Tailoring on-surface chemistry of (hetero)aromatics on transition metal surfaces Memoria presentada para optar al grado de Doctor en Ciencias Físicas por Anna Lisa Pinardi Dirigida por Prof. José Ángel Martín Gago Tutor Dr. Alejandro Gutiérrez Madrid, Junio 2013 i ii ............................................................................................................................................................................... i Abstract ................................................................................................................................................................. i Resumen .............................................................................................................................................................. iii 1 Introduction and motivation ....................................................................................................................... 1 2 Experimental methods ................................................................................................................................ 9 2.1 Experimental systems used in this thesis .......................................................................................... 12 2.2 Substrate preparation ....................................................................................................................... 13 2.3 Deposition of organic molecules ....................................................................................................... 14 2.4 Scanning Tunneling Microscopy (STM) ............................................................................................. 16 2.5 Low-Energy Electron Diffraction (LEED) ............................................................................................ 19 2.6 X-ray Photoelectron Spectroscopy (XPS) ........................................................................................... 21 2.7 Near Edge X-ray Absorption Fine Structure (NEXAFS)....................................................................... 23 2.8 Temperature Programmed Desorption (TPD) ................................................................................... 25 2.9 Density Functional Theory (DFT) ....................................................................................................... 26 3 Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)dehydrogenation of heteroaromatics .................................................................................................... 27 3.1 Introduction ....................................................................................................................................... 30 3.2 Design of the model precursors 1 and 4 ........................................................................................... 31 3.3 Cyclodehydrogenation of 1 and 4 on Pt(111): a highly reactive surface .......................................... 32 3.4 Dehydrogenation of 1 and 4 on Au(111): a weakly interacting surface ............................................ 33 3.5 Conclusion ......................................................................................................................................... 37 4 Spectroscopic and morphological study of DiPy[5]DBH on different transition metals ........................... 39 4.1 DiPy[5]DBH on highly interacting metals: Pt(111) ............................................................................ 42 4.1.1 Deposition on the surface at room temperature ...................................................................... 42 4.1.2 DiPy[5]DBH/Pt(111): deposition on the hot surface ................................................................. 52 4.2 DiPy[5]DBH on coinage metals .......................................................................................................... 54 4.2.1 DiPy[5]DBH/Cu(110) .................................................................................................................. 55 4.2.2 DiPy[5]DBH/Cu(111) .................................................................................................................. 68 4.2.3 DiPy[5]DBH/Au(111) .................................................................................................................. 80 4.2.4 Discussion: DiPy[5]DBH on coinage metals ............................................................................... 87 4.3 DiPy[5]DBH on different transition metals: conclusions ................................................................... 93 iii 5 C H N : on-surface cyclodehydrogenation steps towards the formation of triaza-fullerenes ............... 95 57 33 3 5.1 Introduction ....................................................................................................................................... 98 5.2 Scanning Tunneling Microscopy of C H N /Pt(111): the formation of triaza-fullerenes in steps 100 57 33 3 5.2.1 Planar molecules: crushed fullerenes ...................................................................................... 100 5.2.2 Open-cage triaza-fullerenes .................................................................................................... 104 5.2.3 The formation of triaza-fullerenes .......................................................................................... 106 5.2.4 N-doped graphene ................................................................................................................... 107 5.3 High resolution and temperature programmed XPS ....................................................................... 108 5.3.1 Temperature Programmed XPS of C1s .................................................................................... 109 5.3.2 High-resolution XPS ................................................................................................................. 110 5.4 Conclusions ...................................................................................................................................... 119 6 The mechanism of the atomic vacancy formation on the C /Pt(111) system ....................................... 121 60 6.1 Introduction ..................................................................................................................................... 124 6.2 Results ............................................................................................................................................. 128 6.2.1 STM .......................................................................................................................................... 128 6.2.2 LEED ......................................................................................................................................... 138 6.2.3 XPS ........................................................................................................................................... 140 6.2.4 TPD ........................................................................................................................................... 145 6.3 DISCUSSION ..................................................................................................................................... 147 6.4 Conclusions ...................................................................................................................................... 149 Conclusions ...................................................................................................................................................... 151 Conclusiones .................................................................................................................................................... 155 7 Bibliography ............................................................................................................................................. 161 iv i ii Abstract Organic molecules such as Polycyclic Aromatic Hydrocarbons (PAH) have the potential of substituting the silicon-based technology in electronic circuits, and are also widely spread in Organic Light Emitting Diodes (OLED) and in new designs of solar cells. The bottom-up construction of such devices with organic molecules as the building blocks is one of the bases of nanotechnology. The ability of manipulating the electronic properties and the relative position of the molecules with respect to each other is a great challenge for controlling the outcome at the atomic scale to obtain new nanoarchitectures. On-surface chemical modification of molecules is an excellent approach to obtain a controlled manipulation of the organic functional molecules. In particular, transition metal surfaces are uniquely prone to engineer desired outcomes from the pristine molecules, as some of the resultant structures cannot be achieved otherwise. To this extent, many scientists focused in manipulating precursors in perfect systems such as on single crystal metal surfaces in Ultra High Vacuum (UHV). The employment of such tools has the object to control separately each parameter to achieve a desired outcome. Depending on the electronic structure of a particular transition metal, the effect that the surface may have on a PAH varies completely. In this thesis we focus on three organic molecules, namely C H N (a crushed 57 33 3 triaza-fullerene), C H N (an open N-doped nanographene flake) and C (fullerene) on different metal 40 24 2 60 surfaces. The latter molecule is in general very stable due to its symmetric shape; however, the first two precursors differ from the fullerene, as when deposited on a surface they undergo chemical modification upon thermal activation. The metal surfaces catalyse the cleavage of the C-H bonds, thereby leaving unstable C dangling bonds which combine with either dangling bonds of the same or of another molecule, creating new C-C bonds, or with the surface, forming new bonds between the carbon and the metal. This process is named cyclodehydrogenation if new aromatic rings are generated, and dehydrogenation if no new rings arise from the new bond. When depositing submonolayer coverage of a PAH on a highly reactive surface such as Pt(111), the molecules stick where they land, and therefore, as the C-H bonds cleave upon annealing, only intramolecular modification is allowed because the molecules are fixed. Due to a bonding with the surface, there is no interaction with other precursors and the molecule cyclodehydrogenates to modify its structure and its electronic properties. C H N transforms into a triaza-fullerene, while C H N into a N-doped 57 33 3 40 24 2 nanographene. On the other hand, if the PAHs are deposited on a weakly interacting surface such as Au(111) or on other coinage metals, the molecules are free to move at room temperature as they do not bind with the metal. Upon annealing, they (cyclo)dehydrogenate and link together to form covalent chains: this is possible because the activated molecules can meet each other because surface diffusion allows intermolecular interaction. i Abstract The intermediate structures formed by C H N and C H N on different metals upon annealing have been 57 33 3 40 24 2 investigated in details with different surface science experimental and theoretical techniques such as Scanning Tunneling Microscopy (STM), high resolution X-ray Photoelectron Spectroscopy (XPS), Near-Edge X- ray Absorption Fine Structure (NEXAFS) and Density Functional Theory (DFT) calculations. The shape of the precursors has been selected on purpose to obtain triaza-fullerenes and N-doped nanographene, and the employment of hetero-aromatic precursors is an elegant way of introducing dopants on the resultant outcome. Before obtaining triaza-fullerenes, the partial cyclodehydrogenation of C H N allows to observe 57 33 3 open-cage fullerenes. On the other hand, C H N undergoes a two-steps hierarchical transformation: due 40 24 2 to steric reasons, the first C-H bonds to cleave upon annealing are the internal ones, hence forming nanographene; however, further thermal energy injection also causes the edge C-H atoms to cleave, forming N-doped nanodomes. Both precursors transform into N-doped graphene when enough thermal energy is provided. The third precursor, namely the fullerene, differs from the other two as it is much more stable, since it is highly symmetric and it lacks of C-H bonds. In this thesis, we analyse the effect of the presence of this molecule on the metal, rather than the opposite. C is well known to induce a single- or a multi-atom 60 vacancy on transition metals, even though the mechanism of the vacancy formation is still under discussion. According to the theoretical calculations, the energy needed for the surface to reconstruct is noticeably lower in the presence of the fullerene. Our experimental observations reveal that the as-deposited fullerenes at room temperature are weakly interacting with the surface, however annealing at 450 K causes a charge transfer from the surface to the molecule. This is a metastable state in which an adatom-vacancy pair is formed, as predicted by DFT calculations. Further annealing at 700 K forces the formation of a single atom vacancy beneath each fullerene. ii
Description: