Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment MonikaGibis Abstract: Meat products are sources of protein with high biological value and an essential source of other nutrients, such as vitamins and minerals. Heating processes cause food to become more appetizing with changes in texture, appearance, flavor, and chemical properties by the altering of protein structure and other ingredients. During heat treatment,heterocyclicaromaticamines(HAAs),potentmutagens/carcinogens,areformedduetotheMaillardreaction. TheHAAsareclassifiedinatleast2groups:thermicHAAs(100to300°C)andpyrolyticHAAs(>300°C).Thisreview focuses on the parameters and precursors which affect the formation of HAAs: preparation, such as the marinating of meat,andcookingmethods,includingtemperature,duration,andheattransfer,aswellaslevelsofprecursors.Additionally, factorsaredescribedsubjecttopH,andthetypeofmeatandingredients,suchasaddedantioxidants,typesofcarbohydrates and amino acids, ions, fat, and other substances inhibiting or enhancing the formation of HAAs. An overview of the different analytical methods available is shown to determine the HAAs, including their preparation to clean up the samplepriortoextraction.EpidemiologicalresultsandhumandailyintakeofHAAsobtainedfromquestionnairesshow a relationship between the preference for very well-done meat products with increased HAA levels and an enhanced risk of the incidence of cancer, besides other carcinogens in the diet. The metabolic pathway of HAAs is governed by the activity of several enzymes leading to the formation of DNA adducts or HAA excretion and genetic sensitivity of individualstotheimpactofHAAsonhumancancerrisk. Keywords:antioxidants,β-carbolines,heterocyclicaromaticamines,meat,precursors Introduction used (Murkovic 2004a; Sugimura and others 2004). The struc- Individuals have been exposed to a range of toxic substances turesofHAAswhichareformedattemperaturesbetween100and throughouthumanhistory.Thesecanbenaturallyoccurringmu- 300°CarecalledthermicHAAs,IQ-typeHAAs(imidazoquino- tagens, which are mainly found in plant substances, or process- lineorimidazoquinoxaline) oraminoimidazoazaarenes (Ja¨gerstad induced mutagens, which can arise during manufacture, such as andothers1998).Above300°C,pyrolysisofproteinsandindivid- from heating. Nitrosamines, polycyclic aromatic hydrocarbons, ual amino acids occurs and HAAs are formed which are known and heterocyclic aromatic amines are typical heat-induced com- as pyrolytic HAAs or non-IQ-type HAAs (Ja¨gerstad and others pounds (Ferguson 2010; Oostindjer and others 2014). Widmark 1998).AnotherclassificationofHAAssubdividesthemintonon- (1939)reportedforthefirsttimethatextractsofroastedhorsemeat polarandpolarHAAs(IQ-typecompounds)duetotheirchem- induced cancer in the mammary glands of mice when multiple- icalproperties.Thenames,abbreviations,properties,mutagenic- swabbedon the back. The heterocyclic aromatic amines (HAAs) ity (Ames test), and molecular structures of HAAs are shown in that are the focus of this article belong to the process-induced Table1. mutagensthatcannotbedetectedinunheatedproducts(Skogand others 1998b). In general, HAAs are formed from heated prod- OccurrenceofHeterocyclicAmines ucts which contain sources of nitrogenous compounds, mainly Besidestheimportantformationfactorsofcookingtemperature heatedfoodsofanimalorigin,suchasproteinsandcreatine(Skog anddurationoftheheattreatment,thermicHAAsoccurinalmost and others 1998b). The formation of HAAs is principally de- all heated foods of animal origin, such as meat and fish, because pendentonthetemperature,heattransfer,andheatingconditions creatine, the precursor needed for their formation, is contained in these products (Ja¨gerstad and others 1998; Murkovic 2000). 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has MS20151495Submitted3/9/2015,Accepted1/12/2015.AuthorGibisiswith been detected not only in products of animal origin, but also Dept.ofFoodPhysicsandMeatScience,Inst.ofFoodScienceandBiotechnology,Univ. in wine, beer (Manabe and others 1993), and smoked cheese ofHohenheim,Garbenstrasse21/25,70599Stuttgart,Germany.Directinquiriesto (Skog and others 1994; Naccari and others 2009). The source authorGibis(E-mail:[email protected]). is possibly environmental, since PhIP can occur in burning (cid:2)C 2016InstituteofFoodTechnologists® (cid:2) doi:10.1111/1541-4337.12186 Vol.15,2016 ComprehensiveReviewsinFoodScienceandFoodSafety 269 Heterocyclicaminesincookedmeatproducts... SalmonellaS-9mixusingTyphimurium ׳μbMutagenicity(10rev/g) 433(TA98)7(TA100)300(TA1538) na 661(TA98)30(TA100)859(TA1538) 75.4(TA98)1.5(TA100)103(TA1538) 145(TA98)14(TA100)84.7(TA1538) (Continued) of e c n e s e hepr mol) t / n g i (a ay htes ass eigerti c40 c40 c40 c50 c50 Ames ularwProp ±60. ±90. ±20. ±60. ±00. nicity( Molec 192.2polarpKa5.8 192.2polarpKa5.9 212.3polarpKa6.2 199.3polarpKa1.9 213.3polarpKa2.2 e g a ut m eir h t of n o ati c di n ndi No a S s A e C erti me ne HAAs;someoftheirprop bbreviation/Chemicalna midazo[4,5-f]quinoline midazo[4,5-f]quinoline ƒhylimidazo[4,5-]quinoline ƒmidazo[4,5-]quinoxaline ƒhylimidazo[4,5-]quinoxali 30 A hyli hyli met hyli met ghtof 3-met6-6 1-met25-3 3,4-di1-2 3-met47-8 3,8-di4-0 cularwei IQ2-Amino-76180-9 Iso-IQ2-Amino-102408- MeIQ2-Amino-77094-1 IQx2-Amino-108354- 8-MeIQx2-Amino-77500-0 e ol m d n a e,8. m3 a5 n1 hemicalstructure,98,TA100andTA midazoquinolines midazoquinoxalines Table1–CstrainsTA Structure 2-Amino-i 2-Amino-i (cid:2) 270 ComprehensiveReviewsinFoodScienceandFoodSafety Vol.15,2016 (cid:2)C 2016InstituteofFoodTechnologists® Heterocyclicaminesincookedmeatproducts... ׳μbMutagenicity(10rev/g) (TA98)51(TA100)1042(TA1538) TA98)8(TA100)225(TA1538) TA98)9.9(TA100)189(TA1538) A98)2.6(TA100) (Continued) 2 ( ( T 6 3 3 ( 1 8 6 a 9 1 1 1 n 9 ol) ± m / 2 (ga 3.5 htes 1 eigerti c50 c50 c50 c50 c50 ularwProp ±20. ±60. ±90. ±50. ±70. c 3 5 4 8 1 Mole 213.3polarpKa2. 227.3polarpKa2. 227.3polarpKa2. 241.3polarpKa2. 243.3polarpKa2.d0.50 e n ali x o n Abbreviation/ChemicalnameCASNo 4-MeIQxƒ2-Amino-3,4-dimethylimidazo[4,5-]quinoxaline108354-48-9 4,8-DiMeIQxƒ2-Amino-3,4,8-trimethylimidazo[4,5-]quinoxaline95896-78-9 7,8-DiMeIQxƒ2-Amino-3,7,8-trimethylimidazo[4,5-]quinoxaline92180-79-5 TriMeIQxƒ2-Amino-3,4,7,8-tetraimethylimidazo[4,5-]quinoxaline132898-07-8 4-CHOH-8-MeIQx2ƒ2-Amino-4-hydroxymethyl-3,8-dimethylimidazo[4,5-]qui153954-29-1 d. e u n nti o C 1– ure ble uct Ta Str (cid:2) (cid:2)C 2016InstituteofFoodTechnologists® Vol.15,2016 ComprehensiveReviewsinFoodScienceandFoodSafety 271 Heterocyclicaminesincookedmeatproducts... 38) ued) μbg) TA15 (Contin / ( ev 2.9 ³0r 0) 1 0 × 1 agenicity( 98) 8)0.12(TA A98) A1538) Mut (TA TA9 2(T 8(T 7 ( 0 0 na 0.6 1.8 0.0 0.0 ol) m ± / ht(gaes 8.27 eigerti c50 c50 c30 c30 c30 ularwProp ±50. ±50. ±20. ±90. ±60. c 9 6 7 7 1 Mole 213.2polarpKa3. 227.3polarpKa4. 224.3polarpKa7. 240.6polarpKa7.d0.15 162.2polarpKa8. e n di ChemicalnameCASNo o[4,5-g]quinoxaline dazo[4,5-g]quinoxaline azo[4,5-b]pyridine henyl)-imidazo[4,5-b]pyri 5-b]pyridine bbreviation/ hyl-1H-imidaz methyl-1H-imi 6-phenyl-imid 6-(4’hydroxyp hylimidazo[4, A 7-MeIgQx2-Amino-1,7-dimet934333-16-1 7,9-MeIgQx2-Amino1,7,9-tridi156243-39-9 PhIP2-Amino-1-methyl-105650-23-5 4’OH-PhIP2-Amino-1-methyl-126861-72-1 DMIP2-Amino-1,6-dimet132898-04-5 es n di ed. pyri u o n z onti mida 1–C ure no-i Table Struct 2-Ami (cid:2) 272 ComprehensiveReviewsinFoodScienceandFoodSafety Vol.15,2016 (cid:2)C 2016InstituteofFoodTechnologists® Heterocyclicaminesincookedmeatproducts... μbg) nued) ³0rev/ A100) A100) (Conti 1 T T × ( ( 2 2 Mutagenicity( 100(TA1538) na 10(TA1538) 0.3(TA98)0.0 0.2(TA98)0.1 ̴ ol) m / g (a htes MolecularweigProperti 176.2polar±cpKa8.660.30 176.2polar±cpKa8.360.30 202.3polar±cpKa7.520.40 183.2nonpolarpKa±c6.790.30±d14.870.40 197.2nonpolarpKa±c7.080.30±d15.250.40 o N e n CAS yridi me e e b]p Abbreviation/Chemicalna 1,5,6TMIP2-Amino-1,5,6-trimethylimidazo[4,5-b]pyridin161091-55-0 3,5,6TMIP2-Amino-3,5,6-trimethylimidazo[4,5-b]pyridin57667-51-3 IFP2-Amino-1,6-dimethyl-furo[3,2-e]imidazo[4,5-357383-27-8 αAC2-Amino-9H-pyrido[2,3-b]indol26148-68-5 αMeAC2-Amino-3-methyl-9H-pyrido[2,3-b]indol68006-83-7 d. e u n onti es Table1–C Structure α-Carbolin (cid:2) (cid:2)C 2016InstituteofFoodTechnologists® Vol.15,2016 ComprehensiveReviewsinFoodScienceandFoodSafety 273 Heterocyclicaminesincookedmeatproducts... ³μb0rev/g) 100) TA100) 100) (Continued) ×Mutagenicity(1 co-mutagenic co-mutagenic 39(TA98)1.7(TA 104.2(TA98)1.8( 49(TA98)3.2(TA ol) m / g (a htes MolecularweigProperti 182.2nonpolarpKa±c8.620.30±d15.870.40 168.2nonpolarpKa±c7.850.10±d15.440.30 211.3nonpolarpKa±c10.880.10±d16.020.40 197.2nonpolarpKa±c10.590.30±d15.590.40 198.3nonpolarpKa±c6.330.30 o N S A C e e m ol Abbreviation/Chemicalna Harman1-methyl-9H-pyrido[4,3-b]indole486-84-0 Norharman9H-pyrido[4,3-b]indole244-63-3 Trp-P-13-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole62450-06-0 Trp-P-23-Amino-1-methyl-5H-pyrido[4,3-b]indole62450-07-1 Glu-P-12-Amino-6-methyldipyrido[1,2-a:3’2’-d]imidaz67730-11-4 d. e u n Table1–Conti Structureβ-Carbolines γ-Carbolines δ-Carbolines (cid:2) 274 ComprehensiveReviewsinFoodScienceandFoodSafety Vol.15,2016 (cid:2)C 2016InstituteofFoodTechnologists® Heterocyclicaminesincookedmeatproducts... b g) μ / ׳10rev (TA100) TA100) nicity( 98)1.2 8)0.4( Mutage 1.9(TA na na 19(TA9 na ol) m / g (a htes MolecularweigProperti 184.3nonpolarpKa±c5.800.30 170.2nonpolarpKa±c6.320.13 237.3nonpolarpKa±c9.520.20 259.3nonpolarpKa±c4.830.20 258.3nonpolarpKa±c6.870.20±d15.830.20 e- ol z a d mi zi n e b o 4-f] Abbreviation/ChemicalnameCASN Glu-P-22-Amino-dipyrido[1,2-a:3’2’-d]imidazole67730-10-3 Phe-P-12-Amino-5-phenylpyridine33421-40-8 Orn-P-14-Amino-6-methyl-1H-2,5,10,10b-tetraazafluoranthene78859-36-6 Cre-P-14-Amino.1,6-dimethyl-2-methylamino-1H,6H-pyrrolo-[3,5,7-dione133883-91-7 Lys-P-11,2,3,8-Tetrahydro-cyclopenta[c]pyrido[3,2-a]carbazole69477-66-3 (cid:2)nt(ACD/Labs)SoftwareV11.02(1994–2015ACD/Labs).CKaddurah-Daouk2000;na,notanalyzed. mend pa Table1–Continued. Structure OtherpyrolyticHAAs aCalculatedusingAdvancedChemistryDevelobReferences:Sugimuraandothers2004;Wyssc°Mostbasic(temperature25C).d°Mostacidic(temperature25C). (cid:2) (cid:2)C 2016InstituteofFoodTechnologists® Vol.15,2016 ComprehensiveReviewsinFoodScienceandFoodSafety 275 Heterocyclicaminesincookedmeatproducts... processes. Heterocyclic aromatic amines are similarly detected in investigating normal muscle meat of different animal species, the rain water andcigarette smoke condensate(Xuand others2010; measuredpHvaluesoftheuncookedmeatofthedifferentanimals Liuandothers2013).IndividualHAAswerealsodetectedinparti- (rangeofpH:5.56to6.12)showednosignificantlinearcorrelation clesfromdieselexhaustfumes(Kataoka1997).Over25mutagenic totheHAAlevels,exceptforPhIPwithaveryweakcorrelation HAAs have been isolated and identified since 1977 (Alaejos and (r = 0.27, p < 0.05) (Gibis and Weiss 2015). Additionally, the Afonso2011)(Table1).However,theconcentrationsdetectedin duration of aging influenced the HAA concentrations for both foodvarywidely,aswillbediscussedlater. PSE and normal pork. Significantly higher levels were observed The HAAs occurring most often in meat are PhIP, MeIQx, afterlongeragingofpork(Polakandothers2009b)andbeef(Polak 4,8-DiMeIQx,IQ,MeIQ,andAαC(Skogandothers1998a,b). andothers2009a). The PhIP concentrations in most studies are between 1 and 70 Meat from horses showed threefold higher glucose levels than ng/g meat (Gross and Grueter 1992; Alaejos and Afonso 2011). beef (Rossier 2003), which reduced the content of HAAs (Gibis Concentrations of MeIQx up to 23 ng/g can be detected (Skog andWeiss2015).Similarresultswereobservedinporkcontaining andothers1995).Asarule,concentrationsofupto6ng/gmeatare highandlowlevelsofglucose(Olssonandothers2002).Contrar- found(Skogandothers1998b).4,8-DiMeIQxismostlydetected ily, chicken had very low glucose levels, but a similar content of onlyinthelowerconcentrationrangeofaround1ng/gmeat.In creatine,whichincreased,inparticular,theconcentrationofPhIP some studies, IQ could not be detected at all (Skog and others byaboutafactorof10(GibisandWeiss2015).Thesamedecrease 1998b). Table 2 to 4 show an overview of the occurrence of in concentrations of PhIP, and less in levels of other HAAs, was HAAs in beef patties, chicken breasts, and pork using different observed in a model system by the addition of saccharides (Skog preparationmethods. andJa¨gerstad1990). While meat and meat products are frequently studied, fewer studieswerefoundaboutprocessedmeat(Table5).However,IQ levels of 3.8 to 10.5 ng/g were recorded in fried bacon (Johans- FormationofHeterocyclicAromaticAmines sonandJa¨gerstad1994).IQandMeIQcouldalsobedetectedin Formationofimidazoquinolinesandimidazoquinoxalines grilled sausages (Gerbl and others 2004). The HAA levels of ba- The pyridines and pyrazines formed from hexoses and amino conpreparedindifferentwayswereinvestigatedinastudy(Sinha acids,respectively,intheMaillardreactionviatheStreckerdegra- and others 1998). Levels of 0.4 to 4.3 ng MeIQx/g and 0 to dationserveasbuildingblocksfortheIQcompounds.Thereac- 4.8 ng PhIP/g could be determined with pan-frying. MeIQx tion is depictedinFigure 1A. The creatine cyclizes tocreatinine levels of 0 to 4 ng/g with ovenroasting differed only a little during heating and reacts in an aldol reaction with the pyridine from frying. However, significantly higher PhIP levels of 1.4 to orpyrazinederivatives,respectively,togenerateimidazoquinoline 30.3ng/gweredetectedforovenroasting(Sinhaandothers1998). and imidazoquinoxaline (Skog and Ja¨gerstad 1993). The aldehy- FurtherstudiesshowthathighHAAconcentrationscanbefound des arising, together with creatinine, also play an important role inbacon(Table5).Theuseofvariouspreparationmethodsaffects in the formation of the imidazole rings of the polar HAAs. The theformationofHAAsdifferentlyfordifferentmeatproducts.The 2 parts can be joined to each other via a Strecker aldehyde to a grill sausages investigated were pan-fried or grilled (Abdulkarim Schiffbase.ThemechanismwasconfirmedforIQx,MeIQx,and andSmith1998).Alongwithdifferentheatingtimes,theheating 4,8-DiMeIQx by using 14C-labeled glucose (Skog and Ja¨gerstad temperature was also varied. With both cooking methods, along 2005). with norharman and harman, MeIQx and PhIP could also be detected(Table5).Inoffalproducts(beefliver,lambkidney,and beeftongue),whichwerethermallyprocessed,HAAswerefound FormationofPhIP inconcentrationsonlynearthedetectionlimit,exceptfornorhar- Phenylalanine,reducingsugarsandcreatininecouldbedetected manandharman.Bothβ-carbolineswerefoundinconcentrations inPhIPformation.Itcouldbeshowninamodeltrialwithradioac- below2ng/g;onlyDMIP,MeIQx,and4,8-DiMeIQxwerede- tivelylabeledcarboninthephenylalaninemoleculethatthephenyl tectableincookedkidneyandtongueupto0.25ng/g(Khanand ringwascompletelybuiltintothePhIPmolecule(Zo¨chlingand others2009).ThereasonforthelowcontentsofIQ-typeHAAs Murkovic 2002). Further trials showed that creatinine forms a maybethelackoftheprecursorcreatine(Harrisandothers1997). part of the imidazole ring. The authors were able to identify Thewide-rangingvariationofprecursorsobservedinstudieswith the following reaction steps in PhIP formation in a model trial: meatfromvariousanimalspecies(Zimmerliandothers2001;Skog First, phenylacetaldehyde is formed from phenylalanine via the andSolyakov2002;Sunandothers2010;Puangsombatandoth- Strecker degradation. The phenylacetaldehyde formed reacts in ers2012;Zaidiandothers2012),clearlyaffectedtheformationof an aldol reaction with creatinine to form an intermediate prod- HAAs(Liaoandothers2010,2011b;GibisandWeiss2015). uct.Inthesubsequentcondensationreaction,PhIParosefromthis AlsothepH-valueisknowntoinfluencetheMaillardreactions substance(Zo¨chlingandMurkovic2002).Themechanismofthe (Cremer and Eichner 2000) and thereby also the formation of reaction is shown in Figure 1B. The formation of formaldehyde HAAs.ThiswasshownthatthecontentofHAAsinporkincreased fromphenylacetaldehydeandphenylalanine,andthecombination about22%onaverage(MeIQx–33%;4,8-DiMeIQx–17%;and of both formaldehyde and ammonia in the generation of PhIP harman–9%)inthePSE(pale,soft,andexudative)meatsamples fromphenylacetaldehydeandcreatininewerereportedinthere- with lower pH values when grilled than the normal muscle at a actionpathwaysthatproducePhIP(Zamoraandothers2014).In coretemperatureof95°C(Polakandothers2009b).Atthelower thepresenceofoxidizedlipid,otheraminoacidscompetedwith core temperature of 70 °C, no remarkable difference in HAA phenylalanineforthelipid,andaminoaciddegradationproducts formationcouldbeobservedbetweenPSEmeatandnormalmeat wereformed,amongwhichα-ketoacidsseemedtoplayarolein (Table 4). PSE is associated with pale color, low pH, and a high thesereactions(Zamoraandothers2013b).However,unoxidized drip loss causing by preslaughter stress and genetics of pigs with lipids did not contribute to PhIP formation (Zamora and others a fast post mortem glycolysis (Polak and others 2009b). In a study 2012). (cid:2) 276 ComprehensiveReviewsinFoodScienceandFoodSafety Vol.15,2016 (cid:2)C 2016InstituteofFoodTechnologists® Heterocyclicaminesincookedmeatproducts... Reference (Knizeandothers1994) (Thiebaudandothers1995)´ (Johanssonandothers1995b) (Skogandothers1995) (Knizeandothers1997a) (AbdulkarimandSmith1998) (Baloghandothers2000) (Zimmerliandothers2001)(Jautzandothers2008) (Niandothers2008) (Gibis2009)(GibisandWeiss2010) Othersbc(ng/g) αAC(21) Trp-P-2(1.7)Trp-P-2(1.5) IQ(0.7-1.3),MeIQ(0.1-0.3)IQ(1.7-4.4),MeIQ(0.5-2.1)IQ(2.8-5.3),MeIQ(2-3.5) dIQ(0.1/0.05),IFP(0.1/nd)IQ[4,5-b](0.3/nd),IgQx(0.5/nd),7-MeIgQx(2.4/0.3),6,7-DiMeIgQx(0.2/0.05),7,9-DiMeIgQx(0.7/nd)dIQ(0.1/0.06),IFP(0.6/nd)IQ[4,5-b](0.3/0.4),IgQx(1.5/0.03),7-MeIgQx(9.5/0.1),6,7-DiMeIgQx(0.3/nd),7,9-DiMeIgQx(2.2/0.02)dIQ(0.2/0.1),IFP(0.7/0.14)IQ[4,5-b](0.3/0.15),IgQx(1.8/0.3),7-MeIgQx(11.7/0.3),6,7-DiMeIgQx(0.4/nd),7,9-DiMeIgQx(3.0/0.12) Harmanc(ng/g) nananana na na na 0.610.880.310.831.7na na1.53.58.9na na na 21.40.7–1.7 n harmacg/g) 1.10.151.6na na na na 1.872.170.962.05.65na na2.15.010.4na na na 13.52–0.9 or(n 0. N x Q 8-Di-MeIb(ng/g) nd0.4nd1.34.5nd0.4nd0.84.5ndndnd0.31 0.8–0.90.9–4.53.0–4.8ndnd0.43.00.2nd 0.6 0.02 0.7 0.1 1.8nd–0.2 4, s. n o differentheatingconditi PhIPMeIQxbb(ng/g)(ng/g) nd–1.8nd–0.6nd–9.80.1–1.31.3–320.4–7.34.94.368160.080.21.51.60.01nd1.12.267.516.45022.350.270.100.800.43nd0.570.840.251.000.9–6.20.5–0.84.0–25.41.5–4.213.3–1.43.5–5.8nd–1.5nd–1.30.21.00.92.03.84.80.71.0ndnd 2.73.0 0.060.02 2.93.7 1.230.38 2.64.90.1–0.20.2–1.7 ng/g(fried/oven-broiled). g A n A usi dH beefpatties emperature°(C) 150190230198277165200150225––200240150190230175200225–230230230180186 189 189 191 191 230̴190 cnanotanalyzed; enceofHAAsinground CookingtimeT(min) 4–20 12 8 5–7 ––+66+3.53.5+33+55+7.57.512–20 –34.561010 15 15 20 20 4.52-3 buble-plategrill;ndnotdetected; urr ado Table2–Occ Cookingprocedure Fried Fried Fried Fried FriedGrilledBarbecued(15%fat)Fried(15%fat) Fried FriedFried Fried/Oven-broiled Fried/ Oven-broiled Fried/ Oven-broiled aFriedaFried aFried/grilledon (cid:2) (cid:2)C 2016InstituteofFoodTechnologists® Vol.15,2016 ComprehensiveReviewsinFoodScienceandFoodSafety 277 Heterocyclicaminesincookedmeatproducts... 9) Reference Sinhaandothers1995) Perssonandothers2002) SolyakovandSkog2002) Niandothers2008) Gasperlinandothers200ˇ Gibis2009)Liaoandothers2010) ( ( ( ( ( (( Others(ng/g) IQ(0.1-0.2),IQx(0.1-0.2),IFP(2.7-15.9),a-0.2),IQ[4,5-b](IgQx(0.3-0.9),7-MeIgQx(1.5-8.7),6.7-DiMeIgQxa-0.1),(7.9-DiMeIgQx(0.2-0.9),ααaa-0.1),MeACAC(aIQ(0.2-0.3),IQx,IFP(0.4-11.3),IQ[4,5-b]a-0.3),IgQx(0.2-0.4),(7-MeIgQx(1.0-11.1),a-0.2),6.7-DiMeIgQx(7.9-DiMeIgQx(0.1-1.8),αAC(0.2-9,4),αaMeAC(-1.3) αIQ(1.8),AC(0.2),αaMeACααaAC(0.3),MeACTrp-P-2(3.6),Trp-P-1(1.5),ααAC(5.6),MeAC(1.6)ααaaAC,MeAC Harmanc(ng/g) nananananana0.3–7.5<0.1–1.70.3<a0.1na na 0.090.050.92.8 12.331.7 0.7 n Norharmab(ng/g) nananananana0.5–6.9<0.1–3.30.5<a0.1na na 0.070.110.81.4 5.432.2 3.1 4,8-DiMeIQxbc(ng/g) 1–4nd–2ndnanana0.1–0.6nd<a0.1a0.10.8–3.6 0.1–2.0 0.110.13nd1.1 0.43.6 nd MeIQxbcng/g) 1–3nd–9nd-3nanana0.1–1.8nd<a0.1nd0.6–2.3 0.1–2.8 2.10.20.21.8 0.81.2 nd ( 2 PhIPc(ng/g) 12–7027–4806–1500.710.529.7<0.1–38.nd<a0.1nd8.8–48.5 5.6–72.0 2.40.33.818.3 2.231.1 0.04 e breast. Cookingtemperatur°(C) 197–221177–26079–86175200225140–225175–240160200197–211 179–186 220220230180 180200 200 n e k c HAAsinchi Cookingtime(min) 14–3610–439–1716181212–3424–40113814–36 9–17 5184.5+55 10+1010 20 of Table3–Occurrence Cookingprocedure Pan-friedBarbecuedBoiledPan-fried Pan-friedRoastedDeep-fatfriedBoiledPan-fried Oven-broiled dFriedeGrilleddFriedPan-fried Deep-fatfriedCharcoal-grilled Roasted a(cid:2)Traces(0.05ng/g).bna,notanalyzed.cnd,notdetected.dFriedonadouble-plategrill.eGrilledonaninfraredgrill. (cid:2) 278 ComprehensiveReviewsinFoodScienceandFoodSafety Vol.15,2016 (cid:2)C 2016InstituteofFoodTechnologists®
Description: