ebook img

Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of PDF

13 Pages·2017·4.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of

metals Article Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications SaadAl-Saadi1,ParamaChakrabortyBanerjee1,2,M.R.Anisur1andR.K.SinghRaman1,2,* ID 1 DepartmentofMechanicalandAerospaceEngineering,MonashUniversity,ClaytonVIC-3800,Australia; [email protected](S.A.-S.);[email protected](P.C.B.); [email protected](M.R.A.) 2 DepartmentofChemicalEngineering,MonashUniversity,ClaytonVIC-3800,Australia * Correspondence:[email protected],Tel.:+61-399-053-671 Received:27September2017;Accepted:7November2017;Published:23November2017 Abstract:Magnesiumanditsalloysareattractivepotentialmaterialsforconstructionofbiodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesiumalloysurfacewasmodifiedbyhexagonalboronnitride(hBN)-impregnatedsilanecoating. ThecoatingwaschemicallycharacterisedbyRamanspectroscopy. Potentiodynamicpolarisation andelectrochemicalimpedancespectroscopy(EIS)ofthecoatedalloyinHanks’solutionshowed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosionanalysescorroboratedtheelectrochemicaldataandprovidedamechanisticinsightof theimprovementprovidedbythecompositecoating. Keywords: magnesium; hexagonalboronnitride; silanecoating; Ramanspectroscopy; electrochemical impedancespectroscopy 1. Introduction Potentialuseofmagnesium(Mg)alloysastemporaryimplants(suchasplates,screws,pins,wires, etc.) hasbeenattractingincreasinginterest[1–5],primarilybecauseuseofsuchalloyscouldcompletely avoid the need for a second surgery. A second surgery is commonly required for removal of the temporaryimplantsconstructedoutoftraditionalalloys,suchastitaniumalloys/stainlesssteels,after theimplanthasaccomplisheditsfunctionandthetissueshavehealed. Thefundamentalpropertiesof Mgarequitesuitablefortheirapplicationastemporaryimplants. Infact,Mgisalsoessentialtothe humanmetabolism[6];furthermore,theMg2+generateduponbio-degradationduetohumanbody fluidhasbeenreportedtoaidtissuegrowthandhealing[7]. Whilethebio-degradationproductsof Mgarenotatalltoxictothehumanphysiology,anyexcessMg2+isharmlesslyexcretedthroughthe renalsystem[7]. Mganditsalloysalsopossessthebestmechanicalcompatibilitywithhumanbones; theirdensity(ρ=1.74–2.0g·cm−3)andelasticmodulus(E=41–45GPa)arebothsimilartothoseof humanbones(ρ =1.8–2.1g·cm−3; E=3–20GPa, respectively)[7,8], whichconsiderablydecreases theriskofstressshielding[8]. WZ21isoneoftheAl-freealloysthatweredesignedfortemporary implantapplications[9]. Besidestheirsuitablemechanicalproperties,thesealloysalsoshowgood cytocompatibility,andtheirhydrogengenerationrateisatacceptablelevelsforthispurpose[10,11]. However,despitetheseattractiveproperties,therehasbeenextremelylimitedsuccessintheuseof Mg alloys for human implants, primarily due to their unacceptably high corrosion rate in human Metals2017,7,518;doi:10.3390/met7120518 www.mdpi.com/journal/metals Metals2017,7,518 2of13 bodyfluid[7,12]. Itisintriguingthatmagnesiumalloysareattractiveastemporaryimplantsprimarily becausetheycanharmlesslycorrodeawayaftertheyhaveservedtheirpurpose,therebyavoiding the need of a second surgery. However, they corrode rapidly in body fluid, which will seriously compromise the mechanical integrity of the implant, and thereby compromise the tissue-healing process. Therefore,itisessentialtofindasuitablecoatingthatcanprovideeffectiveprotectionagainst corrosion in presence of body fluid, at least for the first few days, when the chances of secondary inflammationsarehigh. Inselectingsuchcoatings,twocriteriaarecritical: (a)thecoatingmustbe biocompatiblewiththehumanbody,and(b)thedurationforwhichprotectionagainstcorrosionis requiredwillvarydependingonthenatureoftheuseoftheimplant. Toelaboratethesecondpoint, differentimplants(e.g.,apinandaplate)mayberequiredtolastfordifferentdurations. Also,the same implant may be required to last for different durations, depending on the age of the patient (e.g.,animplantwillberequiredforamuchshorterdurationforachildthanforanelderlypatient). Silane coatings have emerged as an attractive coating system, and can significantly improve the corrosion resistance of various metals and alloys, including magnesium alloys [13–20]. Additionally, silane coatings are generally biocompatible [21]. The biocompatibility test of amine silane-treatedbio-glassfibresshowednonegativeeffectonthebiologicalresponse[22]. Significant increases in cell adhesion and proliferation were detected on stainless steel surfaces coated with collagen and immobilised with an amino silane [23]. As a bioactive and biocompatible binder, glycidoxypropyltrimethoxysilanewasusedasaprecursorforsynthesisofaporousgelatine-siloxane hybridsforbonetissues[24,25]. Incorporation of suitable biocompatible additives can improve the mechanical integrity, biocompatibilityandcorrosionresistanceofsilanecoatings. Differentbiocompatibleadditives(i.e., Ca(NO ) asasourceforCa2+,hydroxyapatite,andzinc-incorporatedhydroxyapatite)wereusedas 3 2 fillersincomposites,tofabricateahybridscaffoldtoenhancethebiocompatibilityand/ortoimprove thecorrosionresistanceofimplantsinsimulatedbodyfluid[24,26–30]. Inthepresentresearch,boron nitride(BN)wasimpregnatedintoasilanecoating. Hexagonalboronnitride(BN)isalayeredmaterialconsistingoftwo-dimensional,atomicallythin hexagonallayers. PropertiesofBNincludenon-toxicity,chemicalinertness,highthermalconductivity, low thermal expansion, high electrical resistance, low dielectric constant and good thermal shock resistance. Also, density (ρ = 1.9 g/cm3) and elastic moduli (E = 46.9 GPa in parallel direction and73.8GPainperpendiculardirection)ofBNareclosetothecorrespondingpropertiesofhuman bone. BN has been used as a filler in polymeric composite to improve thermal, mechanical and otherproperties [31–37]. However, there islittlereportedontheincorporationof BNwithsilanes forformationofacompositebiocompatiblecoatingtoimprovecorrosionresistanceofMgalloysin physiological environments. In the present study, a composite coating of hexagonal boron nitride (hBN)-impregnatedsilanewasdevelopedonWZ21alloywiththeaimofimprovingthecorrosion resistanceofthisalloyinHanks’solution. Theelectrochemicaldegradationofthecompositecoatingof BN-impregnatedsilaneonWZ21wasinvestigatedbyelectrochemicalimpedancespectroscopy(EIS) andpotentiodynamicpolarisationtests. Additionally, post-corrosionmorphologicalandchemical characterisationwereundertakentovalidatetheelectrochemicaldata. 2. MaterialsandMethods 2.1. CompositeCoatingPreparation Silane coating solution was prepared by mixing glycidoxypropyltrimethoxysilane (GPTMS, XIAMETER, Dow Corning, Auburn, MI, USA), propanol and deionised (DI) water in a ratio of 5:5:90(V/V).ThepHofthesolutionwasadjustedtobe~4.5byaddingaceticacid. Thesilanemixture wasstirredfor1h,andthenheldstillfor3h. Forimpregnationofhexagonalboronnitride(hBN)into silanecoating,100mgofhBN(procuredfromSigmaAldrich,Munich,Germany;1µm)wasdispersed in90mLofDIwater(atpH∼4.5). Subsequently, thismixturewassonicatedatroomtemperature Metals2017,7,518 3of13 for5h. TheextendedsonicationatroomtemperaturemaycauseexfoliationofhBNinwater[38]. TheexfoliatedhBNwasheldstillandsubsequently,5mlofeachofpropanolandGPTMSsilanewas added. Thismixturewasstirredfor1hatroomtemperatureandthenheldstillfor3hforcompletion ofthehydrolysisofGPTMS. 2.2. SamplePreparationandCoatingProcedure The magnesium alloy WZ21 was used in extruded form, with an average grain size of 7 µm. Thenominalchemicalcomposition(inwt%)isZn1%,Ca0.25%,Mn0.15%andY2%[39]. Couponsof magnesiumalloyWZ21weregroundwithSiCpapersdownto2500gritsize,ultrasonicallycleaned withacetoneandethanol(10minforeachstep),rinsedwithDIwater,anddriedusingcompressedair. ThecoatingwascarriedoutbydippingtheWZ21couponsfor1heitherintheGPTMSsolutionorthe hBN-impregnatedsilanesolution(preparationofwhichisdescribedintheprecedingsection).Thecoupons werethentakenoutofthesolution,keptinairfor15min,anddriedinanovenfor1hat130◦C. 2.3. ElectrochemicalMeasurements Potentiodynamicpolarisation(PDP)andelectrochemicalimpedancespectroscopy(EIS)werecarried out using a Bio-Logic VMP3 multi-channel potentiostat and a three-electrode electrochemical cell. Couponsofthebarealloy(WZ21),silane-coatedalloy(S_WZ21)andhBN-impregnatedsilane-coated alloy(BNS_WZ21)wereusedastheworkingelectrodesinseparateexperiments,whereasasaturated calomel electrode (SCE) was used as the reference electrode, and a platinum mesh as the counter electrode. Theareaoftheworkingelectrodeexposedtotheelectrolytewas0.785cm2. Hanks’solution, whichsimulateshumanbodyfluid,wasusedaselectrolyte. TheHanks’solutioncontained:D-Glucose (5.551 mmol/L), KCl (5.365 mmol/L), MgSO ·7H O (0.811 mmol/L), KH PO (0.441 mmol/L), 4 2 2 4 Na HPO .2H O(0.337mmol/L)andNaCl(136.893mmol/L),CaCl (2.163mmol/L)andNaHCO 2 4 2 2 3 (4.169mmol/L). Opencircuitpotential(OCP)wasmonitoredfor1.5h,i.e.,untilthepotentialattainedstability, and electrochemical measurements were subsequently performed. A fluctuation of OCP within 10 mV for a period of 1000 s was considered to be a stable potential. Electrochemical impedance spectroscopy(EIS)wasperformedafterdifferenttimesofimmersioninHanks’solution,byapplying asinusoidalpotentialperturbation(amplitudeof10mV)atOCP.Theimpedancewasmeasuredat frequenciesbetween1and10mHz,recording10pointsperdecadeoffrequencyusingaBio-Logic VMP3multi-channelpotentiostat(BioLogicScienceInstruments,Seyssinet-Pariset,France).Impedance analysiswascarriedoutusingEC-LabelectrochemistrypackageforWindows,generallyforfrequencies between10kHzand50mHztopreventmisinterpretationofanyartefactsthatmaybepresentinthe high-frequencyregion,orthescatterinthelow-frequencyregion. Potentiodynamicpolarisationwas carriedoutatascanrateof0.5mV/s, startingatapotentialof250mVmorenegativetotheOCP. Allthemeasurementswererepeatedatleastthricetoexaminereproducibility. 2.4. SurfaceMorphologyandCoatingCharacterisation 2.4.1. RamanSpectroscopy RamanspectrumoftheBNS_WZ21wasobtainedusingRenishawInviaRamanspectrometerequipped with514nmwavelengthgreenlaser(10%oflaserpower)and1µmspotsizeundera50×objective. 2.4.2. ScanningElectronMicroscopy(SEM)andEnergyDispersiveX-raySpectroscopy(EDS) ThemorphologyandelementalanalysisoftheWZ21andBNS_WZ21specimensbeforeandafter exposuretoHanks’solutionwereexaminedusingJEOLJSM-7001FFEGSEM(JEOLLtd.,Tokyo,Japan) equippedwithanEDSanalyseratanacceleratingvoltageof15kV. Metals2017,7,518 4of13 3. ResultsandDiscussion 3.1. ChemicalandMorphologicalCharacterisation The Raman spectroscopy of BNS_WZ21 in Figure 1 has the G-band peak at ∼1368 cm−1 that confirmsthepresenceofhBNinthecoating[40]. The1256cm−1 bandisduetothesymmetricring stretchoftheepoxygroupinGPTMSsilane[41]. Thepeaksat∼3000cm−1and3070cm−1aredueto CH andCHstretchingmodesconnectedtoepoxygroups[41]. Thetwopeaksat2924and2928cm−1 2 areassignedtothehydroxylstretching[42]. Figure1.RamanspectroscopyofthehBNimpregnatedsilane-coatedWZ21(BNS_WZ21)specimen. Figure2a,bpresentstheSEMmicrographsoftheWZ21andBNS_WZ21specimens. Onlyscratch marksfromthegrindingprocesswerevisibleontheWZ21specimens,whereasauniformlycoated surfacewithcluster-likeformationwasobservedinthecaseofBNS_WZ21. Theaveragediameterof theseclusters(markedwithdottedline)was~100µm. TheEDSanalysisofBNS_WZ21(Figure2d) confirmsthepresenceofSi,O,BandN,whereasonlyMgandYttrium(Y)peakswereprominentin caseoftheWZ21specimen(Figure2c). Figure2.Cont. Metals2017,7,518 5of13 Figure2. (a,b)ScanningElectronMicroscopy(SEM)imagesofWZ21andBNS_WZ21(cluster-like formation of hBN is marked with red circles), (c,d) Energy Dispersive X-ray (EDS) of bare and BNS_WZ21,(e,f)cross-sectionalthicknessofsilane-andhexagonalboronnitride-impregnatedsilane compositecoatings. Figure 2e,f reveal the cross-sectional thickness of the developed coatings (i.e., silane and the hexagonalboronnitrideimpregnatedsilanecomposite)onWZ21. Whiletheaveragethicknessofthe silanecoatingwas~1.61µm,thehexagonalboronnitride-impregnatedsilanecompositecoatingwas relativelythicker(~1.9µm). 3.2. ElectrochemicalCharacterisation Figure3showsthepotentiodynamicpolarisationcurvesofWZ21,S_WZ21andBNS_WZ21in Hanks’ solution after pre-exposure to the same Hanks’ solution for 1.5 h. Although the corrosion potential(E )forthecoatedspecimens(i.e.,S_WZ21andBNS_WZ21)shiftedslightlytothenegative corr direction,indicatingalittleincreaseintheirsusceptibilitytocorrosion,thecorrosioncurrentdensities (i ) of both of these specimens were lower than the i for the WZ21. The i of WZ21 was corr corr corr 4 times higher than that of BNS_WZ21, and twice that of the S_WZ21. These results suggest that thehBN-impregnatedsilanecoatingsignificantlyimprovedthecorrosionresistanceofWZ21alloy in Hanks’ solution by retarding the cathodic reaction. Such behaviour could be attributed to the formationofaprotectivelayeronthecathodicactivesitesonWZ21surface. TheE andthei data corr corr asgeneratedfromthepotentiodynamicpolarisationtestsarepresentedinTable1. Metals2017,7,518 6of13 Figure3.PotentidynamicpolarisationplotsofWZ21,S_WZ21andBNS_WZ21pre-immersedfor1.5h inHank’ssolution. Table1.Corrosionpotential(Ecorr)andcorrosioncurrentdensity(icorr)dataforWZ21,S_WZ21and BNS_WZ21couponsexposedtoHanks’solutionfor1.5h. Sample Ecorr(VSCE) icorr(µA/cm2) WZ21 −1.525(±0.0083) 1.217(±0.269) S_WZ21 −1.546(±0.009) 0.538(±0.059) BNS_WZ21 −1.594(±0.007) 0.292(±0.006) TheEISdatafortheWZ21,S_WZ21andBNS_WZ21inHanks’solutionwithpre-exposuretothe sameHanks’solutionfor1.5hareshowninNyquistandBodephaseplotsinFigure4a,b. Consistent withpolarisationresults(Figure3),thesilanecoating(S_WZ21)improvedthecorrosionresistanceof thealloyby2.5times,assuggestedbytheincreaseinimpedanceatalowestfrequencyof11kΩ·cm2 forthebarealloyto27kΩ·cm2 forthesilane-coatedalloy. However,theimpregnationofthesilane coatingwithhBN(BNS_WZ21)furtherimprovedthecorrosionresistance(by>5times),assuggested bytheimpedance(57kΩ·cm2). Figure4.(a)Nyquistand(b)phaseplotsforWZ21,S_WZ21andBNS_WZ21pre-immersedfor1.5hin Hanksolution. For S_WZ21 and BNS_WZ21, two distinct time constants can be observed in Figure 4b. Thehigh-frequencyregimetimeconstantisgenerallyattributedtotheelectrochemicalresponseatthe coatings/electrolyteinterface[19,20,43–49],whereasthetimeconstantinthelow-frequencyregimeis commonlyattributedtotheelectrochemicalresponseatthemetal/electrolyteinterface[19,20,45–51]. Thehigh-frequencyregimetimeconstantismuchprominentinthecaseofBNS_WZ21. TheWZ21 showedasingletimeconstant,i.e.,atlowfrequencies. Metals2017,7,518 7of13 AclassicRandlescircuit(Figure5a)couldexplaintheelectrodekineticsoftheWZ21exposedto theHanks’solution,whereR representstheelectrolyteresistance. R representsthechargetransfer s ct resistance and Q is the constant phase element of the alloy/electrolyte interface. However, an dl electricalequivalentcircuit(EEC)withanadditionaltimeconstant(R Q )wasrequiredtoexplainthe C C kineticsofS_WZ21andBNS_WZ21(Figure5b)duringimmersioninHank’ssolution. Thesimulated impedancedatawereingoodagreementwiththeexperimentaldata,asshowninFigure5c. Inthe EECs,inFigure5a,b,aconstantphaseelement(Q)isusedinsteadofacapacitor(C)inordertoaccount for the surface reactivity, heterogeneity, roughness, electrode porosity and current and potential distributionsassociatedwiththeelectrodegeometry[43]. Table2presentsthevaluesofEISparameters oftheWZ21,S_WZ21andBNS_WZ21after1.5hofimmersioninHanks’solution. R wasconsiderably c higherforBNS_WZ21thanthatforS_WZ21,whereastheQ washigherforS_WZ21alone,which c indicatesthehigherporeresistanceandlowernumberofconductivepathwaysthroughtheBNS_WZ21. Additionally,theBNS_WZ21showsconsiderablyhigherR (~59kΩ·cm2)thantheWZ21(~11kΩcm2) ct andS_WZ21(~30kΩ·cm2),whichfurthersupportsthattheadditionofhBNdecreasesthecorrosion rate of WZ21 alloy. Further, the lowest value of Q for BNS_WZ21 indicates a lesser area at the dl coating/metalinterfacegettingincontactwiththeelectrolytethanothersamples. Figure5.(a)Electricalequivalentcircuit(EEC)thatfitsdataforWZ21,and(b)EECthatfitsdatafor S_WZ21andBNS_WZ21,pre-immersedfor1.5hinHanks’solution.(c)Theagreementbetweenthe experimentalandfitteddataofEISmeasurements(linesrepresenttheexperimentaldataandsymbols representthefitteddata). Table2.Electrochemicalimpedancespectroscopy(EIS)resultsforthecorrosionofWZ21,S_WZ21and BNS_WZ21couponsexposedtoHanks’solutionfor1.5h. Sample Qc(S·sn·cm−2) nc Rc(Ω·cm2) Qdl(Ssncm−2) ndl Rct(Ω·cm2) WZ21 - - - 2.639×10−5 0.7 11,048 S_WZ21 2.164×10−6 0.6 213 1.106×10−5 0.9 29,736 BNS_WZ21 5.169×10−8 0.9 403 8.735×10−6 0.9 59,364 In order to investigate the durability of the barrier properties of the hBN-impregnated silane coating, EIS was performed on the BNS_WZ21 alloy after different durations of immersion in Hanks’ solution. Figure 6a compares the Bode plots of the WZ21 at 1.5 h of immersion Metals2017,7,518 8of13 with the BNS_WZ21 after different durations of immersion (i.e., 5–96 h) in Hanks’ solution. After 5 h of immersion, the corrosion resistance of the BNS_WZ21 specimen (~57 kΩ·cm2) was nearly5timeshigherthanthatoftheWZ21specimen(~11kΩ·cm2). However,thecorrosionresistance oftheBNS_WZ21graduallydecreasedwithincreasingimmersiontime. Nevertheless,thecorrosion resistance of the BNS_WZ21 even after 96 h (~16 kΩ·cm2) was 1.5 times higher than that of the WZ21specimen(~11kΩ·cm2)immersedjustfor1.5h. Figure6bshowsthephaseangleplotsofthe BNS_WZ21afterdifferentdurationsofimmersioninHanks’solution. Smallchangesinthemagnitude, aswellasthenature,ofboththelow-andhigh-frequencytimeconstantswithincreasingimmersion timesuggestaslowdegradationrateforthecoating. Figure6.(a)Bodeand(b)phaseplotsoftheWZ21pre-immersedfor1.5hinHank’ssolutionandthe BNS_WZ21pre-immersedupto96h. The impedance data of the BNS_WZ21 immersed in Hanks’ solution for different durations (5–96 h) were fitted with the simulation data generated using the equivalent electrical circuit (ECC)inFigure5b. Evolutionoftheelectrochemicalparametersatthecoating/electrolyteandthe metal/electrolyteinterfacesduring96himmersionareshowninFigure7. Thecoatingresistance(R ) c graduallydecreasedinthefirst50handthencontinuouslyincreased. Thedecreaseinporeresistance duringthefirst50hsuggestsanincreaseintheconductivepathwaysinthecoating[19,20],whichis supportedbytheincreaseintheconstantphaseelement(Q )thatresultsfromincreasedactivityatthe c coating/electrolyteinterface(Figure7b). Theinitialdecreaseinporeresistanceandthecorresponding increaseinnumberofconductivepathwaysthroughthecoatingexplainthedecreaseinchargetransfer resistance(R )atthemetal/electrolyteinterface(Figure7c),aswellastheincreaseinthedoublelayer ct capacitance(Q ). Thisisconsistentwiththedeteriorationinsilanecoatingwithincreasingdurationof dl immersioninthecorrosivesolution,asreportedintheliterature[19,20]. Figure7.Cont. Metals2017,7,518 9of13 Figure7. Evolutionof(a,b)thecoating/electrolyteand(c,d)themetal/electrolyteinterfacesofthe hBN-impregnatedsilane-coatedWZ21(BNS_WZ21)pre-immersedupto96h. 3.3. Post-CorrosionMorphologyofBareWZ21andBNS_WZ21 Figure8showsthepost-corrosionmorphologiesandsurfacechemicalanalysisoftheWZ21and BNS_WZ21 specimens pre-exposed to Hanks’ solution for 96 h. The entire surface of WZ21 was coveredwiththickcorrosionproducts(Figure8a),whereasconsiderablylessamountsofcorrosion productscouldbeobservedontheBNS_WZ21(Figure8b). Thecracksinbothsamplesresultedfrom theirexposuretothehighvacuumintheSEMchamber,whichiswellknowntorapidlydehydrate thesurfacefilms,therebycausingcracks. ItiswellknownthatwhenamagnesiumalloyisexposedtoHanks’solution,calciumphosphate depositionoccursattheexpenseofmagnesiumoxideformation[52]. TherelativequantitiesofCa and Si to Mg on the WZ21 and the BNS_WZ21 specimens after exposure to Hanks’ solution were characterisedbyEDSanalysis. Asexpected,theCa-to-Mgratioofthedepositedcorrosionproductsfor WZ21washigherthanthatforBNS_WZ21(Figure8c). Additionally,theSi-to-Mgratiowasprominent inthecaseofBNS_WZ21(Figure8c),suggestingthatthesilane-containingcompositecoatingwas present on the alloy even after 96 h exposure to simulated human body fluid (Hanks’ solution). Figure8dshowsthecross-sectionofthehexagonalboronnitride-impregnatedsilanecompositecoating developed on WZ21 alloy after exposure to Hanks’ solution for 96 h. Despite scattered corrosion products with average thickness (~1.16 µm) being visible on the top of the developed composite coatinglayer,nocorrosionproductsordelaminatedcoatingwerenoticedatthecoating/metalinterface. Theaveragethicknessofthecompositecoatingafter96hofexposuretoHanks’solutionwasfoundto be~1.793µm,whichissmallerthantheaveragethicknessoftheintactcompositecoating(~1.9µm) priortoexposuretoHanks’solution. Figure8.Cont. Metals2017,7,518 10of13 Figure8.SEMmicrographsandchemicalelementratiosofEDSofWZ21andBNS_WZ21specimens afterexposuretoHanks’solution:(a,b)SEMimagesofWZ21andBNS_WZ21;(c)Theratiosofchemical elementsobtainedbyEDSanalysisafterexposuretoHanks’solution;(d)Thecross-sectionalthickness ofthehexagonalboronnitride-impregnatedsilanecompositecoatingonWZ21alloypre-exposedto Hank’ssolution. 4. Conclusions Hexagonalboronnitride(hBN)wasimpregnatedsuccessfullyintosilaneforthedevelopmentof atwo-dimensionalbiocompatiblecompositecoatingonWZ21Mgalloy,whichsignificantlyimproved thecorrosionresistanceanddurabilityofthealloyinaphysiologicalenvironment. Potentiodynamic polarisationandelectrochemicalimpedancespectroscopy(EIS)analysesconfirmednearlyfive-fold improvementincorrosionresistanceoftheMgalloy(WZ21)insimulatedhumanbodyfluidduring thefirsthoursofimmersion,duetothecoating. Post-corrosionmorphologiesshowtheformation ofathickcorrosionproductontheWZ21surface, butconsiderablylesscorrosionproductsonthe BNS_WZ21surfaceevenafter96himmersioninHanks’solution. AuthorContributions:SaadAl-Saadididthesynthesisofsalineandhexagonalboronnitride(hBN)-impregnated silane coatings. He carried out the Mg alloy sample preparation, coating and electrochemical tests at the corrosionlaboratoryintheChemicalEngineeringDepartment,MonashUniversity.M.R.Anisurcarriedoutthe characterisationofthecoatedMgalloybyRamanspectroscopy.Scanningelectronmicroscopywascarriedout attheMonashCentreforElectronMicroscopybySaadAl-Saadi.Al-Saadipreparedthemanuscriptunderthe guidanceofR.K.SinghRamanandParamaChakrabortyBanerjee. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Zberg,B.;Uggowitzer,P.J.;Löffler,J.F.MgZnCaglasseswithoutclinicallyobservablehydrogenevolutionfor biodegradableimplants.Nat.Mater.2009,8,887–891.[CrossRef][PubMed] 2. Ma,E.;Xu,J.BiodegradableAlloys:Theglasswindowofopportunities.Nat.Mater.2009,8,855–857.[CrossRef] [PubMed] 3. Kannan, M.B.; Raman, R.K.S. Invitro degradation and mechanical integrity of calcium-containing magnesiumalloysinmodified-simulatedbodyfluid.Biomaterials2008,29,2306–2314.[CrossRef][PubMed] 4. Witte,F.;Kaese,V.;Haferkamp,H.;Switzer,E.;Meyer-Lindenberg,A.;Wirth,C.J.;Windhagen,H.Invivo corrosionoffourmagnesiumalloysandtheassociatedboneresponse. Biomaterials2005,26,3557–3563. [CrossRef][PubMed] 5. Witte,F.;Fischer,J.;Nellesen,J.;Horst-Artur,C.;Kaese,V.;Pisch,A.;Beckmann,F.;Windhagen,H.Invitro andinvivocorrosionmeasurementsofmagnesiumalloys. Biomaterials2006, 27, 1013–1018. [CrossRef] [PubMed] 6. Manivasagam,G.;Suwas,S.BiodegradableMgandMgbasedalloysforbiomedicalimplants.Mater.Sci.Technol. 2014,30,515–520.[CrossRef]

Description:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton VIC-3800, Australia; compromise the mechanical integrity of the implant, and thereby compromise the tissue-healing process. Therefore, it is The pH of the solution was adjusted to be ~4.5 by adding acetic acid.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.