Heterotrophic cultivation of microalgae as a source of docosahexaenoic acid for aquaculture ENEKO GANUZA TABERNA Grupo de Investigacio´n en Acuicultura Intituto Canario de Ciencias Marinas Universidad de Las Palmas de Gran Canaria (IUSA) Being a thesis submitted for the degree of Doctor of Phylosophy in the University of Las Palmas de Gran Canaria, 2008 Directors: Prof. Marisol Izquierdo & Prof. Colin Ratledge El haber nacido cerca del mar me gusta, me ha parecido siempre como un augurio de libertad y cambio... Pio Baroja Contents List of tables III List of figures V List of abbreviations VII Acknowledgements IX 1. General introduction 1 1.1. Lipids and their role in living organisms . . . . . . . . . . . . 1 1.2. Lipid biochemistry . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Importance of HUFA for marine finfish . . . . . . . . . . . . . 6 1.4. Importance of HUFA for human health . . . . . . . . . . . . . 9 1.5. Fish oil as a source of HUFA . . . . . . . . . . . . . . . . . . . 10 1.6. Single cell oils as source of HUFA . . . . . . . . . . . . . . . . 12 1.7. DHA-producing microorganisms . . . . . . . . . . . . . . . . . 14 1.8. HUFA producing microorganisms in aquaculture . . . . . . . . 19 1.9. Gilthead seabream as a model to study the effect of hetero- trophic organisms as a source of HUFA . . . . . . . . . . . . . 20 1.10.Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2. General materials and methods 39 2.1. Microbial cultures . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2. Rotifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3. Experimental microdiets . . . . . . . . . . . . . . . . . . . . . 45 2.4. Gilthead seabream larviculture . . . . . . . . . . . . . . . . . . 48 3. Lipid accumulation in Schizochytrium G13/2S produced in continuous culture 53 4. The influence of air supply on fatty acid production by Schi- zochytrium G13/2S and Crypthecodinium cohnii 67 5. Restriction in propionic acid precursors inhibits odd-chain fatty acid synthesis in Schizochytrium G13/2S 79 i Contents 6. High-cell-density cultivation of Schizochytrium G13/2S in an ammonium/pH-auxostat fed-batch system 87 7. Docosahexaenoic acid production by Crypthecodinium coh- nii grown in an ethanol fed-batch system 99 8. Crypthecodinium cohnii and Schizochytrium sp. as poten- tial substitutes to fisheries-derived oils in seabream (Sparus aurata) microdiets 109 9. General conclusions 127 10.Summary 129 10.1.Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.2.Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.3.Laburpena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11.Resumen ampliado 135 11.1.Introduccio´n general . . . . . . . . . . . . . . . . . . . . . . . 135 11.2.Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.3.Materiales y m´etodos generales . . . . . . . . . . . . . . . . . 154 11.4.Discusi´on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 List of publications 187 Curriculum vitae 189 II List of Tables 1.1. Fatty acid production by oleaginous microorganisms . . . . . . 13 3.1. Nitrogen source concentration in continuous culture . . . . . . 58 3.2. Carbon source concentration in continuous culture . . . . . . . 60 3.3. Schizochytrium: batch vs. continuous culture . . . . . . . . . . 63 4.1. Air supply in Schizochytrium G13/2S fatty acid profile . . . . 71 4.2. N -atmosphere in Schizochytrium G13/2S fatty acid profile . . 72 2 4.3. Air supply in Crypthecodinium cohnii fatty acid profile . . . . 73 4.4. N -atmosphere in Crypthecodinium cohnii fatty acid profile . . 74 2 5.1. Nitrogen source induces odd-chain fatty acid production . . . 82 6.1. Optimum ammonium concentration . . . . . . . . . . . . . . . 91 6.2. Fatty acid profile in a NH /pH-auxostat fermentation . . . . . 94 4 7.1. Fatty acid profile in an ethanol fed-batch fermentation . . . . 105 7.2. C. cohnii: acetic acid vs. ethanol . . . . . . . . . . . . . . . . 106 8.1. Dietary formulation and proximate composition . . . . . . . . 112 8.2. Dietary fatty acid composition . . . . . . . . . . . . . . . . . . 113 8.3. Larval fatty acid composition . . . . . . . . . . . . . . . . . . 119 11.1.Fuentes microbianas de ´acidos grasos . . . . . . . . . . . . . . 147 11.2.Schizochytrium: cultivo tipo “batch” vs. continuo . . . . . . . 156 11.3.C. cohnii: ´acido ac´etico vs. etanol . . . . . . . . . . . . . . . . 163 iii List of Tables IV List of Figures 1.1. Docosahexaenoic acid (DHA; 22:6 n-3) . . . . . . . . . . . . . 2 1.2. DHA biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. Fish oil price . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4. Biochemistry of lipid accumulation . . . . . . . . . . . . . . . 15 1.5. Fermentation facilities . . . . . . . . . . . . . . . . . . . . . . 16 1.6. Microphotographs of DHA producing microorganisms . . . . . 18 1.7. Gilthead seabream global production . . . . . . . . . . . . . . 21 3.1. Growth-associated lipid accumulation in batch culture . . . . 57 3.2. Carbon source limited batch culture . . . . . . . . . . . . . . . 59 3.3. Dilution rate in continuous culture . . . . . . . . . . . . . . . 61 4.1. Anaerobic culture . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1. Fatty acid GC chromatograms . . . . . . . . . . . . . . . . . . 83 6.1. Optimum glucose concentration . . . . . . . . . . . . . . . . . 91 6.2. NH /pH-auxostat fermentation . . . . . . . . . . . . . . . . . 93 4 7.1. Ethanol fed-batch fermentation . . . . . . . . . . . . . . . . . 103 7.2. O enrichment in an ethanol fed-batch fermentation . . . . . . 104 2 8.1. Overall survival and survival to air-exposure of larvae . . . . . 117 8.2. Larval growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 v List of Figures VI List of abbreviations ABTS 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) AMP Adenosine monophosphate ARA Arachidonic acid (20:4 n-6) ATP Adenosine triphosphate ATTC American type culture collection CCMP Culture collection marine phytoplankton CDW Cell dry weight D Dilution rate DGLA Dihomogammalinolenic acid (20:3 n-6) DHA Docosahexaenoic acid (22:6 n-3) DPA-3 Docosapentaenoic acid (22:5 n-3) DPA-6 Docosapentaenoic acid (22:5 n-6) EDTA Ethylenediamine tetraacetic acid EFA Essential fatty acids EPA Eicosapentaenoic acid (20:5 n-3) FA Fatty acid FAME Fatty acid methyl esters FAS Fatty acid synthase GC Gas cromatography GLA γ-linolenic acid (18:3 n-6) GRAS Generally recognized as safe HUFA Highly unsaturated fatty acids LA Linoleic acid LNA α-linolenic acid (18:3 n-3) MOPS 3-(N-morpholino)propanesulfonic acid NADH Nicotinamide adenine dinucleotide NADPH Nicotinamide adenine dinucleotide phosphate OA Oleic acid (19:1 n-9) OCFA Odd chain fatty acids PC Phosphatidylcholine PE Phosphatidylethanolamine PI Phosphatidylinositol PKS Polyketide synthase PUFA Polyunsaturated fatty acids List of abbreviations r Biomass volumetric productivity (g l−1 h−1) CDW r DHA volumetric productivity (mg DHA l−1 h−1) DHA r Fatty acid volumetric productivity (mg FA l−1 h−1) FA rpm Revolutions per minute SCO Single cell oils SEM Standard error of the mean TFA Total fatty acids TRIS Trishydroxymethylaminomethane µ Specific rate of DHA formation (mg DHA g CDW−1 h−1) DHA µ Maximum specific growth rate max VIII
Description: