Chapter 13 Hermite and Laguerre Polynomials In this chapter we study two sets of orthogonal polynomials, Hermite and Laguerre polynomials. These sets are less common in mathematical physics than the Legendre and Bessel functions of Chapters 11 and 12, but Hermite polynomialsoccurinsolutionsofthesimpleharmonicoscillatorofquantum mechanicsandLaguerrepolynomialsinwavefunctionsofthehydrogenatom. Because the general mathematical techniques are similar to those of the precedingtwochapters,thedevelopmentofthesefunctionsisonlyoutlined. Some detailed proofs, along the lines of Chapters 11 and 12, are left to the reader.WestartwithHermitepolynomials. 13.1 HermitePolynomials QuantumMechanicalSimpleHarmonicOscillator For the physicist, Hermite polynomials are synonymous with the one- dimensional (i.e., simple) harmonic oscillator of quantum mechanics. For a potentialenergy 1 1 V = Kz2 = mω2z2, force F =−∂V/∂z=−Kz, z 2 2 theSchro¨dingerequationofthequantummechanicalsystemis h¯2 d2 1 − (cid:5)(z)+ Kz2(cid:5)(z)= E(cid:5)(z). (13.1) 2mdz2 2 Our oscillating particle has mass mand total energy E. From quantum me- chanics,werecallthatforboundstatestheboundaryconditions lim (cid:5)(z)=0 (13.2) z→±∞ 638 13.1 HermitePolynomials 639 restricttheenergyeigenvalue E toadiscreteset E = λ h¯ω, whereω isthe n n angular frequency of the corresponding classical oscillator. It is introduced by rescaling the coordinate z in favor of the dimensionless variable x and transformingtheparametersasfollows: mK m2ω2 x=αz with α4 ≡ ≡ , h¯2 h¯2 (cid:2) (cid:3) (13.3) 2E m 1/2 2E 2λ ≡ n = n. n h¯ K h¯ω Eq.(13.1) becomes [with (cid:5)(z) = (cid:5)(x/α) = ψ(x)] the ordinary differential equation(ODE) d2ψ (x) n +(2λ −x2)ψ (x)=0. (13.4) dx2 n n Ifwesubstituteψ (x)=e−x2/2H (x)intoEq.(13.4),weobtaintheODE n n H(cid:9)(cid:9)−2xH(cid:9) +(2λ −1)H =0 (13.5) n n n n ofExercise8.5.6.ApowerseriessolutionofEq.(13.5)showsthat H (x)will n behaveasex2 forlargex,unlessλ =n+1/2, n=0,1,2,....Thus,ψ (x)and n n (cid:5) (z)willblowupatinfinity,anditwillbeimpossibleforthewavefunction n (cid:5)(z)tosatisfytheboundaryconditions[Eq.(13.2)]unless (cid:2) (cid:3) 1 E =λ h¯ω= n+ h¯ω, n=0,1,2... (13.6) n n 2 Thisisthekeypropertyoftheharmonicoscillatorspectrum.Weseethatthe energyisquantizedandthatthereisaminimumorzeropointenergy 1 E = E = h¯ω. min 0 2 This zero point energy is an aspect of the uncertainty principle, a genuine quantumphenomenon.Also,with2λ −1=2n, Eq.(13.5)becomesHermite’s n ODEand H (x)aretheHermitepolynomials.Thesolutionsψ (Fig.13.1)of n n Eq.(13.4)areproportionaltotheHermitepolynomials1H (x). n Thisisthedifferentialequationsapproach,astandardquantummechani- caltreatment.However,weshallprovethesestatementsnextemployingthe methodofladderoperators. RaisingandLoweringOperators Thefollowingdevelopmentisanalogoustotheuseoftheraisingandlowering operatorsforangularmomentumoperatorspresentedinSection4.3.Thekey aspectofEq.(13.4)isthatitsHamiltonian (cid:2) (cid:3)(cid:2) (cid:3) (cid:4) (cid:5) d2 d d d −2H≡ −x2 = −x +x + x, (13.7) dx2 dx dx dx 1Notetheabsenceofasuperscript,whichdistinguishesHermitepolynomialsfromtheunrelated HankelfunctionsinChapter12. 640 Chapter13 HermiteandLaguerrePolynomials Figure13.1 Quantum Mechanical 0.5 OscillatorWave y(x) 2 Functions.The HeavyBaronthe x x-AxisIndicatesthe 5 AllowedRangeof theClassical Oscillatorwiththe SameTotalEnergy 0.5 y (x) 1 5 almostfactorizes.Usingnaivelya2−b2 =(a−b)(a+b),thebasiccommutator [p ,x]=h¯/iofquantummechanics[withmomentum p =(h¯/i)d/dx]enters x x asacorrectioninEq.(13.7).[Because p isHermitian,d/dxisanti-Hermitian, x (d/dx)† = −d/dx.] This commutator can be evaluated as follows. Imagine thedifferentialoperatord/dxactsonawavefunctionψ(x)totheright,asin Eq.(13.4),sothat d d (xψ)= x ψ +ψ (13.8) dx dx bytheproductrule.DroppingthewavefunctionψfromEq.(13.8),werewrite Eq.(13.8)as (cid:4) (cid:5) d d d x−x ≡ ,x =1, (13.9) dx dx dx aconstant,andthenverifyEq.(13.7)directlybyexpandingtheproduct.The productformofEq.(13.7),uptotheconstantcommutator,suggestsintroduc- ingthenon-Hermitianoperators (cid:2) (cid:3) (cid:2) (cid:3) 1 d 1 d aˆ† ≡ √ x− , aˆ ≡ √ x+ , (13.10) 2 dx 2 dx with(aˆ)† =aˆ†.Theyobeythecommutationrelations (cid:4) (cid:5) d [aˆ,aˆ†]= ,x =1, [aˆ,aˆ]=0=[aˆ†,aˆ†], (13.11) dx 13.1 HermitePolynomials 641 which are characteristic of these operators and straightforward to derive fromEq.(13.9)and [d/dx,d/dx]=0=[x,x] and [x,d/dx]=−[d/dx,x]. ReturningtoEq.(13.7)andusingEq.(13.10),werewritetheHamiltonianas 1 1 1 H=aˆ†aˆ + =aˆ†aˆ + [aˆ,aˆ†]= (aˆ†aˆ +aˆaˆ†) (13.12) 2 2 2 andintroducetheHermitiannumberoperatorN =aˆ†aˆ sothatH= N+1/2. Wealsousethesimplernotationψ =|n(cid:12)sothatEq.(13.4)becomes n H|n(cid:12)=λ |n(cid:12). n Nowweprovethekeypropertythat N hasnonnegativeintegereigenvalues (cid:2) (cid:3) 1 N|n(cid:12)= λ − |n(cid:12)=n|n(cid:12), n=0,1,2,..., (13.13) n 2 thatis,λ =n+1/2.From n (cid:2) (cid:3) 1 |aˆ|n(cid:12)|2 =(cid:13)n|aˆ†aˆ|n(cid:12)= λ − ≥0, (13.14) n 2 weseethat N hasnonnegativeeigenvalues. Wenowshowthatthecommutationrelations [N,aˆ†]=aˆ†, [N,aˆ]=−aˆ, (13.15) which follow from Eq. (13.11), characterize N as the number operator that counts the oscillator quanta in the eigenstate |n(cid:12). To this end, we determine theeigenvalueof N forthestatesaˆ†|n(cid:12)andaˆ|n(cid:12).Usingaˆaˆ† = N +1, wesee that (cid:2) (cid:3) 1 N(aˆ†|n(cid:12))=aˆ†(N+1)|n(cid:12)= λ + aˆ†|n(cid:12)=(n+1)aˆ†|n(cid:12), (13.16) n 2 (cid:2) (cid:3) 1 N(aˆ|n(cid:12))=(aˆaˆ†−1)aˆ|n(cid:12)=aˆ(N−1)|n(cid:12)= λ − aˆ|n(cid:12) n 2 =(n−1)aˆ|n(cid:12). In other words, N acting on aˆ†|n(cid:12) shows that aˆ† has raised the eigenvalue n of |n(cid:12) by one unit; hence its name raising or creation operator. Applying aˆ† repeatedly,wecanreachallhigherexcitations.Thereisnoupperlimitto thesequenceofeigenvalues.Similarly,aˆ lowerstheeigenvaluenbyoneunit; hence,itisaloweringorannihilationoperator.Therefore, aˆ†|n(cid:12)∼|n+1(cid:12), aˆ|n(cid:12)∼|n−1(cid:12). (13.17) Applyingaˆ repeatedly,wecanreachthelowestorgroundstate|0(cid:12)witheigen- value λ . We cannot step lower because λ ≥ 1/2. Therefore, aˆ|0(cid:12) ≡ 0, 0 0 642 Chapter13 HermiteandLaguerrePolynomials suggestingweconstructψ =|0(cid:12)fromthe(factored)first-orderODE 0 (cid:2) (cid:3) √ d 2aˆψ = +x ψ =0. (13.18) 0 0 dx Integrating ψ(cid:9) 0 =−x, (13.19) ψ 0 weobtain 1 lnψ =− x2+lnc , (13.20) 0 0 2 wherec isanintegrationconstant.Thesolution 0 ψ (x)=c e−x2/2 (13.21) 0 0 can be normalized, with c = π−1/4 using the error integral. Substituting ψ 0 0 intoEq.(13.4)wefind (cid:2) (cid:3) 1 1 H|0(cid:12)= aˆ†aˆ + |0(cid:12)= |0(cid:12) (13.22) 2 2 sothatitsenergyeigenvalueisλ = 1/2anditsnumbereigenvalueisn= 0, 0 confirmingthenotation|0(cid:12).Applyingaˆ†repeatedlytoψ =|0(cid:12),allothereigen- 0 valuesareconfirmedtobeλ = n+1/2, provingEq.(13.13).Thenormaliza- n tionsinEq.(13.17)followfromEqs.(13.14),(13.16),and |aˆ†|n(cid:12)|2 =(cid:13)n|aˆaˆ†|n(cid:12)=(cid:13)n|aˆ†aˆ +1|n(cid:12)=n+1, (13.23) showing √ √ n+1|n+1(cid:12)=aˆ†|n(cid:12), n|n−1(cid:12)=aˆ|n(cid:12). (13.24) Thus,theexcited-statewavefunctions,ψ ,ψ ,andsoon,aregeneratedbythe 1 2 raisingoperator (cid:2) (cid:3) √ 1 d x 2 |1(cid:12)=aˆ†|0(cid:12)= √ x− ψ (x)= e−x2/2, (13.25) 2 dx 0 π1/4 yielding[andleadingtoEq.(13.5)] ψ (x)= N H (x)e−x2/2, N =π−1/4(2nn!)−1/2, (13.26) n n n n where H aretheHermitepolynomials(Fig.13.2). n BiographicalData Hermite,Charles. Hermite,aFrenchmathematician,wasborninDieuze in1822anddiedinParisin1902.Hismostfamousresultisthefirstproofthat eisatranscendentalnumber;thatis,eisnottherootofanypolynomialwith integercoefficients.Healsocontributedtoellipticandmodularfunctions. Havingbeenrecognizedslowly,hebecameaprofessorattheSorbonnein 1870. 13.1 HermitePolynomials 643 Figure13.2 HermitePolynomials 10 H(x) 8 2 6 4 H1(x) 2 H(x) 0 0 x 1 2 –2 RecurrenceRelationsandGeneratingFunction Nowwecanestablishtherecurrencerelations 2xHn(x)−Hn(cid:9)(x)= Hn+1(x), Hn(cid:9)(x)=2nHn−1(x), (13.27) fromwhich Hn+1(x)=2xHn(x)−2nHn−1(x) (13.28) followsbyaddingthem.ToproveEq.(13.27),weapply d d x− =−ex2/2 e−x2/2 (13.29) dx dx toψ (x)ofEq.(13.26)andrecallEq.(13.24)tofind n N Nn+1Hn+1e−x2/2 =−√2(nn+1)e−x2/2(−2xHn+Hn(cid:9)), (13.30) thatis,thefirstpartofEq.(13.27).Usingx+d/dxinstead,wegetthesecond halfofEq.(13.27). EXAMPLE13.1.1 TheFirstFewHermitePolynomials WeexpectthefirstHermitepolyno- mialtobeaconstant,H (x)=1,beingnormalized.Thenn=0intherecursion 0 relation[Eq.(13.28)]yieldsH =2xH =2x;n=1impliesH =2xH −2H = 1 0 2 1 0 4x2−2, andn=2implies H (x)=2xH (x)−4H (x)=2x(4x2−2)−8x=8x3−12x. 3 2 1 Comparing with Eq. (13.27) for n = 0,1,2, we verify that our results are consistent:2xH − H(cid:9) = H = 2x·1−0, etc.Forconvenientreference,the 0 0 1 firstseveralHermitepolynomialsarelistedinTable13.1. (cid:2) 644 Chapter13 HermiteandLaguerrePolynomials Table13.1 H0(x)=1 HermitePolynomials H1(x)=2x H2(x)=4x2−2 H3(x)=8x3−12x H4(x)=16x4−48x2+12 H5(x)=32x5−160x3+120x H6(x)=64x6−480x4+720x2−120 TheHermitepolynomials H (x)maybesummedtoyieldthegenerating n function (cid:6)∞ tn g(x,t)=e−t2+2tx = H (x) , (13.31) n n! n=0 whichwederivenextfromtherecursionrelation[Eq.(13.28)]: (cid:6)∞ tn ∂g 0≡ n!(Hn+1−2xHn+2nHn−1)= ∂t −2xg+2tg. (13.32) n=1 IntegratingthisODEintbyseparatingthevariablestandg,weget 1∂g =2(x−t), (13.33) g ∂t whichyields lng =2xt−t2+lnc, g(x,t)=e−t2+2xtc(x), (13.34) wherecisanintegrationconstantthatmaydependontheparameterx.Direct expansionoftheexponentialinEq.(13.34)gives H (x) = 1and H (x) = 2x 0 1 alongwithc(x)≡1. EXAMPLE13.1.2 Special Values SpecialvaluesoftheHermitepolynomialsfollowfromthe generatingfunctionforx=0;thatis, (cid:6)∞ tn (cid:6)∞ t2n g(x=0,t)=e−t2 = H (0) = (−1)n . n n! n! n=0 n=0 Acomparisonofcoefficientsofthesepowerseriesyields (2n)! H2n(0)=(−1)n , H2n+1(0)=0. (13.35) n! (cid:2) EXAMPLE13.1.3 Parity Similarly,weobtainfromthegeneratingfunctionidentity g(−x,t)=e−t2−2tx =g(x,−t) (13.36) thepowerseriesidentity (cid:6)∞ tn (cid:6)∞ (−t)n H (−x) = H (x) , n n n! n! n=0 n=0 13.1 HermitePolynomials 645 whichimpliestheimportantparityrelation H (x)=(−1)nH (−x). (13.37) n n (cid:2) Inquantummechanicalproblems,particularlyinmolecularspectrosopy,a numberofintegralsoftheform (cid:7) ∞ xre−x2H (x)H (x)dx n m −∞ areneeded.Examplesforr =1andr =2(withn=m)areincludedintheex- ercisesattheendofthissection.ManyotherexamplesarecontainedinWilson etal.2 Theoscillatorpotentialhasalsobeenemployedextensivelyincalcula- tionsofnuclearstructure(nuclearshellmodel)andquarkmodelsofhadrons. ThereisasecondindependentsolutiontoEq.(13.4).ThisHermitefunction isaninfiniteseries(Sections8.5and8.6)andofnophysicalinterestyet. AlternateRepresentations Differentiationofthegeneratingfunction3 ntimeswithrespecttot andthen settingtequaltozeroyields dn H (x)=(−1)nex2 e−x2. (13.38) n dxn This gives us a Rodrigues representation of H (x). A second representation n maybeobtainedbyusingthecalculusofresidues(Chapter7).Ifwemultiply Eq.(13.31)byt−m−1andintegratearoundtheorigin,onlythetermwithH (x) m willsurvive: (cid:8) m! H (x)= t−m−1e−t2+2txdt. (13.39) m 2πi Also,fromEq.(13.31)wemaywriteourHermitepolynomial H (x)inseries n form: 2n! 4n! H (x)=(2x)n− (2x)n−2+ (2x)n−41·3··· n (n−2)!2! (n−4)!4! (cid:2) (cid:3) [(cid:6)n/2] n = (−2)s(2x)n−2s 1·3·5···(2s−1) 2s s=0 [(cid:6)n/2] n! = (−1)s(2x)n−2s . (13.40) (n−2s)!s! s=0 ThisseriesterminatesforintegralnandyieldsourHermitepolynomial. 2Wilson, E. B., Jr., Decius, J. C., and Cross, P. C. (1955). Molecular Vibrations. McGraw-Hill, NewYork.Reprinted,Dover,NewYork(1980). 3Rewritethegeneratingfunctionasg(x,t)=ex2e−(t−x)2.Notethat ∂ ∂ e−(t−x)2 =− e−(t−x)2. ∂t ∂x 646 Chapter13 HermiteandLaguerrePolynomials EXAMPLE13.1.4 The Lowest Hermite Polynomials For n = 0, we find from the series, Eq.(13.40), H (x) = (−1)0(2x)0 0! = 1;forn= 1, H (x) = (−1)0(2x)1 1! = 0 0!0! 1 1!0! 2x;andforn=2,thes=0ands=1termsinEq.(13.40)give 2! 2! H (x)=(−1)0(2x)2 −(2x)0 =4x2−2, 2 2!0! 0!1! etc. (cid:2) Orthogonality The recurrence relations [Eqs. (13.27) and (13.28)] lead to the second-order ODE H(cid:9)(cid:9)(x)−2xH(cid:9)(x)+2nH (x)=0, (13.41) n n n whichisclearlynotself-adjoint. ToputEq.(13.41)inself-adjointform,wemultiplybyexp(−x2)(Exercise 9.1.2).Thisleadstotheorthogonalityintegral (cid:7) ∞ H (x)H (x)e−x2dx=0, m=(cid:18) n, (13.42) m n −∞ withtheweightingfunctionexp(−x2)aconsequenceofputtingthedifferen- tial equation into self-adjoint form. The interval (−∞,∞) is dictated by the boundaryconditionsoftheharmonicoscillator,whichareconsistentwiththe Hermitianoperatorboundaryconditions(Section9.1).Itissometimesconve- nienttoabsorbtheweightingfunctionintotheHermitepolynomials.Wemay define ϕ (x)=e−x2/2H (x), (13.43) n n withϕ (x)nolongerapolynomial. n Substituting H = ex2/2ϕ intoEq.(13.41)yieldsthequantummechanical n n harmonicoscillatorODE[Eq.(13.4)]forϕ (x): n ϕ(cid:9)(cid:9)(x)+(2n+1−x2)ϕ (x)=0, (13.44) n n whichisself-adjoint.Thus,itssolutionsϕ (x)areorthogonalfortheinterval n (−∞ < x < ∞)withaunitweightingfunction.Theproblemofnormalizing thesefunctionsremains.ProceedingasinSection11.3,wemultiplyEq.(13.31) byitselfandthenbye−x2.Thisyields (cid:6)∞ smtn e−x2e−s2+2sxe−t2+2tx = e−x2H (x)H (x) . (13.45) m n m!n! m,n=0 13.1 HermitePolynomials 647 Whenweintegrateoverxfrom−∞to+∞thecrosstermsofthedoublesum dropoutbecauseoftheorthogonalityproperty4 (cid:7) (cid:7) (cid:6)∞ (st)n ∞ ∞ e−x2[H (x)]2dx= e−x2−s2+2sx−t2+2txdx n n!n! n=0 −∞ −∞ (cid:7) ∞ (cid:6)∞ 2n(st)n = e−(x−s−t)2e2st dx=π1/2e2st =π1/2 . (13.46) n! −∞ n=0 Byequatingcoefficientsoflikepowersofst,weobtain (cid:7) ∞ e−x2[H (x)]2dx=2nπ1/2n! (13.47) n −∞ whichyieldsthenormalization N inEq.(13.26). n Hermitepolynomialsaresolutionsofthesimpleharmonicoscillatorofquan- SUMMARY tummechanics.TheirpropertiesdirectlyfollowfromwritingtheirODEasa productofcreationandannihilationoperatorsandtheSturm–Liouvilletheory oftheirODE. EXERCISES 13.1.1 In developing the properties of the Hermite polynomials, start at a numberofdifferentpoints,suchas (1) Hermite’sODE,Eqs.(13.5)and(13.44); (2) Rodrigues’sformula,Eq.(13.38); (3) Integralrepresentation,Eq.(13.39); (4) Generatingfunction,Eq.(13.31);and (5) Gram–Schmidtconstructionofacompletesetoforthogonalpoly- nomials over (−∞,∞) with a weighting factor of exp(−x2), Section9.3. Outline how you can go from any one of these starting points to all theotherpoints. 13.1.2 Fromthegeneratingfunction,showthat [(cid:6)n/2] n! H (x)= (−1)s (2x)n−2s. n (n−2s)!s! s=0 13.1.3 Fromthegeneratingfunction,derivetherecurrencerelations Hn+1(x)=2xHn(x)−2nHn−1(x), Hn(cid:9)(x)=2nHn−1(x). 4Thecrossterms(m=(cid:18) n)maybeleftin,ifdesired.Then,whenthecoefficientsofsαtβareequated, theorthogonalitywillbeapparent.
Description: