Heuristic Ensembles of Filters for Accurate and Reliable Feature Selection Ghadah Nasser Aldehim Submitted for the degree of Doctor of Philosophy School of Computing Sciences University of East Anglia December 2015 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. I Abstract Feature selection has become increasingly important in data mining in recent years. However, the accuracy and stability of feature selection methods vary considerably when used individually, and yet no rule exists to indicate which one should be used for a particular dataset. Thus, an ensemble method that combines the outputs of several individual feature selection methods appears to be a promising approach to address the issue and hence is investigated in this research. This research aims to develop an effective ensemble that can improve the accuracy and stability of the feature selection. We proposed a novel heuristic ensemble of filters (HEF). It combines two types of filters: subset filters and ranking filters with a heuristic consensus algorithm in order to utilise the strength of each type. The ensemble is tested on ten benchmark datasets and its performance is evaluated by two stability measures and three classifiers. The experimental results demonstrate that HEF improves the stability and accuracy of the selected features and in most cases outperforms the other ensemble algorithms, individual filters and the full feature set. The research on the HEF algorithm is extended in several dimensions; including more filter members, three novel schemes of mean rank aggregation with partial lists, and three novel schemes for a weighted heuristic ensemble of filters. However, the experimental results demonstrate that adding weight to filters in HEF does not achieve the expected improvement in accuracy, but increases time and space complexity, and clearly decreases stability. Therefore, the core ensemble algorithm (HEF) is demonstrated to be not just simpler but also more reliable and consistent than the later more complicated and weighted ensembles. In addition, we investigated how to use data in feature selection, using ALL or PART of it. Systematic experiments with thirty five synthetic and benchmark real-world datasets were carried out. II Table of Contents Abstract ......................................................................................................................................... II Table of Contents ........................................................................................................................ III List of Figures ............................................................................................................................ VII List of Tables .............................................................................................................................. IX List of Abbreviations .................................................................................................................. XI Publications ............................................................................................................................... XIII Acknowledgements .................................................................................................................. XIV Chapter 1 ....................................................................................................................................... 1 Introduction ................................................................................................................................... 1 1.1 Background ......................................................................................................................... 2 1.2 Motivation ........................................................................................................................... 3 1.3 Research Aim and Objectives ............................................................................................. 4 1.4 Research Questions ............................................................................................................. 5 1.5 Contributions....................................................................................................................... 5 1.6 Structure of Thesis .............................................................................................................. 6 Chapter 2 ....................................................................................................................................... 8 Literature Review on Feature Selection Ensemble ....................................................................... 8 2.1 Introduction ......................................................................................................................... 9 2.2 Feature Selection ............................................................................................................... 10 2.2.1 General Procedure of Feature Selection ..................................................................... 11 2.2.1.1 Subset Generation: .............................................................................................. 12 2.2.1.2 Subset Evaluation:............................................................................................... 14 2.2.1.3 The Stopping Criterion: ...................................................................................... 14 2.2.1.4 The Validation Procedure: .................................................................................. 15 2.3 Filter: ................................................................................................................................. 15 2.3.1. Distance Measures (Weight) ..................................................................................... 16 2.3.2. Information Measures ............................................................................................... 18 2.3.3. Dependency Measures (Correlation) ........................................................................ 22 2.3.4. Consistency Measures ............................................................................................... 24 2.3.5 Advantages and Disadvantages of Filters .................................................................. 25 2.4 Wrappers ........................................................................................................................... 26 2.4.1 Sequential Search Techniques ................................................................................... 27 2.4.1.1 Greedy Search ..................................................................................................... 27 2.4.1.2 Floating Search Strategy ..................................................................................... 29 2.4.1.3 Best-first Search Wrapper ................................................................................... 30 2.4.2 Exponential and Randomised Search Algorithms...................................................... 30 2.4.2.1 Beam Search ....................................................................................................... 30 2.4.2.2 Simulated Annealing ........................................................................................... 31 2.4.2.3 Genetic Algorithms ............................................................................................. 31 2.4.3 Advantages and Disadvantages of Wrappers ............................................................. 31 2.5 Hybrid ............................................................................................................................... 32 2.5.1 Sequential Searches with Hybrid Evaluation ............................................................. 32 2.5.2 Random Searches with Hybrid Evaluation ................................................................ 35 2.5.3 Advantages and Disadvantages of Hybrid Methods .................................................. 36 2.6 Introduction to Ensemble .................................................................................................. 37 2.6.1 Methods for Constructing Ensemble .......................................................................... 38 III 2.7 Ensemble of Feature Selection .......................................................................................... 39 2.7.1 The Ensemble Idea for Feature Selection .................................................................. 40 2.7.2 Combination Methods of Ensemble Feature Selection .............................................. 40 2.8 Researches in Feature Selection Ensemble ....................................................................... 41 2.8.1 Ensemble of Single Feature Selection Technique with Instance Level Perturbation. 41 2.8.2 Ensemble of Multiple Feature Selection Techniques ................................................. 43 2.9 Summary ........................................................................................................................... 48 Chapter 3 ..................................................................................................................................... 49 Methodology ............................................................................................................................... 49 3.1 Introduction ....................................................................................................................... 50 3.2 Proposed Ensemble of Feature Selection .......................................................................... 50 3.3 Using Data in Feature Selection ........................................................................................ 53 3.4 Evaluation Methods .......................................................................................................... 53 3.4.1 Stability Methods as an Indicator of Reliability Measure of Feature Selection ......... 54 3.4.2 Classification Performance as Effectiveness Measure of Feature Selection .............. 58 3.4.2.1 Validation Techniques ........................................................................................ 59 3.4.2.2 Classification Performance Measures ................................................................. 60 3.4.2.3 Statistical Tests for Comparison ......................................................................... 61 3.4.2.4 Algorithms for Classification .............................................................................. 62 3.5 Comparison Strategies ...................................................................................................... 63 3.6 System Software Design ................................................................................................... 64 3.6.1 WEKA........................................................................................................................ 64 3.6.2 Java Code ................................................................................................................... 64 3.7 Experiment Design ............................................................................................................ 65 3.7.1 Data ............................................................................................................................ 65 3.7.2 Experiment Procedure ................................................................................................ 66 Chapter 4 ..................................................................................................................................... 68 Heuristic Ensemble of Filters ...................................................................................................... 68 4.1 Introduction ....................................................................................................................... 69 4.2 Heuristic Ensemble of Filters (HEF) ................................................................................ 69 4.2.1 Proposed Heuristic Ensemble of Filters (HEF) .......................................................... 69 4.2.2 Choice of Individual Filters ....................................................................................... 71 4.2.3 The Heuristic Rules .................................................................................................... 74 4.3 Experiments ...................................................................................................................... 75 4.3.1 Data ............................................................................................................................ 75 4.3.2 Experiment Design and Procedure ............................................................................. 76 4.4 Results ............................................................................................................................... 77 4.4.1 Number of Selected Features ..................................................................................... 77 4.4.2 Accuracy Evaluation .................................................................................................. 78 4.5 Conclusion ........................................................................................................................ 81 Chapter 5 ..................................................................................................................................... 83 Determining Appropriate Approaches for Using Data in Feature Selection .............................. 83 5.1 Introduction ....................................................................................................................... 84 5.2 The PART and ALL Methods ........................................................................................... 85 5.3 Related Works about PART and ALL Methods: .............................................................. 86 5.4 Experiments ...................................................................................................................... 88 5.4.1 Data ............................................................................................................................ 88 5.4.1.1 Real world Bench Mark Data .............................................................................. 88 5.4.1.2 Generation of Synthetic Datasets ........................................................................ 88 5.4.2 Experiment Design and Procedure ............................................................................. 95 IV 5.5 Results ............................................................................................................................... 97 5.5.1 Real-World Bench Mark Dataset ............................................................................... 97 5.5.1.1 Number of Selected Features .............................................................................. 97 5.5.1.2. Accuracy Evaluation with Different Classifiers .............................................. 100 5.5.1.3. Stability Evaluation .......................................................................................... 103 5.5.2 Results on Synthetic Datasets .................................................................................. 108 5.5.2.1. Accuracy Evaluation ........................................................................................ 108 5.5.2.2. Stability Evaluation .......................................................................................... 111 5.5.3 Experiment with Benchmark Synthetic Data ........................................................... 121 5.6 Discussion ....................................................................................................................... 123 5.6.1 Real-world Benchmark Datasets .............................................................................. 123 5.6.2 Synthetic Datasets .................................................................................................... 124 5.7 Conclusion ...................................................................................................................... 125 Chapter 6 ................................................................................................................................... 128 Improving the Heuristic Ensemble of Filters ............................................................................ 128 6.1 Introduction ..................................................................................................................... 129 6.2 Adding Wrapper after HEF ............................................................................................. 130 6.2.1 Proposed Hybrid Heuristic Ensemble of Filters (HHEF) ........................................ 130 6.2.2 Choice of Wrappers ................................................................................................. 131 6.3 Adding More Filters in HEF ........................................................................................... 132 6.3.1 Choice of Filters ....................................................................................................... 132 6.3.2 Choice of Number of Filters .................................................................................... 133 6.4 Changing the Aggregation Method for Combining Feature Subsets .............................. 134 6.4.1 Converting Feature Subset to Ranking Subset ......................................................... 134 6.4.2 Dealing with Partial List or (Top-K List) ................................................................ 135 6.4.3 Ranking Aggregation Methods ................................................................................ 136 6.5 Experiments .................................................................................................................... 139 6.5.1 Experiment Design and Procedure ........................................................................... 139 6.6 Results ............................................................................................................................. 140 6.6.1 Hybrid Heuristic Ensemble of Filters (HHEF) ........................................................ 141 6.6.1.1 Accuracy Evaluation ......................................................................................... 141 6.6.1.2 Similarity Evaluation ........................................................................................ 144 6.6.2 Adding More Filters in HEF .................................................................................... 145 6.6.2.1 Accuracy Evaluation ......................................................................................... 146 6.6.1.2 Similarity evaluation ......................................................................................... 149 6.6.2.3 Time Complexity Analysis ............................................................................... 154 6.6.3 Changing the Aggregation Method for Combining Feature Subsets: ...................... 157 6.6.3.1 Accuracy Evaluation ......................................................................................... 158 6.6.3.2 Stability Evaluation ........................................................................................... 161 6.7. Conclusion ..................................................................................................................... 162 Chapter 7 ................................................................................................................................... 164 Weighted Heuristic Ensemble of Filters ................................................................................... 164 7.1 Introduction ..................................................................................................................... 165 7.2 Related Work .................................................................................................................. 165 7.3 Weighted Heuristic Ensemble Filters (WHEF)............................................................... 167 7.3.1 Fixed Weight Methods (FWHEF) ............................................................................ 168 7.3.2 Variable Weight Based on Validation Set (VWHEF).............................................. 170 7.3.3 Selective Filters Based on Validation Set (SFHEF) ................................................ 174 7.4 Experiments .................................................................................................................... 175 7.4.1 Experimental Design Procedure and Evaluation methods ....................................... 175 V 7.5 Results ............................................................................................................................. 177 7.5.1 Accuracy Evaluation with Different Classifiers ...................................................... 177 7.5.2. Stability Evaluation ................................................................................................. 183 7.5.3. Runtime Performance ............................................................................................. 189 7.6. Discussion and Evaluation ............................................................................................. 191 7.7. Conclusion ..................................................................................................................... 192 Chapter 8 ................................................................................................................................... 194 Evaluation and Discussion ........................................................................................................ 194 8.1 Introduction ..................................................................................................................... 195 8.2 Overview of the Research as a Whole ............................................................................ 196 8.3 Heuristic Ensemble of Filters (HEF) .............................................................................. 198 8.4 Use of Data in FS ............................................................................................................ 201 8.5 Aggregation Method ....................................................................................................... 202 8.6 Weighed HEF.................................................................................................................. 206 8.7 Comparison between HEF and Other Research .............................................................. 208 8.8 Summary ......................................................................................................................... 213 Chapter 9 ................................................................................................................................... 214 Conclusions ............................................................................................................................... 214 9.1 General Conclusions ....................................................................................................... 215 9.2 Limitations ...................................................................................................................... 216 9.3 Further Work ................................................................................................................... 216 References ................................................................................................................................. 220 Appendices ................................................................................................................................ 229 Appendix A: Further results from Chapter 5 ........................................................................ 230 Appendix B: Further results from Chapter 7 ........................................................................ 234 Appendix C: Further results from Chapter 8 ........................................................................ 239 VI List of Figures Figure 2. 1: Feature Selection Process (Dash and Liu, 1997) .................................................................... 12 Figure 2.2: Illustration of the filter process ................................................................................................ 16 Figure 2.3: Illustration of the wrapper process ........................................................................................... 27 Figure 3.1: The proposed ensemble of feature selection ............................................................................ 51 Figure 4.1: Framework of HEF for feature selection ................................................................................. 70 Figure 5. 1: ALL Method ........................................................................................................................... 86 Figure 5. 2: PART Method ......................................................................................................................... 86 Figure 5.3: Number of selected features by the PART method on the Colon dataset ................................ 99 Figure 5.4: Number of selected features by the PART method on the Leukaemia dataset ........................ 99 Figure 5.5: The similarity measures of IATI with the features selected by the filters, comparing the PART with the ALL approaches ................................................................................................................ 105 Figure 5.6: The similarity measures of ICW with the features selected by the filters, comparing the PART with the ALL approaches ................................................................................................................ 105 Figure 5.7 : The difference (∆acc) between the average accuracies of the three classifiers trained by the ALL and PART approaches as well as the averages of similarity measures ................................... 107 Figure 5.8: Accuracy of NB classifier obtained for S1 to S8 datasets with both methods ....................... 108 Figure 5.9: Accuracy of NB classifier of the S2NR4 to S8NR16 datasets with both methods ................ 109 Figure 5.10: Accuracies of NB classifier of the S2Noise5 to S8Noise10 datasets with both methods .... 110 Figure 5.11: IATI comparison between each filter subset with optimal subset on: (a) S1, S2 and S3 (b) S4, S5 and S6 ......................................................................................................................................... 111 Figure 5.12: ICW comparison between each filter subset with optimal subset on: (a) S1, S2 and S3 (b) S4, S5 and S6 ......................................................................................................................................... 111 Figure 5.13: Comparing feature selector's stability (CWrel, ATI) with the PART method on: (a) S1, S2 and S3 (b) S4, S5 and S6 ................................................................................................................. 112 Figure 5.14: IATI comparison between each filter subset with optimal subset on: (a) S1, S4 and S7 (b) S2, S5 and S8 ......................................................................................................................................... 114 Figure 5.15: ICW comparison between each filters subset with optimal subset on: (a) S1, S4 and S7 (b) S2, S5 and S8................................................................................................................................... 115 Figure 5.16: Comparing feature selector's stability (CWrel, ATI) with the PART method on: (a) S1, S4 and S7 (b) S2, S5 and S8 ................................................................................................................. 115 Figure 5.17: IATI comparison between each filter subset with optimal subset on: (a) S2NR4, S5NR4 and S8NR4 (b) S2NR16, S5NR16 and S8NR16 .................................................................................... 116 Figure 5.18: ICW comparison between each filter subset with optimal subset on: (a) S2NR4, S5NR4 and S8NR4 (b) S2NR16, S5NR16 and S8NR16 .................................................................................... 117 Figure 5. 19: Comparing feature selector stability (CWrel, ATI) with PART method on: (a) S2NR4, S5NR4 and S8NR4 (b) S2NR16, S5NR16 and S8NR16 ................................................................ 117 Figure 5.20: IATI comparison between each filter subset with optimal subset on: (a) S2Noise5, S5Noise5 and S8Noise5 (b) S2Noise10, S5Noise10 and S8Noise10 .............................................................. 120 Figure 5.21: ICW comparison between each filter subset with optimal subset on: (a) S2Noise5, S5Noise5 and S8Noise5 (b) S2Noise10, S5Noise10 and S8Noise10 .............................................................. 120 Figure 5.22: Comparing feature selector's stability (CWrel, ATI) with the PART method on: (a) S2Noise5, S5Noise5 and S8Noise5 (b) S2Noise10, S5Noise10 and S8Noise10 ............................ 120 Figure 5.23: IATI comparison between each filter subset with optimal subset over synthetic data which were widely used. ............................................................................................................................ 122 Figure 5.24: ICW comparison between each filter subset with optimal subset over synthetic data which were widely used. ............................................................................................................................ 122 Figure 5.25: Comparing feature selection stability (CWrel, ATI) with the PART method. ..................... 122 Figure 5.26: Accuracy of NB classifier over synthetic data widely used on both methods ..................... 122 Figure 6.1: Framework of hybrid ensemble of FS ................................................................................... 131 Figure 6.2: Average number of features selected by HHEF ..................................................................... 141 Figure 6.3: The average test accuracy of NB classifiers trained with 2 HEF and 6 hybrid HEF ............. 142 VII Figure 6.4: The average test accuracy of KNN classifiers trained with 2 HEF and 6 hybrid HEF .......... 142 Figure 6.5: The average test accuracy of SVM trained with 2 HEF and 6 hybrid HEF ........................... 143 Figure 6.6: Accuracy comparison using SVM of HEF and all hybrid ensemble approaches against each other with Nemenyi test. .................................................................................................................. 143 Figure 6.7: The stability measures of ATI with the features selected by 2 HEF and 6 hybrid HEF ........ 144 Figure 6.8: Stability comparison using ATI of HEF and all hybrid ensemble approaches against each other with the Nemenyi test ............................................................................................................. 145 Figure 6.9: Results of the Nemenyi test used to evaluate the accuracy of KNN of each filter and ensemble approaches against each other ......................................................................................................... 148 Figure 6.10: Stability comparison using ATI of each filters and ensemble approaches against each other with Nemenyi test ............................................................................................................................ 152 Figure 6.11: Stability comparison using CWrel of each filters and ensemble approaches against each other with Nemenyi test ............................................................................................................................ 152 Figure 6.12: Average accuracy and stability of HEF+5F and 5 filter members on 10 real datasets, focusing on each evaluation measure ............................................................................................................. 153 Figure 6. 13: Average accuracy and stability of HEF+5F and 5 filter members on 10 real dataset, focusing on each FS technique ....................................................................................................................... 153 Figure 6.14: Average runtime performances of 9 real datasets (excluding Ovarian) using three classifiers ......................................................................................................................................................... 157 Figure 6. 15: Results of the Nemenyi test was used to evaluate the accuracy of NB of three different schemes of mean rank aggregation against each other .................................................................... 160 Figure 6. 16: Average test accuracy over 10 real datasets with three different schemes of mean rank aggregation focusing on the three classifiers ................................................................................... 161 Figure 7.1: Framework of FWHEF .......................................................................................................... 169 Figure 7.2: Determining the weight by classification accuracy on the validation dataset ........................ 171 Figure 7.3: Framework of VWHEF ......................................................................................................... 172 Figure 7.4: Framework of SFHEF ............................................................................................................ 175 Figure 7.5: The average test accuracy of NB using 10 datasets focusing on different methods .............. 181 Figure 7.6: The average test accuracy of KNN using 10 datasets focusing on different methods ........... 182 Figure 7.7: The average test accuracy of SVM using 10 datasets focusing on different methods ........... 182 Figure 7.8: Comparison of all ensemble approaches against each other by SVM, using 25% of selected features with Nemenyi test .............................................................................................................. 183 Figure 7.9: The average ATI using 10 datasets focusing on different methods ....................................... 185 Figure 7.10: The average CWrel using 10 datasets focusing on different methods ................................. 186 Figure 7.11: ATI comparison of all ensemble approaches against each other with Nemenyi test using 75%, 50% and 25% of selected features .......................................................................................... 187 Figure 7.12: The mean stability measures of ATI and CWrel with the features selected by proposed ensemble approaches over 10 runs of 10-fold cross-validation ....................................................... 188 Figure 7.13: Average runtime performance of 9 real-world datasets (excluding Ovarian) using three classifiers ......................................................................................................................................... 191 Figure 8.1: Naming strategy of each version of HEF ............................................................................... 196 Figure 8. 2: a) Average test accuracy (b) Average stability over 10 real datasets with two different aggregation methods ........................................................................................................................ 205 Figure 8.3: Average number of features selected using two different aggregation methods. ................... 206 VIII List of Tables Table 3. 1: Confusion matrix for a two-class prediction problem .............................................................. 60 Table 3.2: Description of the benchmark datasets ...................................................................................... 65 Table 4. 1: Number of selected features for each dataset by the four filters and two ensembles ............... 77 Table 4.2: The accuracies of NB models trained with all the features and the features selected by filters and heuristic ensembles. .................................................................................................................... 79 Table 4.3: The accuracies of KNN models trained with all the features and the features selected by filters and heuristic ensembles ..................................................................................................................... 79 Table 4.4: The accuracies of SVM models trained with all the features and the features selected by filters and heuristic ensembles. .................................................................................................................... 80 Table 5. 1: Summary of the 9 synthetic datasets from S1 to S9 without noise injection ........................... 91 Table 5.2: Summary of the 6 synthetic dataset with different without noise injection ........................ 92 Table 5.3: Summary of the 6 synthetic datasets after adding noise to the class y ...................................... 94 Table 5.4: Average number of selected features by each filters and ensemble .......................................... 98 Table 5. 5: The accuracies of Naïve Bayesian classifier trained with all the features and the features selected by filters and heuristic ensembles by the PART method ................................................... 100 Table 5.6: The accuracies of the KNN models trained with all the features and the features selected by filters and heuristic ensembles by the PART method ...................................................................... 101 Table 5.7: The accuracies of the SVM models trained with all the features and the features selected by filters and heuristic ensembles by the PART method ...................................................................... 102 Table 5.8: The stability measures of ATI with the features selected by filters and heuristic ensembles over 10 runs of 10-fold cross-validation .................................................................................................. 104 Table 5.9: The stability measures of CWrel with the features selected by filters and heuristic ensembles over 10 runs of 10-fold cross-validation .......................................................................................... 104 Table 6.1: The accuracies of NB models trained with all the features and the features selected by filters and heuristic ensembles ................................................................................................................... 147 Table 6.2: The accuracies of KNN models trained with all the features and the features selected by filters and heuristic ensembles ................................................................................................................... 147 Table 6.3: The accuracies of SVM models trained with all the features and the features selected by filters and heuristic ensembles ................................................................................................................... 148 Table 6.4: The number of best and worst accuracies summarisation of three classifiers ......................... 149 Table 6.5: The stability measures of ATI with the features selected by 5 filters and 4 heuristic ensembles ......................................................................................................................................................... 150 Table 6.6: The stability measures of CWrel with the features selected by 5 filters and 4 heuristic ensembles ........................................................................................................................................ 151 Table 6.7: Running time (seconds) for each filter with NB classifier ...................................................... 155 Table 6.8: Running time (seconds) for each filter with KNN classifier ................................................... 156 Table 6.9: Running time (seconds) for each filter with SVM classifier ................................................... 156 Table 6.10: The accuracies of NB models trained with three different schemes of mean rank aggregation ......................................................................................................................................................... 158 Table 6.11: The accuracies of KNN models trained with three different schemes of mean rank aggregation ...................................................................................................................................... 159 Table 6.12: The accuracies of SVM models trained with three different schemes of mean rank aggregation ...................................................................................................................................... 159 Table 6.13: Average test accuracy over 10 real datasets with three different schemes of mean rank aggregation focusing on the three classifiers ................................................................................... 160 Table 6.14: The stability measures of ATI with three different schemes of mean rank aggregation ....... 161 Table 6.15: The stability measures of CWrel with three different schemes of mean rank aggregation ... 162 Table 7.1 : The average test accuracy of NB classifiers trained with the features selected by HEFb, FWHEF, VWHEF and SFHEF, with 75% of these features being selected .................................... 177 Table 7.2: The average test accuracy of KNN classifiers trained with the features selected by HEFb, FWHEF, VWHEF and SFHEF, with 75% of these features being selected .................................... 178 IX Table 7. 3: The average test accuracy of SVM classifiers trained with the features selected by HEFb, FWHEF, VWHEF and SFHEF, with 75% of these features being selected .................................... 178 Table 7.4: Average test accuracy over 10 real datasets focusing on the classifier ................................... 180 Table 7.5: The stability measures of ATI with the features selected by four ensemble approaches over 10 runs of 10-fold cross-validation ....................................................................................................... 184 Table 7.6: The stability measures of CWrel with the features selected by four ensemble approaches over 10 runs of 10-fold cross-validation .................................................................................................. 184 Table 7.7: Running time (seconds) for each ensemble approach with NB classifier on 10 real datasets . 189 Table 7.8: Running time (seconds) for each ensemble approach with KNN classifier on 10 real datasets ......................................................................................................................................................... 190 Table 7.9: Running time (seconds) for each ensemble approach with SVM classifier on 10 real datasets ......................................................................................................................................................... 190 Table 8.1: List of abbreviations for each version of HEF ........................................................................ 195 Table 8.2: Average test accuracy and stability over 10 real benchmark datasets with two different aggregation methods ........................................................................................................................ 204 Table 8.3: Comparison of HEFb-75% with other EFS studies. Values given are average accuracy; parentheses show the number of features selected, and the last column presents the methods of other FS studies (FS + Classifier + Evaluation Scheme). ......................................................................... 209 X
Description: