednearlyfive-fold improvementincorrosionresistanceoftheMgalloy(WZ21)insimulatedhumanbodyfluidduring thefirsthoursofimmersion,duetothecoating. Post-corrosionmorphologiesshowtheformation ofathickcorrosionproductontheWZ21surface, butconsiderablylesscorrosionproductsonthe BNS_WZ21surfaceevenafter96himmersioninHanks’solution. AuthorContributions:SaadAl-Saadididthesynthesisofsalineandhexagonalboronnitride(hBN)-impregnated silane coatings. He carried out the Mg alloy sample preparation, coating and electrochemical tests at the corrosionlaboratoryintheChemicalEngineeringDepartment,MonashUniversity.M.R.Anisurcarriedoutthe characterisationofthecoatedMgalloybyRamanspectroscopy.Scanningelectronmicroscopywascarriedout attheMonashCentreforElectronMicroscopybySaadAl-Saadi.Al-Saadipreparedthemanuscriptunderthe guidanceofR.K.SinghRamanandParamaChakrabortyBanerjee. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Zberg,B.;Uggowitzer,P.J.;Löffler,J.F.MgZnCaglasseswithoutclinicallyobservablehydrogenevolutionfor biodegradableimplants.Nat.Mater.2009,8,887–891.[CrossRef][PubMed] 2. Ma,E.;Xu,J.BiodegradableAlloys:Theglasswindowofopportunities.Nat.Mater.2009,8,855–857.[CrossRef] [PubMed] 3. Kannan, M.B.; Raman, R.K.S. Invitro degradation and mechanical integrity of calcium-containing magnesiumalloysinmodified-simulatedbodyfluid.Biomaterials2008,29,2306–2314.[CrossRef][PubMed] 4. Witte,F.;Kaese,V.;Haferkamp,H.;Switzer,E.;Meyer-Lindenberg,A.;Wirth,C.J.;Windhagen,H.Invivo corrosionoffourmagnesiumalloysandtheassociatedboneresponse. Biomaterials2005,26,3557–3563. [CrossRef][PubMed] 5. Witte,F.;Fischer,J.;Nellesen,J.;Horst-Artur,C.;Kaese,V.;Pisch,A.;Beckmann,F.;Windhagen,H.Invitro andinvivocorrosionmeasurementsofmagnesiumalloys. Biomaterials2006, 27, 1013–1018. [CrossRef] [PubMed] 6. Manivasagam,G.;Suwas,S.BiodegradableMgandMgbasedalloysforbiomedicalimplants.Mater.Sci.Technol. 2014,30,515–520.[CrossRef]
Description: