ebook img

Heteroscedastic One-Way ANOVA and Lack-of-Fit Tests PDF

15 Pages·2005·0.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heteroscedastic One-Way ANOVA and Lack-of-Fit Tests

Heteroscedastic One-Way ANOVA and Lack-of-Fit Tests M.G. AKRITAS and N. PAPADATOS Recent articles haveconsideredtheasymptoticbehavioroftheone-wayanalysisofvariance(ANOVA)F statisticwhenthenumberof levelsorgroupsislarge.Inthesearticles,theresultswereobtainedundertheassumptionofhomoscedasticityandforthecasewhenthe sampleorgroupsizesni remain(cid:142)xedasthenumberofgroups,a,tendstoin(cid:142)nity.Inthisarticle,westudybothweightedandunweighted teststatisticsintheheteroscedasticcase.Theunweightedstatisticisnewandcanbeusedevenwithsmallgroupsizes.Wedemonstratethat anasymptoticapproximationtothedistributionoftheweightedstatisticispossibleonlyifthegroupsizestendtoin(cid:142)nitysuitablyfastin relationtoa.Ourinvestigationoflocalalternativesrevealsasimilaritybetweenlack-of-(cid:142)ttestsforconstantregressioninthepresentcase ofreplicatedobservationsandthecaseofnoreplications,whichusessmoothingtechniques.Theasymptotictheoryusesanovelapplication oftheprojectionprincipletoobtaintheasymptoticdistributionofquadraticforms. KEYWORDS: Largenumberoffactorlevels;Localalternatives;Projectionmethod;Quadraticforms;Regression;Unbalancedmodels. 1. INTRODUCTION AsdemonstratedbyScheffé(1959,chap.10),theF testissen- sitivetodeparturesfromthehomoscedasticityassumption,par- It is well known that the F test is robust to the normality ticularlyintheunbalancedcase.Thehomoscedasticprocedure assumption if the number of factor levels or groups is small basedontheasymptotictheoryforlargea isequallysensitive. ((cid:142)xed)andthesampleorgroupsizesarelarge(tendtoin(cid:142)nity); Forexample,1,000simulationreplicationswitha 30levels, see Arnold(1980).In thissettingthe theoryofweightedleast D groupsizes 14, 15, 7, 4, 4, 4, 4, 6, 5, 4, 4, 4, 6, 5, 5, 4, 6, 6, squares statistics is also well understood; see Arnold (1981, 8,4, 5,4,5,6,4, 5,4,6,4,5,andheteroscedasticnormaler- chap.13).However,thecasewherethenumberoffactorlevels rorswithcorrespondingvariances.1 :133i/2, i 1;:::;30, islarge(tendstoin(cid:142)nity)isstillnotadequatelydeveloped. C D at ® :05,yieldedachieved® levelsof .141and.178for the When the numberof levels, a, goes to in(cid:142)nity,the asymp- D classicalF testandthatbasedonTheorem2.2(a),respectively. totic distribution of the F statistic F MST=MSE, where D [Forthesamesettingbuthomoscedasticerrors,theprocedureof MST is the mean square for treatmentand MST is the mean Theorem2.2(a)achievedan® levelof:070.]Forthesameset- square for error, is found by obtaining the asymptotic dis- ting,theunweightedheteroscedastictestprocedureforlargea tribution of a1=2.F 1/. The MSE typically converges in (see Theorem2.5),achievedan ® levelof.073.[Also see Re- ¡ probability to a constant and thus, by Slutsky’s theorem, mark2.3(ii)forasimilarsimulationinthebalancedcase.] the foregoing expression reduces to (cid:142)nding the asymptotic Evenunderhomoscedasticity,theusualF testisnotasymp- distributionof a1=2.MST MSE/. Boos and Brownie (1995) totically valid in the unbalanced case if the group sizes are ¡ presentedsomeresultsinthisdirection,butuseda specialized small; see Section2.1. Althoughan asymptoticallyvalid pro- techniqueapplicableonlytofewmodels.BecauseMST MSE cedure using the F-test statistic is providedin Section 2.1, it ¡ is a quadraticform,themost directway to(cid:142)nditsasymptotic requiresestimationofthefourthmoment. distribution is to apply results for the asymptotic normality The purpose of the present article is to provide test proce- of quadratic forms; see de Jong (1987)and Jiang (1996)and duresthatarevalidandperformwellinunbalancedand/orhet- references therein. However, it is not straightforward to ap- eroscedastic situations when a tends to in(cid:142)nity. We consider plytheseresults.AkritasandArnold(2000)developedanap- both the classical weighted statistic and an unweighted sta- proachthatisbasedon(cid:142)ndingthejointlimitingdistributionof tistic that appears to be new. Using exact calculationsunder .MST;MSE/.Withthistechniquetheycovereda verygeneral normality,we demonstratethattheclassicalweightedstatistic classofmodelsandalsoobtainedtheasymptoticdistributionof is very unstable if the group sizes are small, which explains thestatisticsunder(cid:142)xedalternatives.Independentlyandusing Krutchkoff’s(1989)observation.Asymptoticapproximationto different asymptotic techniques, Bathke (2002) also general- the distributionof the weighted statistic requires the average ized the results of Boos and Brownie (1995) to (cid:142)xed effects group size to tend to in(cid:142)nity faster than a1=2. The procedure balancedmultifactordesigns. that uses the new unweightedstatistic is applicablealso with Theaforementionedresultsallpertaintothehomoscedastic small groupsizes. Its asymptoticand small sample properties case with small ((cid:142)xed) groupsizes. However,the assumption are preferable to those of the procedure based on the F-test thatalargenumberofpopulationsarehomoscedasticisdif(cid:142)cult statistic,eveninthehomoscedasticcase.Indeed,itdoesnotre- toascertainwhenthegroupsizefromeachpopulationissmall. quireestimationofthefourthmomentanditsasymptotictheory usesweakerconditions. Thetechniqueweapplyisbasedonanapplicationofthepro- M.G.AkritasisProfessor,DepartmentofStatistics,PennsylvaniaStateUni- jectionprinciple.Itallowsustostudy,directlyandelegantly,the versity,UniversityPark,PA16802(E-mail:[email protected]).N.Papadatos asymptoticnulldistributionofthequadraticformMST MSE. is Assistant Professor, Department of Mathematics, Section of Statistics ¡ Thenoveltyofthetechniquerestsonthechoiceoftheclassof andO.R.,University ofAthens,15785Athens,Greece (E-mail:npapadat@ cc.uoa.gr). TheauthorsthanktheEditorforamostef(cid:142)cient handlingofthe manuscript, and the Associate Editor and two referees for a number of in- teresting suggestionswhichledtoasigni(cid:142)cant improvementofthematerial. ©2004AmericanStatisticalAssociation This research was supported in part by National Science Foundation grant JournaloftheAmericanStatisticalAssociation SES-99-86592.N.PapadatosalsoacknowledgespartialsupportfromtheUni- June2004,Vol.99,No.466,TheoryandMethods versityofAthens(researchgrant70/4/5637). DOI10.1198/016214504000000412 368 AkritasandPapadatos:HeteroscedasticOne-WayANOVAandLack-of-FitTests 369 randomvariablesontowhichtoproject.Althoughforsimplic- 2.1 HomoscedasticModels itywefocusontheone-waymodel,itisratherobviousthatthe Let U have an F distribution, which is the dis- a a 1;N a projectionprincipleandtheideaofchoosingtheclassofvari- ¡ ¡ tribution of F under homoscedasticity and normality. Let a P aeblsl;esseoentWowanhgic(h2t0o0p3r)oajencdt,Wapapnlgie(s2t0o0g4e)n.eTrahlembualstiicfatcetcohrnmiqoude- aclassoe,Nb=a n!anbd, abb¡1 ai1D.1Int¡iis1e!asibly1;vethriu(cid:142)se,dinthtahteifbbal<anced, 1 is demonstratedfor the homoscedasticcase, where the trans- a1=2.U D 1/ d N.0D;2b=.b 1// as a , and if N1=a a parencyofthemethodpermitsderivationoftheasymptoticthe- ¡ ! ¡ ! 1 also tends to in(cid:142)nity with a, then a1=2.U 1/ d N.0;2/. oryunderweakerassumptionsonthemomentsandgroupsizes a ¡ ! Thus, Theorem2.1 asserts that the usual F test is asymptoti- intheunbalancedcasethanthoseofAkritasandArnold(2000). cally, as a , correct in the balancedhomoscedasticcase Indoingso,wealsoconsiderthecasewherethegroupsizesare !1 even without the normality assumption. Theorem 2.2, how- allowedto tendto in(cid:142)nitytogetherwith the numberof levels. ever,showsthattheusualF procedureforunbalancedmodels Thissetting was also consideredby Portnoy(1984),but from is robust to departuresfrom the normalityassumptiononly if theM-estimationpointofview. bb 1orthegroupsizesarealsolarge. 1 Theone-waylayoutF statisticcoincideswiththelack-of-(cid:142)t D statisticfortestingthehypothesisofconstantregressionagainst Theorem 2.1 (Balanced case). Let Xij, i 1;:::;a, j D D a generalalternativewithreplicatedobservations,andthusthe 1;:::;n,beaniid(independent,identicallydistributed)sequence present results have direct bearing on this problem as well. ofrandomvariableswithEXij ¹and0<VarXij ¾2< . D D 1 Theliteratureoflack-of-(cid:142)ttestinginregressionisquiteexten- sive: see Eubankand Hart (1992),Müller(1992),Härdle and (a) Ifn 2remains(cid:142)xed,then ¸ ‡ ´ Mammen(1993),Hart(1997),andDetteandMunk(1998),to mentionafew.Itisquiteinterestingthattheasymptoticvalidity a1=2.Fa 1/ d N 0; 2n asa : ¡ ! n 1 !1 ofthecommonlack-of-(cid:142)ttestinthecaseofreplicatedobserva- ¡ tionshasneverbeenconsidered.Ourstudyoflocalalternatives (b) Ifn n.a/ ,asa ,then D !1 !1 revealsthattheclassicallack-of-(cid:142)ttestwithreplicatedobserva- a1=2.F 1/ d N.0;2/ asa : a tionscannotdetectalternativesthatconvergetothenullhypoth- ¡ ! !1 esisatratea 1=2,butratheratratesthatresemblethoseinthe Note that the result of part (b) of Theorem 2.1 is easily ¡ nonparametricliterature. Given the calculationin the case of guessedfrompart(a). Itsproof,however,involvesa ratherin- normalvariableswithknownvariancepresentedinFan(1996), terestingapplicationoftheLindebergcondition. thisisnotsurprising. Theorem 2.2 (Unbalanced case). Let X , i 1;:::;a, ij D Section2givestheteststatisticsandtheirlimitingnulldistri- j 1;:::;n , be an iid sequence of random variables with i butionwithsomecommentsontheirperformance.InSection3 EXDij ¹,0<VarXij ¾2< . D D 1 we present the projectionmethod in the context of quadratic ftiovrems.sS.oSmecetisoimnu4lagtiivoensraessuylmtspatroetidcisrecsuuslstesduinndSeercltoiocnal5a.Pltreornoafs- (a) IPf,aiDfo1rn4isCo±m<e1±,> 0, EjXijj4C± < 1, supa¸1a¡1 £ of the results presented in Sections 2 and 4 are given in the Xa 1 Appendix. n n.a/ ni b .1; /; ND N D a ! 2 1 In all that follows, X , i 1;:::;a, j 1;:::;n , de- i 1 ij D D i D notesadoublesequenceofindependentrandomvariables,S2 and P i D .ni¡1/¡1 njiD1.Xij ¡Xi¢/2 and 1Xa 1 b asa ; 1 a n ! !1 1 Xa i 1 i MST n .X X /2; D D a 1 i i¢¡ ¢¢ then ¡ i 1 1 XDa Xni a1=2.Fa¡1/!d N.0;¿2/ asa!1; MSED N a .Xij ¡Xi¢/2; (1.1) where,letting¹4DE[.Xij ¡¹/4=¾4], ¡ i 1j 1 D D 2b b.bb 1/ F MST; ¿2D b 1 C.¹4¡3/ .b 1¡1/2 : a D MSE ¡ ¡ (b) Letn n .a/,andsetn.a/ min n .a/ i 1;:::;a P P P i D i D f i I D g wwihtehrNe Xi¢n1D n¡i 1 nnjaiD.I1nXciajseatnhdegXro¢¢uDpsNize¡s1ni aiDn1i.anj/iD1Xij and·.a/Dmanx.fan/i.a/;iD1;:a:s:a;ag.Ass;umethat asa D ,wCe¢a¢l¢sCowriteS2.a/andN.a/. D !1 !1 !1 !1 i and 2. MAINRESULTS ·.a/=n.a/ C< foralla: · 1 Inthissectionwepresentanddiscusstheasymptoticnulldis- IfEX4 < ,then ij 1 tributionof the proposedtest statistics. Correspondingresults underlocalalternativesarestatedinSection4. a1=2.Fa 1/ d N.0;2/ asa : ¡ ! !1 370 JournaloftheAmericanStatisticalAssociation,June2004 P Thereasonweneedhighermomentsintheunbalancedcase whereb¹ a w X ,wherethew areproportionalton =¾2 isbecausethesquareterms(i.e.,X2)donotcancel[see(A.6)]. andsumDto1.iWD1ithithiis¢choiceofb¹iitiseasytoverifythaitthie ij Theprecedingresultswith(cid:142)xedni’soverlapwiththoseofBoos precedingquadraticformequalsTW.However,TWinvolvesun- and Brownie (1995)and Akritasand Arnold(2000),although knownvariancesthatmustbeestimated.Theresultinggeneral- the present assumptionsare slightly weaker. The new results izedorweightedleastsquaresstatisticis underhomoscedasticitypertainto thecasegivenin Section4, Á ! wherethegroupsizesalsotendtoin(cid:142)nityandthelimitingdis- Tb Xa niX2 P 1 Xa niX 2: (2.5) tributionisunderlocalalternatives. WD i 1 Si2 i¢¡ ai 1ni=Si2 i 1 Si2 i¢ D D D 2.2 HeteroscedasticModels It willbeshownthatTb isasymptoticallyequivalenttoT W W 2.2.1 ThePossibleStatistics. Underheteroscedasticityitis onlyifthegroupsizestendtoin(cid:142)nityasa suitablyfast. possible to have both weighted and unweighted statistics. In !1 The dif(cid:142)culties with (cid:142)xed group sizes are highlightedby the thissectionwe(cid:142)rstintroducethetwostatisticsandthenpresent followingproposition,which indicatesthatTb , appliedto the W theirasymptotictheory. simplestcase(i.e.,tothebalancedhomoscedasticnormalcase), The unweightedstatistic,whoseversionfortheunbalanced isquiteunstable.Theassertionisstatedherewithoutproof. case is new, is based on the observationthat in the balanced case, E.MST/ E.MSE/ under the null hypothesis, so that Proposition 2.3. Let Xij be iid N.¹;¾2/, i 1;:::;a, the statistic MSDT MSE is still centered. In the unbalanced j 1;:::;n,¾2>0,n(cid:142)xed.Then,providedn 6D, ¡ D ¸ casethisisnottrue,butcenteringcanbeachievedbyreplacing ‡ ´ P MtoSthEewstiatthisMticSE¤D.a¡1/¡1 aiD1.1¡ni=N/Si2.Thisleads a¡1=2 TbW¡ nn¡13a ¡ µ ‡ ´ ¶ ‡ ´ TaDa¡1=2Xa ni.Xi¢¡X¢¢/2¡ 1¡ nNi Si2 ; (2.1) !d N 0;2..nn¡13//22..nn¡25// asa!1: i 1 ¡ ¡ D which, for the balancedcase only,is closely connectedto F Note that the requirement n 6 arises from the fact that a ¸ viatherelationship Var[.Xi¢¡¹/2=Si2]D2.n¡1/2.n¡2/n¡2.n¡3/¡2.n¡5/¡1. ‡ ´ Á ! Thus,forsmallgroupsizes, onecan expectunstablebehavior T 1 1 ¡a1=2.F 1/¢ 1Xa S2 oftheWald-typeweightedstatistic. aD ¡ a a¡ a i i 1 Remark2.2. Althoughweightedstatisticsareknowntohave ‡ ´ D 1 ¡ ¢ betterpowerproperties,theresultsofProposition2.3andSec- 1 a1=2.MST MSE/ : (2.2) tion2.2.3suggestthat theiruse requiresthegroupsizesto be D ¡ a ¡ large also. For example,in the last simulationsetting in Sec- TheWald-typeweightedstatisticis tion 5 (a 30;n 10),the achieved® level of the weighted D D TW X0C0.CVC0/¡1CX; (2.3) test statistic is .295, but if n is increased to 70 and 80, the D ¢ ¢ achieved®levelsbecome.096and.076,respectively.Thus,we whereX .X ;:::;X / isthevectorofsamplemeanswith 1 a 0 donotrecommendusingtheweightedteststatisticifthegroup dispersio¢nDmatri¢x V Va¢rX diag.¾2=n ;:::;¾2=n /, and C .1a 1 Ia 1/,wDhere1k¢ D.1;:::;11/0 1RkandaIk daenotes ssitzaetisstaicreplreospsotsheadnh8er0e.cOanntbheeuostehdearlhsoanwdi,ththsemuanlwlne.ightedtest D ¡ j¡ ¡ D 2 thek-dimensionalidentitymatrix.Notethatthisissimilartothe weightedschemethatwouldbeusedifn andais(cid:142)xed. 2.2.2 The Unweighted Statistic. The asymptotic distribu- i !1 Alsonotethat,w‡ritingJD1a10a, ´ ctiaosneso,faTnadissmgailvleonrslaerpgaeragtreolyupfosriztehse.balancedandunbalanced 1 TW DX0¢ V¡1¡ tr.V¡1/V¡1JV¡1 X¢ Theorem 2.4 (Balanced case, small n). For n ¸ 2 (cid:142)xed, Xa ÁXa !2 let Xij, i D1;:::;a, j D 1;:::;n, be a double sequence of niX2 P 1 ni X ; (2.4) independent random variables with EXij D ¹ and D i 1 ¾i2 i¢¡ ai 1ni=¾i2 i 1 ¾i2 i¢ 0<VarXij D¾i2<1,andsupposethatineachrowi,theran- D D D dom variables Xij, j 1;:::;n, have the same distribution. so that it is easily calculatedwithoutinvertinga matrix. Note Moreover,assumethatD thatinthehomoscedasticcaseandwiththeusualestimationof thecommonvariance,TW becomestheusualone-wayanalysis 1Xa ¾4 s4 .0; / asa (2.6) ofvariance(ANOVA)statistic. a i ! 2 1 !1 i 1 Remark2.1. An alternativederivationofTW is(cid:142)rsttostan- D P fdoarrmdi.zIenXp¢aratincdultahr,eVn¡c1e=n2tXer hitasbemfoearenfvoarlmueinVg¡t1h=e2¹quaanddractoic- aTnhdenth,watitfhorTsaogmivee±n>by0(,2s.1u)p,a¸1a¡1 aiD1.EjXi1j2C±/2 <1. ¢ variance matrix I . Thus, the appropriate quadratic form is ‡ ´ .mXa¢to¡rob¹f/¹0Vu¡n1d.eXr¢th¡aeb¹hy/.pTothheesmisionfimaucmomvmaroiannmceeaunnibsib¹asedb¹es1ti-, Ta!d N 0;n2ns41 asa!1: D a ¡ AkritasandPapadatos:HeteroscedasticOne-WayANOVAandLack-of-FitTests 371 Remark 2.3. (i) Assuming that the MSE is consistent for Ifforsome±>0,either P ¾or2emD2li.m4ais¡e1quivaiDal1e¾ni2t,to(2.2)impliesthattheassertionofThe- sup1Xa .E Xi1 2C±/2< and n.a/ o¡a±=.4C2±/¢ ‡ ´ a j j 1 D a1=2.F 1/ d N 0; 2ns4 asa : (2.7) a¸1 iD1 (2.8) a¡ ! .n 1/¾4 !1 ¡ or Similarobservationsare validfortheresultsofTheorems2.6, Xa 1 4.3,and4.5(a). sup EXi1 4C±< ; (2.9) (ii)Becauses4 ¾4in(2.7),itfollowsthattheusualF test, a 1a j j 1 or that based on¸Theorem 2.1, will be liberal under het- ¸ iD1 then,withT givenby(2.1), eroscedasticity. To illustrate this effect, we conducted small a simulationwith1,000runsandXij »N.0;¾i2/, iD1;:::;30, Ta d N.0;2s4/ asa : j 1;:::10, where ¾ 1 if i 15 and ¾ 5 if i 16, at ! !1 i i noDminal® :05.TheacDhieved®·levelsoftheDclassica¸lF test 2.2.3 The Weighted Statistic. Given the dif(cid:142)culties with D and the procedure based on Theorem 2.1 are .109 and .129, boundedgroupsizeswhentheunknownvariancesareestimated respectively,whereasthatbasedonTheorem2.4achieved.074. (seeProposition2.3),thissectionconsidersthecasewherethe (iii) If ¾2 ¾2 for all i, then s4 ¾4 and (2.7)coincides groupsizestendto . i D D 1 withtheresultofTheorem2.1(a).However,theresultsusedif- LetTW begivenin(2.3)or(2.4).Astraightforwardcalcula- ferentconditions.Theorem2.4doesnotrequireX to beiid, tionrevealsthat ij butusesextramomentassumptionsto controlthevariationof Xa ÁXa !2 n 1 n thesummands. ETW Da¡1C ¾i2¹2i ¡ Pa n =¾2 ¾i2¹i Theorem 2.5 (Unbalanced case, small ni). Let Xij, i D iD1 i iD1 i i iD1 i 1;:::;a, j 1;:::;ni, be a doublesequence of independent a 1 rwahnedroemnvariD2abfloersewaicthhEi.XSiujpDpo¹seatnhdat0in<eVaacrhXroijwDi,¾ti2he<ra1n-, with equ¸ality¡if and only if the null hypothesis H0:¹1 dMoomrevoavreiira¸,balsessuXmiej,thjatD1;:::;ni, have the same distribution. ¢y¢m¢pDto¹tiacdisisttrriubeu.tiTohnu,sunwdeeratrheelneudlltohycpoontshiedseirsa,toiofnof the aDs- 1Xa TW .a 1/ 1Xaa iD¾14¾i4!s42.0;1/; D¡Xia1‡¡¾nii2X2i¢¡1´¡ t.1a/Xia1 ¾nii2‡¾nii2X2i¢¡1´ i °4 .0; / asa ; D D X a iD1 ni¡1 ! 2 1 P !1 ¡ t.1a/ ¾ni2¾nj2Xi¢Xj¢; asunpdi¸t1hEatjXfio1rj2Cso±m<e¡1±.T>he0n,,wsuitpha¢¸T1a1agiveainDb1yn2i(C2.±1)<, 1 and wheret.a/DPaiD1i6Dnji=¾ii2. j T d N 0;2.s4 °4/ asa : Proposition2.7. Assume that Xij are independentrandom a Remark 2.4!. Compared Cto its homosced!ast1ic counterpart, variables such that EXij D ¹ and VarXij D ¾i2 > 0, i D 1;:::;a,j 1;:::;n .a/,andsupposethatineachrowi,the i Theorem 2.5 does not require the X to be iid, uses weaker D ij randomvariablesX ,j 1;:::;n .a/,havethesamedistrib- ij i momentconditions,andthelimitingresultdoesnotinvolve¹ . D ThishighlightsthedifferencesbetweenTa andFa intheunba4l- u¹t/i=o¾n.M4 o±re<over,.aIsfsunm.ae/thatmfoirnsnom.ae/±>i 0,s1u;p:i:¸:1;Eaj.Xi1¡ ancedcase. ij C 1 D f i I D g ! 1 asa ,then,forT givenin(2.3)or(2.4), W !1 NextwepresentversionsofTheorems2.4and2.5whenthe ¡ ¢ group sizes tend to in(cid:142)nity with the number of factor levels. a¡1=2 TW .a 1/ d N.0;2/ asa : ¡ ¡ ! !1 Here,thebalancedandunbalancedcasesare combinedin one Theorem 2.8. Consider the setting of Proposition 2.7 and, theorem,where the asymptoticresultis shownundertwo dif- moreover, assume that the variances ¾2, i 1, are bounded ferentsetsofconditions,onebeingweakerinmomentassump- i ¸ awayfromzeroandthattherandomvariablesX areuniformly tions and more restrictive in conditions on group sizes than ij bounded by some constant M. Let Tb be the statistic given theother. W in(2.5),letn n .a/andsetn.a/ min n .a/ i 1;:::;a , i Pi i :::T;hneio.are/m, be2.i6nd(eLpaerngdeenntiw).itLheEt XXijij, i¹Dan1d;:0::<;aV,arjXDij 1; nhNoDldsnNa.nad/,DinaaD¡dd1itioainD,1ni. If condDition (fC.1) oIf LDemma C.g2 ¾2 < , and suppose that for each iD, X , j 1;:::;n .aD/, haiveth1esamedistribution.Setn.a/Dminfijni.a/DIiD1;:::i;ag, (a) a¡1=2Xa .logni/4 o.1/; ·.a/ max n .a/ i 1;:::;a , and assume that 2 n D i i D f I D g · i 1 n.a/ ,·.a/=n.a/ C< foralla,and D !1 · 1 a1=2 (2.10) Xa (b) o.1/; and 1 ¾4 s4 .0; / asa : n D a i ! 2 1 !1 (c) n.Na/ ; iD1 !1 372 JournaloftheAmericanStatisticalAssociation,June2004 then Remark 3.1. We stipulate that such variations of Hájek’s ¡ ¢ projection produce asymptotically equivalent statistics for a¡1=2 TbW .a 1/ d N.0;2/ asa : most quadratic forms arising in statistics. Indeed, the inter- ¡ ¡ ! !1 esting part in most quadratic forms is due to blocks that Weremarkthattheconditionofuniformboundednessofthe lie along the diagonal. In the present case, if we let X randomvariables,which will be used to applyBernstein’s in- .X ;:::;X ;:::;X ;:::;X /,thenMST MSEcanbDe equalityintheproofofLemmasC.1andC.2,canbereplaced wri1t1ten as a1qnu1adraticaf1orm in Xan,aM0ST MSE¡XAX, with 0 ¡ D byaconditionthatimposesaboundontherateofgrowthofthe Agivenby absolutemoments(cf.ShorackandWellner,1986,p.855). 0 1 B c 1 1 c 1 1 1 ¡ 3 n1 0n2 ¢¢¢ ¡ 3 n1 0na 3. THEPQRUOAJDERCATTIIOCNFMORETMHSODFOR ADBB@¡c31:::n210n1 B:::2 ¢¢:::¢ ¡c31:::n210naCCA; c 1 1 c 1 1 B A common methodfor obtainingthe limit distributionof a ¡ 3 na 0n1 ¡ 3 na 0n2 ¢¢¢ a sequence of statistics Sa is to show that it is asymptotically where 1k .1;:::;1/0 Rk and Bi are ni ni matriceswith equivalenttoasequenceeS ofwhichthelimitbehavioriseasy elementsbD givenby2 £ a i;sk to derive. For certain classes of statistics (e.g., U statistics, 8c R statistics)the suitablesequenceeS is foundby the method >< 1 c2 c3 ifs k a n ¡ ¡ D i osefepvroajnedcteiroVn.aFarotr(a19n9ic8e,cphraespe.n1t1a)t.ioIfnSoafitshebapsreodjeocntiUon1;m:e::th;oUda, bi;sk D>:nc1 ¡c3 ifs6Dk, (3.3) i and has (cid:142)nite secondmoment,its projectionontothe class of P randomvariablesoftheform a g .U /, where g aremea- where P i 1 i i i surablewith aiD1E[gi2.Ui/]<1D,isgivenby c1D .N Na¡/.a1 1/; Xa ¡ ¡ eSa D E.SajUi/¡.a¡1/ESa: c2D N1 a; (3.4) i 1 ¡ D 1 ThisisknownastheHájekprojectionofS .Inthissectionwe c : a 3 D N.a 1/ showthataslightmodi(cid:142)cationoftheHájekprojectionmethod ¡ yieldsasequenceofstatisticsthatisasymptoticallyequivalent Thus, all elements of A outside the block diagonalequal c3, tothesequenceofquadraticformsMST MSE.Forsimplicity whichisanorderofmagnitudesmallerthantheotherelements. ¡ only,theformulationofthissectionis limitedtohomoscedas- UsingthequadraticformrepresentationofMST MSE,the ticmodels,butincludesbothcaseswherethepossiblyunequal notation introduced in Remark 3.1, and under EX¡ij 0 and groupsizesare either(cid:142)xedortendtoin(cid:142)nity.In fact(see Ap- VarX 1,wehave D ij pendixA), theproofsgivenin thepresentarticleare allbased D onthesameprojectionmethod. Xa X Xni1 Xni2 doLmevteXcitoDrs.wXiit1h;i:n:d:;eXpeinnid/e0,nitcDom1;p:o:n:e;nat,sb,aenidndweiptheonudtelnotsrsaonf- X0AXDiD1X0iBiXi¡c3i16Di2 j1 j2 Xi1j1Xi2j2 (3.5) generalityassume that EXij 0 and VarXij 1 for all i, j. andthus D D We are interested in the limiting distribution of Fa 1, or Xa Xni equivalently,whereas MSE p 1, in the limiting dist¡ribution E.X0AXjXr/DX0rBrXr C bi;ss ! of MST MSE, as a . To do so, we use the projection i r;i 1s 1 ¡ !1 6D D D method,projectingontotheclassofrandomvariables Xnr (Xa Xa ) DX0rBrXr ¡ br;ss; C HD gi.Xi/:gi measurablewith E[gi2.Xi/]<1 : wherethesecondequalityfollowsfromsD1thefactthatthediago- i 1 i 1 D D (3.1) nalelementsofAsum tozero.Accordingto(3.2),theprojec- It is easily seen that the projection onto the class C H of any tionofX0AXontotheclassC H givenin(3.1)is statisticSa (satisfyingESa2<1),basedonXi,iD1;:::;a,is Xa Xa " Xnr # givenby E.X0AXjXr/D X0rBrXr ¡ br;ss r 1 r 1 s 1 Xa D D D eSa E.Sa Xi/ .a 1/ESa: (3.2) Xa D i 1 j ¡ ¡ D X0rBrXr D r 1 ThisisaslightvariationofHájek’sprojectioninthesensethat, D tode(cid:142)netheclassofrandomvariablesontowhichwe project, DX0ADX; (3.6) theoriginalset of independentvariablesis groupedintoinde- whereA diag B ;:::;B .UsingthefactsthattheX are D 1 a ij D f g pendentvectors. independentwith zero mean, and the diagonalelementsof A AkritasandPapadatos:HeteroscedasticOne-WayANOVAandLack-of-FitTests 373 (and hence also of A ) sum to zero, it is easy to see that 4. LOCAL ALTERNATIVES D E.X0AX/DE.X0ADX/D0.Usingthenotationin (3.4)and a Toobtainthelimitingdistributionofthestatisticsunderlocal straightforwardcomputation, alternatives,itisconvenienttoassumethattheobservedrandom Xa variablesaresimpletranslationsoftheoriginalonesdescribed X0ADXD X0rBrXr inthecorrespondingtheorems,thatis, r 1 XDa "‡c ´ÁXni !2 Xni # Yij DXij C¹i.a/; iD1;:::;a; j D1;:::;ni; (4.1) D n1i ¡c3 Xij ¡c2 Xi2j : (3.7) wheretheconstants¹i.a/!0asa!1inasuitablerate,so i 1 j 1 j 1 thatthelimitingdistributionexists.Itturnsoutthatwecan(cid:142)nd D D D convenientalternativesoftheform(4.1)with Becausethisisa sumofa independentrandomvariableswith Z zeromean,itisreasonabletoexpectthat i=a ¡ ¢ ¹i.a/Da3=4n¡i 1=2 g.t/dt; (4.2) 1=2 d .i 1/=a Var.X0ADX/ ¡ X0ADX N.0;1/: (3.8) ¡ ! whereg isacontinuousfunctionon[0;1]suchthat Direct computationsgiven in AppendixA show that, with no Z 1 restrictiononthen , i g.t/dt 0: (4.3) D 0 Var.X0ADX/ O.a¡1/: (3.9) D Itisalsousefultode(cid:142)nethe“departureparameter,” ThissuggeststhattheproperscalingofX0ADX is a¡1=2,even Z 1 if the group sizes tend to in(cid:142)nity. Relationships (3.5), (3.6), µ2 g2.t/dt; (4.4) (3.8),and(3.9)implythatfortheprojectionmethodtobesuc- D 0 cessfulin(cid:142)ndingtheasymptoticdistributionofXAX,wemust 0 which vanishes if and only if the null hypothesis is correct. haveX0AX X0ADX op.a¡1=2/.Thisfact,inthepresentpar- Theformof(4.2)revealsthatthestatisticscannotdetectalter- ¡ D ticularcaseofhomoscedasticmodels,isgiveninthefollowing nativesthatconvergetothenullhypothesisfasterthana 1=4for ¡ proposition. bounded((cid:142)xed)groupsizes and faster than a 1=4.n .a// 1=2 ¡ i ¡ forgroupsizesgoingtoin(cid:142)nity. Proposition 3.1. Under EXij 0 and VarXij 1 (note D D thereisnoassumptionregardingacommondistribution,nore- 4.1 TheHomoscedasticCase quirementof existenceof highermoments,and no restriction on the n ; the only requirementis the independenceof X ), The two results of this section generalize Theorems i ij wehave 2.1and2.2bypresentingtheasymptoticdistributionofF un- a derlocalalternatives.Here and in theproofswe usethenota- a1=2.X0AX X0ADX/ p 0: tionF .X/ andF .Y/fortheF statisticin(1.1)evaluatedon ¡ ! a a a theX ’sandY ’s,respectively. Remark 3.2. Since MST=MSE is invariant to a common ij ij location–scale transformationof Xij, the statement of Propo- Theorem4.1(Balancedcase). UndertheconditionsofThe- sition3.1includesthegeneralhomoscedasticcaseandpertains orem 2.1 imposedon the X , and if ¹ .a/ are givenby (4.2) ij i tothenullhypothesisofequalityofmeans. withn n 2,wehavethefollowingresults: i ´ ¸ ProofofProposition3.1. From(3.5)and(3.6),itfollowsthat (a) If n 2 remains(cid:142)xedandµ2 denotesthedeparturepa- ¸ rametergivenby(4.4),then aE.X0ADXac¡32XX0ADXX/2Xni1 Xni2 Xni3 Xni4 E¡Xi1j1Xi2j2Xi3j3Xi4j4¢: a1=2¡Fa.Y/¡1¢!d N‡¾µ22;n2¡n1´ asa!1: i16Di2i36Di4 j1 j2 j3 j4 (b) Ifn.a/ ,then,withµ2asin(a), !1 Each of these expectations is zero unless either i i and ‡ ´ i2Di4 and j1 D j3 and j2 Dj4, or i1 Di4 and i12 DDi33 and a1=2¡Fa.Y/¡1¢!d N ¾µ22;2 asa!1: j j and j j , in which case the expectationequals 1. 1 4 2 3 D D Thus, Theorem4.2(Unbalancedcase). De(cid:142)nethefunctions .t/ Á ! Pa n1=2I.i 1 at <i/,0 t <1,andlet¹ .a/beagiveDn aE.X0AX¡X0ADX/2D .a2a1/2 1¡ N12 Xa n2i byiD(41.2)i and Y¡ij b·e givenby (4·.1). Then we havie the follow- ingresults: ¡ i 1 D 2a (a) In thecase where then remain(cid:142)xed,if the conditions 0 asa : i · .a 1/2 ! !1 ofTheorem2.2(a)aresatis(cid:142)edandalso ¡ Z In Section 2.1, as well as in the next section, this result is 1 usedto(cid:142)ndtheasymptoticdistributionofa1=2X0AX. al!im1 0 sa.t/g.t/dt D½1 374 JournaloftheAmericanStatisticalAssociation,June2004 exists, then with µ2 denoting the departure parameter Theorem 4.4. Suppose that the conditionsof Theorem 2.5 givenby(4.4),wehave imposedontheX andn aresatis(cid:142)ed,andletY and¹ .a/be ij i ij i ‡ ´ asin(4.1)and(4.2).Furthermore,let½ beasinTheorem4.2(a) a1=2¡Fa.Y/¡1¢!d N µ2¡¾½212=b;¿2 asa!1: andsetbDlima!1a¡1PaiD1ni (assu1medtoexist).Then ¡ ¢ (b) Iftheni.a/!1 as a!1,considertheassumptions Ta.Y/!d N µ2¡½12=b;2.s4C°4/ asa!1; ofTheorem2.2(b)andalsoassumethatthelimits where T .Y/ is the statistic given by (2.1) calculated in Y Z a 1 s .t/ ·.a/ andµ2 isgivenby(4.4). a lim g.t/dt ½ ; lim ¯ a!1 0 ·.a/1=2 PD 2 a!1nN.a/ D Whenthegroupsizesalso tendto in(cid:142)nity,we havethefol- exist,wheren.a/ a 1 a n .a/.Then,withµ2 isas lowingresult. in(a), N D ¡ iD1 i Theorem4.5. (a)Inthebalancedcase,assumethateitherone ‡ ´ a1=2¡Fa.Y/¡1¢!d N µ2¡¾2¯½22;2 asa!1: hoofltdh,eatnwdolesettYsijofacnodn¹dii.tiao/nbseofasTihne(o4r.e1m)a2n.d6i(m4.p2o)sweidthon2t·henXi ´ij n.a/ .Then Remark 4.1. (1) As mentioned in Section 1 and demon- !1 strated in the present section, the rates that local alternatives T .Y/ d N.µ2;2s4/ asa ; a ! !1 must converge to the null hypothesis to allow detection re- where T .Y/ is the statistic given by (2.1) calculated in Y semble those found in the literature for lack-of-(cid:142)t testing in a andµ2 isthedepartureparametergivenin(4.4). nonparametric regression. Proposition 3.1, however, shows (b)Intheunbalancedcase,assumethateitheroneofthetwo that MST MSE is essentiallya sum of independentrandom ¡ setsofconditionsofTheorem2.6imposedontheX andn .a/ variables.Thus,itshouldbepossibletode(cid:142)neandstudyacor- ij i are satis(cid:142)ed, and let Y and ¹ .a/ be as in (4.1) and (4.2) respondingpartialsumprocessthatwouldallowideassuchas ij i [with n n .a/ ]. Furthermore, let ½ and ¯ be as in thecumulativesumandtheadaptiveNeymantesttobeapplied i D i !1 2 Theorem4.2(b)(assumedtoexist). Then to improvethe performanceof the local alternatives.This re- search,however,isbeyondthescopeoftheRpresentarticle. T .Y/ d N.µ2 ¯½2;2s4/ asa ; (2)Requiringthe existenceof lim 1s .t/g.t/dt ½ a ! ¡ 2 !1 (which is necessarily (cid:142)nite, as thea!p1roo0f oaf TheoremD4.21 withTa.Y/andµ2 asin(a). shows) does not seem to be very restrictive.For instance,let 5. SIMULATIONRESULTS the n be uniformly bounded,assuming values in 1;:::;m i f g for some m, and de(cid:142)ne A i 1;:::;a :n k and The simulations reported in Section 1 and Remark 2.3(ii) S k;a i D f 2 f g D g dIko;ma Dinateid2cAok;nav[.eirg¡en1c/e=ath;eio=rae/mf,owrekhDav1e;:::;m. Then,by the swuhgegneesvtetrhhaotmthoescehdetaesrtoicsicteydcaasntnicotpbreocaesdceurrteasinsehdo.uTlhdebpeurupsoesde Z 1 Xm Z ofthissectionistoinvestigatepossibledisadvantagesofusing s .t/g.t/dt k1=2 g.t/dt heteroscedasticprocedureson homoscedasticdata.The simu- a D 0 k 1 Ik;a lations focus mainly on the unweighted statistics that can be D Z used also with small group sizes. Indeed, the simulation re- Xm k1=2 g.t/dt ported in Remark 2.2 indicatesthat for the Type I error rate !k 1 Ik oftheweightedstatistictobeacceptable,theremustbeatleast D 80observationspergroup.Thusitisnotincludedinthesimu- ½ ; 1 D lationsin thissection.However,as an indicationof the power providedlima Ik;a Ikexistsforallk.Similarobservations advantageoftheweightedstatistic,ourlastsimulationuseshet- !1 D holdfortheexistenceofthelimit½2 inTheorem4.2(b). eroscedasticdataandincludesthestatisticthatstandardizesby thetruevariances. 4.2 TheHeteroscedasticCase Allsimulationsarebasedon1,000replicationsandusenor- Here and in the proofs, we write Ta.X/ and Ta.Y/ for the malandlognormaldistributions.Inthissection,CFdenotesthe Ta statistic in (2.1) evaluated on the Xij’s and Yij’s, respec- classicalF test,andBHOM andBHET denotethetestproce- tively.We againnotethecloseconnectionbetweenTa andFa duresofTheorems2.1(a)and2.4,respectively. for the balanced case, described in (2.2). The (cid:142)rst two re- It should be pointed out that consistent estimation of s4 sults deal, respectively, with the balanced and unbalanced in Theorem 2.4 requires unbiased estimation of each ¾4. i heteroscedasticcaseswithsmallgroupsizes. ForthisweusedU statistics,eachwithkernel.X X /2 i1 i2 ¡ £ Theorem 4.3. Assume that the conditionsof Theorem 2.4 .Xi3 Xi4/2.Thus,eventhoughtheasymptoticresultinThe- ¡ imposed on the X hold, and let Y and ¹ .a/ be as in orem2.4requiresonlythatn 2,actualapplicationofBHET ij ij i ¸ (4.1) and (4.2) with n n 2. Then, with µ2 denoting the requiresn 4. departureparametergivie´nin¸(4.4)andT .Y/denotingthesta- Toinves¸tigatetheachieved® levels,weconsideredbalanced a tistic(2.1)calculatedinY, groupsofsizen 5andnumberofgroupsa 10;15;20;25, D D ‡ ´ with nominal ® :05. In the case of Lognormal.0;1/ sam- T .Y/ d N µ2; 2ns4 asa : ples,theachievedD® levelswere satisfactoryevenwith a 10 a ! n 1 !1 (.040,.074,and.060forCF,BHOM,andBHET),withBHDOM ¡ AkritasandPapadatos:HeteroscedasticOne-WayANOVAandLack-of-FitTests 375 always somewhat more liberal than BHET. Under normality, havethesamedistribution,whereasthoseforF requireallob- a BHET is more liberal than BHOM, and both are more lib- servationsto be iid.Moreover,intheunbalancedcase,theas- eral thanin thelognormalcase.Forexample,with a 25 the ymptoticdistributionofT usesfewermomentconditionsand a D achieved® levelsof CF, BHOM, and BHET were .050,.073, itslimitingdistributiondoesnotinvolvethefourthmoment.On and.077. thebasisofthis,we recommendT overF inall unbalanced a a Power simulations in the homoscedasticcase used a 20 situations(homoscedasticornot). D and balancedgroupsof size n 5, at nominal® :05. Data The theoretical results do not clearly identify a preferable D D valueswere generatedas X i¿=a error, where the error procedurein the balancedhomoscedasticcase. (Althoughthe ij » C was againeitherNormal.0;1/ or Lognormal.0;1/.In thelog- asymptoticresultforF requiresallobservationstobeiid,that a normalcase,BHETseemstooutperformbothCFandBHOM. for T uses slightlystrongermomentassumptions.)However, a Forexample,theachieved® levels(i.e.,for¿ 0)were .048, the simulationsin Section 5 suggest that T behaves at least a D .075,and .054forCF, BHOM, andBHET, andtheirachieved comparablytoF ,eveninthebalancedhomoscedasticcase. a powersat¿ 3were,respectively,.670,.732,and.810.Dueto ThecombinedoverallrecommendationisthatT beusedin a D thealreadymentionedliberaltendencyofBHOMandBHETin allsituationswithsmallgroupsizes.Forheteroscedasticmodels the normalcase, theirachievedpowers in the simulationwith withlargegroupsizes,wealsorecommendTb . W normalerrorsturnedouttobehigherthanthatofCF. Forcomparisonpurposeswiththeweightedstatistic,ourlast APPENDIXA:PROOFS simulationusesheteroscedasticdatawith a 30,n 10,and D D Proof of Theorems 2.1 and 4.1. We (cid:142)rstly study MSE. If n if nominal® :05.Theheteroscedasticityinthegenerateddata, (cid:142)xed, it is immediate (using an obvious notation) that MSE.Y/ Xij » N.i¿D=a;1C 25i=a/, was chosen so that the achieved MSE.X/ p ¾2 as a . In the nontrivial case where n D ®levelofCFisinanacceptablerange(althoughthatofBHOM n.a/ !, we evident!ly h1ave S2 S2.a/ p ¾2 as a , anDd isnot).Asexpected,theweightedstatistic(withweightsbased becau!se1the S2.a/, a 1, are nionDnegiative!random var!iabl1es with on the true variances) outperforms the other procedures. For i ¸ example,theachieved® levelswere.071,.095,.071,and.056 E.Si2.a//D¾2, it follows by Scheffé’s lemma (see the subsequent forCF,BHOM,BHET,andtheweightedstatistic,whereastheir proof of Lemma D.1) that EjSi2.a/¡¾2j!0. Thus, the assertion powersat¿ D2were.249,.299,.252,and.360,respectively. M.1S=aE/DPaiMS1EE.jXSi2/.Da/M¡S¾E2.jYD/E!pjS1¾2.2a/fo¡ll¾ow2js!fro0m.TEhejMreSfoEre¡,w¾ri2tjin·g D 6. CONCLUSIONS a1=2¡Fa.Y/ 1¢ a1=2¡Fa.X/ 1¢ 1¡a¡1¡h.a/ Ha¢; Recent work by Boos and Brownie (1995), Akritas and ¡ D ¡ CMSE.X/ C Arnold (2000),and Bathke(2002)consideredthe behaviorof (A.1) where theclassicalF statistic,F ,inhomoscedasticANOVAmodels a withalargenumberoflevelsandsmallgroupsizes.Inthisar- Xa Xa ticlewe considerthe heteroscedasticone-way ANOVA model h.a/Da¡1=2n ¹2i.a/; HaD2na¡1=2 ¹i.a/Xi¢ (A.2) i 1 i 1 withalargenumberoflevelsandsmallorlargegroupsizes. D D R Ourtheoreticalresults,backedbynumericalevidence,show [notethat n1=2.¹1.a/C¢¢¢C¹a.a//D 01g.t/dt D0], the desired that the F procedure (using Fa with F distribution critical resultsfollowifwe show parts(a)and (b) of Theorem2.1 together pttlhieocseiisntbytat,shl)iaetinsigcsserenodnouastpintadissvyitezhmeteosputdanoerbtepiacalaaraltlnlusycoreevdslaaflcriragdosemei.n.hAEtohvnmeenauosunsycnbmedadlpeaartnsohtctioieccmdiatoylclasyicnseevbdauoalntishd-- wPanidtaiOhDVbh1sa.gera2rH/v.tea!i;aµ/t4h2!a¾at2nµad2¡hH,.1aw=a2/h!hpe.Drae0/;ataits;hPaau2s!aiDH[1.1ai.R¡..ii=¡1oa1/p=/.=a1a;/gi.=.Hat/e].dnctA/e2l,siotD,reEmHaa¡ain1Ds£t0o procedureusingF intheunbalancedhomoscedasticcasewith D D a establishthenulldistributionresults[parts(a)and(b)ofTheorem2.1], small groupsizesis suggestedin Theorem2.2, butit requires and without loss of generality,we may assume that EXij 0 and estimation of the fourth moment and assumes the existence VarXij 1. Proposition3.1 impliesthat in bothcasesitsuDf(cid:142)ces to D of4C±moments. consider X0ADX. Using (3.7) for the present balanced case, it fol- BecauseofthissensitivityoftheF proceduretodepartures lowsthat from homoscedasticity,our investigationalso consideredtwo 1Xa statistics designedto accommodateheteroscedasticity.One is X0ADX Ui; (A.3) D a the classical weighted statistic, TbW, and the other is an un- iD1 weightedstatistic,Ta,whichappearstobenew.StatisticTadif- where feevresnfwroimthsFmaaollnglyroiunptshiezeusn.Ibtailsarnecceodmcmaseen,daenddinpearnfyorsmitusawtieolnl 1 "ÁXn !2 Xn 2# where homoscedasticitycannotbeascertained,althoughif the UiD n 1 Xij ¡ Xij ¡ j 1 j 1 groupsizesarealsolarge(we recommendatleast80),Tb can D D W alsobeusedforimprovedpower. areiidrandomvariables.Clearly,EUiD0,whereas Á ! Althoughtheyweredesignedfortheheteroscedasticcase,the ¡ ¢ Xn Xn asymptoticpropertiesofTa arepreferabletothoseofFa,even E .n¡1/2Ui2 DE 2Xi2j1Xi2j2 inthehomoscedasticcase.Forexample,theasymptoticnullre- j1D1j2D1;j26Dj1 sults for Ta assume onlythat the variablesin the same group 2n.n 1/: (A.4) D ¡ 376 JournaloftheAmericanStatisticalAssociation,June2004 [Notethatthecomputationin(A.4)requiresthe(cid:142)nitenessofonlythe i 1;:::;a, areindependentrandomvariables.Itiseasilyseenthat secondmoment.]Theclassicalcentrallimittheoremandthepreced- EDUa;i D a1=2[c1 ¡ ni.c2 C c3/], so that Pai 1EUa;i D 0. Thus ing variancecomputationyield a1=2X0ADX d N.0;2n=.n 1// as a1=2X0ADX is centered and part (a) of TheoreDm2.2 follows by an ! ¡ a ,showingpart(a)ofTheorem2.1.Forpart(b),write(A.3)as applicationofLyapounov’s theorem.Todo this,wemakeuseofthe !1 varianceexpression 1Xa where X0ADXD aiD1Ua;i; Var.a1=2X0ADX/DaXia1»‡cn1i ¡c2¡c3´2.¹4¡1/ni "Á ! # D Ua;iDn.na./a¡/1 n.a1/1=2njX.a1/Xij 2¡ n.1a/njX.a1/Xi2j ; C2ni.ni¡1/‡cn1i ¡c3´2¼ ; (A.6) D D i 1;:::;a, are iid random variables. As previously remarked, whichcanbeeasilyveri(cid:142)edaftersomealgebra.(Notethatinthebal- EUDa;i D0 and [see (A.4)] VarUa;i D2n.a/=.n.a/¡1/. Note the ance case (ni Dn, for all i), (A.6) reduces to Var.a1=2X0ADX/D similaritybetween Ua;1 and Ua of Lemma D.1(a).Using the result 2n=.n 1/,[seetheproofofTheorem2.1(a)],becausec1=n c2 ofthislemma, c3 0¡, c1=n c3 c2 [a.n 1/]¡1. Of course, this ¡deriv¡a- D ¡ D D ¡ a.n.a/ 1/Xa µ 1 ‡ ‡ 2n.a/ ´1=2 ´¶ tionassumes a (cid:142)nite fourth moment, which is not assumed in The- D2nn..2aa¡n//.a¡/1iDE1µEUa2a;12IU‡a2jU;iIa;1jjU¸a;‡ijn¸2.aaan/.aa/1.n´.1a=/2¡²´1¶/ ² ot.loibrme=tma.hb!e¡21b.1a1a(l/aa2/n)2c,c1,eacldn3imdcDaat!sh0ee,1,adrnaeoda2s.nolcio2nmtCaics!acnt31ch/ea2altD2htche1.erbce2.s¡)qDUu1as/bri¡=en.2gbt,ell¡riimmm1saa/,!!2i,n11itcaaco22anccnt2123rabDDset ¡ easilyveri(cid:142)edthat 0 aasndap!a!rt1(b.)IotffoTllhoewosrethmat2L.1inisdepbreorvge’ds.conditionissatis(cid:142)edforX0ADX Var.a1=2X0ADX/!.¹4¡1/b..bbb11¡/21/C2b2.b.1¡1b/21/ ¡ ¡ ProofofTheorems2.2and4.2. Itiseasytoseethat,inbothcases ¿2; (A.7) D [with ni (cid:142)xed or ni ni.a/ ], MSE MSE.X/ MSE.Y/ is a consistentestimatoDrof ¾2 a!s a1 , beDcauseit isDunbiasedand where the last equality can be seen by adding and subtracting a.nN¡1/Var.MSE/=¾4D¹4¡1¡!.¹14¡3/.1¡.1=a/Pai 11=ni/= 2b=.b¡1/. Becauseof (A.7),Lyapounov’s conditionis satis(cid:142)ed if, .n 1/,where¹4 E[.Xij ¹/4=¾4].Againsplita1=2.FDa.Y/ 1/ forsome±>0, N¡ D ¡ ¡ asin(A.1),wherenow Xa Xa ¡ ¢ EUa;i EUa;i 2C± 0 asa : (A.8) h.a/ a¡1=2 ni ¹i.a/ ¹.a/ 2; i 1 j ¡ j ! !1 D ¡ D i 1 D (A.5) ThisisshowninAppendixB. Xa ¡ ¢ Ha 2a¡1=2 ni ¹i.a/ ¹.a/ Xi; (b)Using(3.7),write D ¡ ¢ i 1 Xa with ¹.a/ D .1=N/Pai 1ni¹Di.a/. We observe that to establish a1=2X0ADXDa¡1=2 Ua;i; (A.9) both parts (a) and (b) Dof Theorem 4.2, it is suf(cid:142)cient to verify i 1 D the null-hypothesis results [parts (a) and (b) of Theorem 2.2] to- wherenow gether with the fact that h.a/ tends to an appropriate constant as P "Á ! # aN!a¡11=2.¹R2e.gaa/rdainngdthoeblsaesrtvleimthita,twrthiteeh(cid:142).ras/tDtearm¡1=te2ndsaiDto1nµi2¹,2i.aas/¡in Ua;i Dac1.a/ ni.a/¡1=2nXi.a/Xij 2¡1 tawhNhee¡np1r.tehPveioainDuis1napr1ire=o2o(cid:142)Rfx,.iei=¡wda,1h/ce=oraengavs.etr/tghdeets/s2toeDc½onNn12¡d=b1t.e·Rr01mµs2ai;.sti/nNgt.aht¡/ed1c=ta2/Rs2¹e,2w.wahh/iecDrhe, CN.a/c2.a/aNni..aa//j"D11¡ ni1.a/nXi.a/Xi2j# ·nnui.alDl/d¡ni1si=t.r2aigb/.u!tt/iod1nt/r,e2ws!uelhtsa¯[v½pe22aNr·ts.a(µa/2)a.¡anT1dh=2e(¹bre)2fo.oafr/eT,Dhiet·or.reeamm/naN2.ina.2s/¡],t1oa.nvd0e1wrsiafiyt.hto/th£uet aN.a/c3.a/ni.a/"1 Áni.a/j¡D11=2nXi.a/Xij!2#: (A.10) C N.a/ ¡ lossofgenerality,wemayassumethatEXij 0andVarXij 1,so j 1 D D D that¹4DEXi4j. Fromtheassumptions,wehave p (a) By Proposition3.1 and the fact that MSE 1, it suf(cid:142)ces to ! showthata1=2X0ADX d N.0;¿2/.By(3.7),itfollowsthat ac1.a/ !1; ! Xa N.a/c2.a/ 1; a1=2X0ADXD Ua;i; aN.a/c3.a/ !1; (A.11) i 1 ! D where ni.a/ 0; Ua;iDa1=2‡cn1i ¡c3´ÁXni Xij!2¡c2a1=2Xni Xi2j; anNi..aa// !C: j 1 j 1 N.a/ · D D AkritasandPapadatos:HeteroscedasticOne-WayANOVAandLack-of-FitTests 377 Using(A.9),(A.10),(A.11),andChebyshev’s inequality,itiseasyto We (cid:142)nd the asymptotic distributionof Ta by projectingit onto the seethat class C H given in (3.1), and without loss of generalitywe may as- a1=2X0ADX Xa "Á nXi.a/ !2 # sTeuamDePthaaitDE1XEi.jTDajX0.i/F,r‡womhe(r3e.e2a)´sayndcaElcTualaDtio0n,sthyeiepldrojectedstatisticis D.ac1.a//a¡1=2i 1 ni.a/¡1=2 j 1Xij ¡1 Cop.1/ E.TajXi/D p1a 1¡nNi .niX2i¢¡Si2/ XDa D 1 ‡ ni´ 1 Xni D.ac1.a//a¡1=2i 1Va;iCop.1/; (A.12) D pa 1¡ N ni¡1j1;j2D1;j26Dj1Xij1Xij2: D P wIthreevrmae2aVDinaV;siataro"reavde¡er1i(cid:142)f=yn2eXiLdDaii1nndVteahb;eie#rpgrD’esc2ecdoCinn.dg¹ite4iqo¡una,3tti/hoa1ant.XiiADas1,lstnooi1.sah/ow!t2h:at for APfnjte1i1rD1soPmEnje2.i2DTaela1gX¡ebiT1raja1,/Xw2ieD2jg2aeaNt2nTed2a,Át¡hÁeXiTraeaf1oDnrie¾a,i¡2!1=22¡N¡Xia11niai¾16Di4i!2;i1;i2D1£ any²>0, D D 2 max ¾4 0 1 Xa £ ¤ · a1 i af ig! ava2 i 1E Va2;iI.jVa;ij¸²vaa1=2/ !0 asa!1: (A.13) by(A.15).Moreover, ·· ThPisr,ohooDfwoefvTehr,efoorlelmow2s.4im. mWeditihaoteultylforsosmofLgeemnmeraalDit.y2,.wemayassume VarTeaD2‡1¡ N1´2Áa1Xia1¾i4Ca1Xia1ni¾¡i41! D D ta2ha1a=¡t21EX.Xa0Ai¡jDDX1/¡D0.2a.TP1h=e2ai.lMi1mS¾iTit2i/n¡2g!MdiSs0tEr.i/Fb,urboteimocanuosfeTaaE.cXoi0nAcXid¡esXw0iAthDtXha/2to·f ¡ N2‡2¡ N1´a1XiDa1ni¾i4C N22a1XiDa1n2i¾i4; D a1=2X0ADXDXia1Ua;i; aaTnh!derbe1yfo,urews,ienitgcreotmhnecaliuansdsseutotmhvapettriViofanyrsLT,eya(Aa!p.1o5u2)n.,soa4vn’Csdc°tohn4e/dfi2atico.t0n;tfh1oart/TeNaas,!taha!1tis1,aist. D suf(cid:142)cestoshowthat where Ua;iD a1=2.1n 1/"ÁXn Xij!2¡Xn Xi2j#; L.a/Da¡1¡±=2XiDa1‡‡1¡nNi´ni1¡1´2C±EjUij2C±!0 (A.16) itfollowstVhaart.EaU1=a2;XiD0A0D,XV¡/aDrU.an;i¡2jDnD112/an¾XiiD4a=1.¾.ni4¡!jD11/n2an¡/sa41n:d,the(rAef.o1r4e), fU.CtfhooE1sarljiltXno<s.gwoi111ms(j¡.2BeCa.n±4±ni)/d=>2Na,mg0/aaa,<nxiand1s,1·,uiait·ws!ifaenoEglgl1jeoXttwh,iLes1w.j2aathhCs/eas±r·utem·EaUpj¡CUtii±2oiD=jn2<2sCCP11±thCnj1·ai226Dfto,j.raf2nr;¡aioj.l11mln;jPai2wD¡aaihD1ni1cdX1h/nit/jh2i2(1AeCCX±±.f1iaj6£·2c).t AsintheproofofTheorem2.2(a),weproceedtoverifyLyapounov’s condition(A.8);thiscanbeeasilydoneusing(B.4)andtheassump- Proof of Theorem 2.6. Without loss of generality we may as- tionsasfollows: sumethatEXij D0.AccoPrdingto(3.2),theprojectionofTa ontothe Xa classC H,in(3.1),isTeaD ai 1E.TajXi/,where iD1DEn¡jaU2.Can±;i¡aj¡21C1/¡±2±¢=¡21X¡a±=¡2EXiDaX1iE1›››››2ÁCjX±Dn¢21Xij0!:2¡jXDn1Xi2j›››››2C± APthsaaiEtiDn·.1Tt.hnaaeij/X.=panri/o/.¾oaDi4f/o··pf1TaC2h·‡.e.M1oar¡/oearm¡enNo2i2v..n.aae5.Dr/,/a,w´/¡en1hi.Paav1/eaiD¡E1.1T¾eaij41¡;!j2TnDXa0i1/.a;2bj/y2·6Dt2jh1aeX¡a1isjNs1uX.maij/p¡2t:i1o£n · i 1 j j ! 2‡ n.a/ ´2 n.a/ Xa s4P<roofoifmTphleieosretmha2t.5¾.4DThoe.eax/isatsenaceoflim.aT!h1us,a¡fo1rPanaiDy1²¾>i4D0, VarTea· a 1¡ a·.a/ n.a/¡1iD1¾i4P!2s4 m¾¾aa44a=gxa·1·1<Ci·0²a=faf¾oCi4rga²l,l·wahi¸ac¡haa1l!ay0immi,e1Dalsdxha1sfo¾w11m4·in;iag:·x:a:tfh;¾a¾i4ta!4g0f¡oDr11g0l:arCge aen¡o1umghaxaf,¾a4a(0A¡;.:11:5£:;) saLLhnyod.aaw,p/soiniDumgniaotlh¡avar’1slt¡yVc,±oaV=nr2adTerXiiaDTeatia1!o‡n¸‡f2o21sra4¡¡Teaa1snN,.ai1t..haa!¡a//ta´i1s¡,n1i.it·.Tsa.hu1/aef¡/(cid:142)r=ecn1feo.s´arte2/o,C/2ist±hEroejwmaiUDaat1hi;nia¾jsti24Cto!±v!e2rsi0f4y,

Description:
Even under homoscedasticity,the usual F test is not asymp- totically valid in the . is robust to departures from the normality assumption only if bb1 D 1 or the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.