ebook img

Heterotrophic cultivation of microalgae as a source of docosahexaenoic acid for aquaculture PDF

203 Pages·2008·18.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heterotrophic cultivation of microalgae as a source of docosahexaenoic acid for aquaculture

Heterotrophic cultivation of microalgae as a source of docosahexaenoic acid for aquaculture ENEKO GANUZA TABERNA Grupo de Investigacio´n en Acuicultura Intituto Canario de Ciencias Marinas Universidad de Las Palmas de Gran Canaria (IUSA) Being a thesis submitted for the degree of Doctor of Phylosophy in the University of Las Palmas de Gran Canaria, 2008 Directors: Prof. Marisol Izquierdo & Prof. Colin Ratledge El haber nacido cerca del mar me gusta, me ha parecido siempre como un augurio de libertad y cambio... Pio Baroja Contents List of tables III List of figures V List of abbreviations VII Acknowledgements IX 1. General introduction 1 1.1. Lipids and their role in living organisms . . . . . . . . . . . . 1 1.2. Lipid biochemistry . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Importance of HUFA for marine finfish . . . . . . . . . . . . . 6 1.4. Importance of HUFA for human health . . . . . . . . . . . . . 9 1.5. Fish oil as a source of HUFA . . . . . . . . . . . . . . . . . . . 10 1.6. Single cell oils as source of HUFA . . . . . . . . . . . . . . . . 12 1.7. DHA-producing microorganisms . . . . . . . . . . . . . . . . . 14 1.8. HUFA producing microorganisms in aquaculture . . . . . . . . 19 1.9. Gilthead seabream as a model to study the effect of hetero- trophic organisms as a source of HUFA . . . . . . . . . . . . . 20 1.10.Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2. General materials and methods 39 2.1. Microbial cultures . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2. Rotifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3. Experimental microdiets . . . . . . . . . . . . . . . . . . . . . 45 2.4. Gilthead seabream larviculture . . . . . . . . . . . . . . . . . . 48 3. Lipid accumulation in Schizochytrium G13/2S produced in continuous culture 53 4. The influence of air supply on fatty acid production by Schi- zochytrium G13/2S and Crypthecodinium cohnii 67 5. Restriction in propionic acid precursors inhibits odd-chain fatty acid synthesis in Schizochytrium G13/2S 79 i Contents 6. High-cell-density cultivation of Schizochytrium G13/2S in an ammonium/pH-auxostat fed-batch system 87 7. Docosahexaenoic acid production by Crypthecodinium coh- nii grown in an ethanol fed-batch system 99 8. Crypthecodinium cohnii and Schizochytrium sp. as poten- tial substitutes to fisheries-derived oils in seabream (Sparus aurata) microdiets 109 9. General conclusions 127 10.Summary 129 10.1.Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.2.Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.3.Laburpena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11.Resumen ampliado 135 11.1.Introduccio´n general . . . . . . . . . . . . . . . . . . . . . . . 135 11.2.Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.3.Materiales y m´etodos generales . . . . . . . . . . . . . . . . . 154 11.4.Discusi´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 List of publications 187 Curriculum vitae 189 II List of Tables 1.1. Fatty acid production by oleaginous microorganisms . . . . . . 13 3.1. Nitrogen source concentration in continuous culture . . . . . . 58 3.2. Carbon source concentration in continuous culture . . . . . . . 60 3.3. Schizochytrium: batch vs. continuous culture . . . . . . . . . . 63 4.1. Air supply in Schizochytrium G13/2S fatty acid profile . . . . 71 4.2. N -atmosphere in Schizochytrium G13/2S fatty acid profile . . 72 2 4.3. Air supply in Crypthecodinium cohnii fatty acid profile . . . . 73 4.4. N -atmosphere in Crypthecodinium cohnii fatty acid profile . . 74 2 5.1. Nitrogen source induces odd-chain fatty acid production . . . 82 6.1. Optimum ammonium concentration . . . . . . . . . . . . . . . 91 6.2. Fatty acid profile in a NH /pH-auxostat fermentation . . . . . 94 4 7.1. Fatty acid profile in an ethanol fed-batch fermentation . . . . 105 7.2. C. cohnii: acetic acid vs. ethanol . . . . . . . . . . . . . . . . 106 8.1. Dietary formulation and proximate composition . . . . . . . . 112 8.2. Dietary fatty acid composition . . . . . . . . . . . . . . . . . . 113 8.3. Larval fatty acid composition . . . . . . . . . . . . . . . . . . 119 11.1.Fuentes microbianas de ´acidos grasos . . . . . . . . . . . . . . 147 11.2.Schizochytrium: cultivo tipo “batch” vs. continuo . . . . . . . 156 11.3.C. cohnii: ´acido ac´etico vs. etanol . . . . . . . . . . . . . . . . 163 iii List of Tables IV List of Figures 1.1. Docosahexaenoic acid (DHA; 22:6 n-3) . . . . . . . . . . . . . 2 1.2. DHA biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. Fish oil price . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4. Biochemistry of lipid accumulation . . . . . . . . . . . . . . . 15 1.5. Fermentation facilities . . . . . . . . . . . . . . . . . . . . . . 16 1.6. Microphotographs of DHA producing microorganisms . . . . . 18 1.7. Gilthead seabream global production . . . . . . . . . . . . . . 21 3.1. Growth-associated lipid accumulation in batch culture . . . . 57 3.2. Carbon source limited batch culture . . . . . . . . . . . . . . . 59 3.3. Dilution rate in continuous culture . . . . . . . . . . . . . . . 61 4.1. Anaerobic culture . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1. Fatty acid GC chromatograms . . . . . . . . . . . . . . . . . . 83 6.1. Optimum glucose concentration . . . . . . . . . . . . . . . . . 91 6.2. NH /pH-auxostat fermentation . . . . . . . . . . . . . . . . . 93 4 7.1. Ethanol fed-batch fermentation . . . . . . . . . . . . . . . . . 103 7.2. O enrichment in an ethanol fed-batch fermentation . . . . . . 104 2 8.1. Overall survival and survival to air-exposure of larvae . . . . . 117 8.2. Larval growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 v List of Figures VI List of abbreviations ABTS 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) AMP Adenosine monophosphate ARA Arachidonic acid (20:4 n-6) ATP Adenosine triphosphate ATTC American type culture collection CCMP Culture collection marine phytoplankton CDW Cell dry weight D Dilution rate DGLA Dihomogammalinolenic acid (20:3 n-6) DHA Docosahexaenoic acid (22:6 n-3) DPA-3 Docosapentaenoic acid (22:5 n-3) DPA-6 Docosapentaenoic acid (22:5 n-6) EDTA Ethylenediamine tetraacetic acid EFA Essential fatty acids EPA Eicosapentaenoic acid (20:5 n-3) FA Fatty acid FAME Fatty acid methyl esters FAS Fatty acid synthase GC Gas cromatography GLA γ-linolenic acid (18:3 n-6) GRAS Generally recognized as safe HUFA Highly unsaturated fatty acids LA Linoleic acid LNA α-linolenic acid (18:3 n-3) MOPS 3-(N-morpholino)propanesulfonic acid NADH Nicotinamide adenine dinucleotide NADPH Nicotinamide adenine dinucleotide phosphate OA Oleic acid (19:1 n-9) OCFA Odd chain fatty acids PC Phosphatidylcholine PE Phosphatidylethanolamine PI Phosphatidylinositol PKS Polyketide synthase PUFA Polyunsaturated fatty acids List of abbreviations r Biomass volumetric productivity (g l−1 h−1) CDW r DHA volumetric productivity (mg DHA l−1 h−1) DHA r Fatty acid volumetric productivity (mg FA l−1 h−1) FA rpm Revolutions per minute SCO Single cell oils SEM Standard error of the mean TFA Total fatty acids TRIS Trishydroxymethylaminomethane µ Specific rate of DHA formation (mg DHA g CDW−1 h−1) DHA µ Maximum specific growth rate max VIII

Description:
List of Tables. 1.1. Fatty acid production by oleaginous microorganisms . Marine microorganisms, including bacteria, algae and fungi, appear to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.