Heriot-Watt University Research Gateway Design and low energy ventilation solutions for atria in the tropics Citation for published version: Abdullah, AH & Wang, F 2012, 'Design and low energy ventilation solutions for atria in the tropics', Sustainable Cities and Society, vol. 2, no. 1, pp. 8-28. https://doi.org/10.1016/j.scs.2011.09.002 Digital Object Identifier (DOI): 10.1016/j.scs.2011.09.002 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Early version, also known as pre-print Published In: Sustainable Cities and Society Publisher Rights Statement: Published by Elsevier B.V. All rights reserved. General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Jan. 2023 SustainableCitiesandSociety2 (2012) 8–28 ContentslistsavailableatSciVerseScienceDirect Sustainable Cities and Society journal homepage: www.elsevier.com/locate/scs Design and low energy ventilation solutions for atria in the tropics AbdHalidAbdullaha,FanWangb,∗ aFacultyofCivilandEnvironmentalEngineering,UniversitiTunHusseinOnnMalaysia,86400ParitRaja,Johor,Malaysia bSchoolo ft heBu iltE nvironment,He riot-WattUn iversity,E dinb urghEH 144A S,United Kingdo m a r t i c l e i n f o a b s t r a c t Articlehistory: Agenericatriumbuildingwasdesignedtoincorporatelowenergysolutionsandfeaturesofbothvernac- Receiv ed28July2011 ul arandc ontemp orarySo uth Asianarc hit ecture.Toac hiev elowe nergyan dcom fortwi thi nthe atrium AReccceepivteedd i2n6 r Seevpis teedm fboermr2 10 1S1eptember 2011 spac e, so me key design variab les we re examined by running a dy namic therm al mod el (DTM ) fo r some representativecases.ThisDTMmodelwasdevelopedwithmultiplelevelsandzonestosimulatetheheat andairmovementthroughoutthebuildingandvalidatedwiththedatameasuredinarealbuildingof Keywords: simi lar form.Them odellingst udy wascarr iedo uttoinve stiga tet heef fectsoftw or oo ffo rmsfort he Thermalcomfort atriumandthreelowcostventilationsolutionsonindoorthermalcomfort.Itrevealsthatlowcostven- Atrium tilationandacceptablecomfortareachievableinthistraditionalformofarchitectureandlowenergy Walkway/balcony Ventilation solutions and careful design can complement well its functional aspects and even enhance its aesthetic Top-lit/side-litroof andpracticalqualities. Th esolarh eatgain,airtemperature,andmeanradianttemperatureintheatriumwereusedtoassess theeffectivenessofclerestorywindowswithopaquerooftop(i.e.side-litmodel)ascomparedtothe fullytransparentglazedrooftop(i.e.top-litmodel).Dataoncoolingloads,indoorairtemperature,and meanradianttemperaturewereusedtoevaluatethedesignoptionswithspecialconsiderationonlocal adaptablethermalcomfortcriteria.Thepossibleeffectsoftheresearchoutcomesontheincorporation ofatriaarediscussedattheend. Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. 1. Introduction Incoldclimatetheenvironmentalbenefitsofsuchvoidspaces areobviousastheyareusedasasunspaceduringsunnydayand Atria have become very popular in modern buildings, partic- bufferzonesbetweenharshexternalclimaticconditionsandthe ularlylargecommercialbuildings,suchashotels,shoppingmalls indoorenvironment(Hawkes&Baker,1983;Nelson,1984).Inhot andofficeheadquarters(Reidetal.,1994).Oftenrightafterthemain climate,however,theenvironmentaleffectsarenotalwaysdesir- entranceorastheextensionoftheentrylobby,anatriumprovides able. A typical example of this is that the glazing cover allows acentralcorecirculationareawithfeelingofspaceandlightaswell deeperpenetrationofhighlevelnaturallighting,amuchwelcome asatransitionzonebetweentheoutdoorsandtheinteriorforlong featureforaninteriorspace,andstrongsolarradiation,anadverse stay(Saxon,1994).Moreover,traditionalbalconiesareadoptedas factor to thermal comfort (Douvlou & Pitts, 2001; Edmonds & walkwaysabovegroundleveltomaximisetheuseoftheatrium Greenup,2002).Inthetropics,solarradiationpenetratingthrough space.Thisisparticularlytrueinbuildingslikeshoppingmalls,as thelargeglazedenvelopecanseverelyworsenindoorthermalenvi- a linear atrium create a semi-outdoor environment for the long ronment of a building during the occupied hours, especially the balconies,thekeycirculationpathsinthesebuildings.Apartfrom radiations from the high altitude of the afternoon sun and high thismajorattraction,atriahavemanyenvironmentalimplications, temperatureinthehighleveloftheatriumspace(Pan,Li,Huang, suchasforsolargain,daylightandthermalcomfort.Theyaffectthe &Wu,2010). physicalenvironmentwithinthevoidspaceandeventotheadja- Anexampleofsuchpoorindoorconditionsisbestillustratedby centspaces.Theseenvironmentalconditionsintheatriadepend SandraDayO’ConnorUnitedStatesCourthouse,aglassboxbuild- directly on the complex interaction between the buildings’ ele- ing.Itiswellknownthattheairtemperatureinsidetheatriumcan ments(a nd con struction materials),a rchitectu ralfo rmsandm uch easi ly go bey ond38 ◦C.E ven wi thOveArup’ sinno vati vesolut ion moret heou tdoorweathe rcondition s(Atif,1992) . theind oo rairtem peratu reris esas high as33◦C onthegrou ndfloor oftheatriumunderthescorchingArizonaSun(Stephens,2011) Unfortunately the problem of overheating is not easily seen untilthebuildingisactuallyoccupiedandthehighbillforcool- ∗ ingisincurred.Apparentlythebenefitfromtheabundantnatural CE-omrraeislpaodnddreinssg: afaunth.woar.n [email protected]: w+4.a4c 1.u3k1( 4F.5W14a6n3g6);. fax: +44 131 4513161. ligh ts often ov ershadows the adverse effec ts o f excessiv e solar 2210-6707/$–seefrontmatter.Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.scs.2011.09.002 A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 9 penetrationonthermalcomfort.Thenegativesidesofsolarpen- stagewastodevelopamulti-levelandmulti-zonemodellingtech- etration are often neglected in many building projects involving niqueusingadynamicthermalmodelling(DTM)toolandcarrying atriumforminhotregionsasthefunctionsofatriaaremainlyfor avalidationtest.ThefinalstagewastoapplytheDTMtotherep- spatialandaestheticreasons,whichareoftenjustifiedbytheabun- resentative models with differing design variables and to carry dantnaturallightsassociatedwiththeatriumform.Moreoverthere outaparametricstudytoinvestigatequantitativelytheeffectsof isamisconceptionamongarchitectsthatglasstechnologyisnow selectedparametersthatspecifytheatriumandventilationsolu- veryadvancedandunshadedglasswouldnotpresentanythermal tions. problems.Thispracticehasbeenbestsummarisedas“architectural designersdonotalwaysrecognisethehighprobabilityofthermal 2.1. Thebuilding discomfortinglassbuildingsinhotclimate”asreportedinASHRAE (2009),andmoreandmoreglassatriaareappearingatrapidpace.A The generic office building was developed to contain the fol- recentreviewonsomebuildingswell-acclaimedamongarchitects lowingelementsofthevernaculararchitecturalfeaturesinSouth andarchitecturalcriticsshowsasignificanttrendofincreaseinthe EastAsia,asidentifiedinapreviousreviewstudy(Abdullah,2007) useofglazedenvelopeseveninSouthernAsiacountries,wherethe (Figs.2and3): airishotandsolaraltitudeislow(Welch&Lomholt,2011)(Fig.1). AS HR AE(2 009) hasalso po inte doutth at glassbox build ingsa re • Three storey building with rectangular plan of 21×30m and notoriouslyuncomfortableregardlessofaverylarge,sophisticated, elongatedalongEast–Westaxis; expensivea ndmaintenanc e-intensive sy s tem. • 3.4mfloor toflo orheightfo rallthreestoreys; Thehea tat thetopoftheatriumca nberemovedbybothwind • Lin ear cent ra l atri um wit h g rou nd fl oor area of 9×21m, four andstackforcesinanaturallyventilatedbuilding.Winddrivesair storeyhighandsurroundedbyoffice/shopspacesonthreefloors; mov emen tthrou gh o utthebui ldinginclu dingthea trium well.T his • Longb alcon ies, orwalkway s, of1.5mwid eonfi rst ands econd forcehoweverisoftenweakforurbanbuildingsduetocanyonshel- floorssurroundingtheatriumwell,servingasmaincirculation teringeffects(Santamouris,Papanikolaou,Koronakis,Georgakis,& areasaswellasplatformtoenjoythevoidandlandscape; Assim akopou los,1998).The stackeffectca nbedomin anttodra w • Atrium f orm wi thPlanA spe ctRat ioo f0.3 (or 1:3)toreflectthe airfromlowerpartofthebuildingandliftitupwardintheatrium smallestlinearform; and even tually push it out throughr ooft opo p enings.H ea tco llected • TheSect ionalA spectRatioforallthetestedmodelstakinginto ataglazedrooftop,isbeneficialforenhancingtheairflowbutits accounttheheightoftheatriumwellfromthegroundfloorlevel radiation also causes discomfort particularly to the users on the tothesecondfloorceilinglevelwasabout1.7(or1:0.6); higherlev elba lconies . • Th eto talvolu meof thebel owro ofsp acebe yon dt hesecondfloor Excessivesolargainisnormallytheimmediatecauseofover- ceilinglevelwasalsokeptconstantforbothrepresentativemod- heating with in th e spa ce and sola r c ontrol beco mes e sse ntial, els,wh ichw asa bout 432 m3 form ode lsw ithwall-to-roo fvoid suchas shading dev icesor exter nalev aporativ ecooling (Abdullah, and 270m 3for model with outwa ll-to-ro ofvoi d,respective ly; Wang,Meng,&Zhao,2009;Wang,Huang,&Cao,2009).Theseprob- lems could be resolved more easily and less costly during early Toexaminetheimpactofsomekeydesignvariablesandsolar design process than at later stages (EEBPP, 1996). Hence energy controlmeasuresontheatriumindoorthermalenvironment,other efficiency and environmental strategies are developed in many features were also included in the parametric modelling study. building projects and considered well starting from the concep- Theyaretworoofforms,side-lit(Fig.2aandc)andtop-lit(Fig.2b tual design stage. However, a recent study points out that these and d) and their variations. Side-lit form is a local traditional conceptsarerarelyfullyanalysedusingmethodssuchasquanti- responsetonaturallightingandstrongsolarradiation,whilethe tativeprediction,assessmentandoptimisation(Pollock,Roderick, top-litformisanimportedsolutionpopularlyemployedbypresent McEwan, & Wheatley, 2009). Assessing and optimising solutions daydesigners. needspredictionofthermalperformanceofeachofthoseproposed Thevariationsincludedtheoverhangsfortheside-litroofform, designsandquantitativeinvestigationduetothecomplexnature extra space beneath atrium roof, and blinds next to the glazing andintricaterelationshipsamongdesignvariables. panels.Thesewillbediscussedinfulldetailsinthesectiononthe This paper presents a study comprising the following three parametricstudy. components: designing two generic atrium forms for the trop- ics;proposingtwolowenergymechanicalventilationsolutionsto 2.2. Weatherandinternalconditions improvethermalconditionwithintheatriumwell,anddeveloping amethodofmodellingatriumthermalbehaviourusingcommer- The1978weatherdatafileforSubang,KualaLumpurwasused cialsoftwareduringdesignstage.Asthequantitativeanalysiswas as it consisted the representative data generated from those of carriedoutusingapopularcommercialprogram,theprimaryaim themonthsselectedfromtheindividualyearsbeforeandconcate- wastodemonstratehowmodellingshouldbeusedatearlydesign natedtoformthistestreferenceyearortypicalmeteorologicalyear stagetopredicttheeffectsofanumberofdesignoptionsandventi- (TheMalaysianMeteorologicalService,1993).Thefilecontained lationsolutionsfortheatriumonitsindoorthermalenvironment. themeanhourlyvaluesofalltheweathervariablesincludingthe Inadditionitwastoshowthatlowenergysolutionsanddesign airtemperature,humidity,totalandscatteredsolarradiations,and foranatriumcancomplementwellitsfunctionalaspectsandeven windspeedanddirectionforawholeyear(Deosthali,2000). enhanceitsaestheticandpracticalqualities. Studies have confirmed the trend of intensified urban heat island due to recent urbanisation particularly in Asia (Hung, Daisuke,Shiro,&Yoshifumi,2006;Güneralp&Seto,2008;Lietal., 2. Methods 2009;Juan-juanLi,Wang,Wang,Ma,&Zhang(2009)).Theyalso reportalesssignificantchangeinthetemperatureinruralandsub- Thestudywascarriedoutinthreestages.Itbeganwithdevel- urbanareawhileasignificanttemperatureincreaseincitycentres. oping a representative atrium building that bears features to be Thereforeanupdatedweatherdatawouldbeneededformodelling examinedwhichincludetworoofformsandkeydesignvariables, prediction.However,thegenericbuildingisalowriseoneandpre- andalsoidentifyingtwocommonventilationschemesnamelynat- sumably located in a suburban area. Therefore the weather data uralventilationandpressurisedmechanicalventilation.Thenext wereusedwithoutanymodification. 10 A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 Fig.1. GazetteersofnotableatriumbuildingsinhotclimateAsiancountries. For simulating the worst case scenario, 21st March (noted as the reported results for the chosen simulation day are reflec- Day80)waschosenasthedesignday(i.e.thehottestdesignday tive of any thermal mass effects of the structure, all models of the year) for Kuala Lumpur as suggested by many authorities were ‘pre-conditioned’ for 10 days. Hence the actual modelling (Koenigsberger, Ingersoll, Mayhew, & Szokolay, 1980; Nieuwolt, was run for 10 days, and the results of the last day were 1977; Takahashi & Arakawa, 1981). In order to ensure that examined. Fig.2. Schematiccross-sectionsofrepresentativeatriummodels.(a)Side-litmodelwith1.5mhighwall-to-roofvoidand1.5mwideroofoverhangs;(b)top-litmodelwith 2.5mhighwall-to-roofvoid;(c)side-litwithoverhangsnowall-to-roofvoidwan;(d)top-litwithoutwall-to-roofvoid. A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 11 Fig.3. Typicalfloorplansofthelinearthree-storeyrepresentativeatrium. 12 A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 In order to investigate the effect of solar penetration on the secondfloorswereusedtoassesstheeffectsofthedesignparam- atriumthermalperformanceduetoseasonalchanges,threesim- eters on the indoor thermal performance. Hence in this study, ulation days including the 21st June, 21st September and 21st thermalcomfortwasinterpretedwiththefollowingspecialcon- Decemberwerealsousedformodelling. siderationsforwarm-humidandhotcountries: 2.3. Ventilationschemes • In tropical climate thermal comfort is set to a range of tem- pe rature fr om 20.8 to 28.6◦ C along w it h th e r el ative h um idity Twotypesofventilationstrategies,namelynaturalventilation between40and80%inair-conditionedbuildings;andawider and pressurised mechanical ventilation, were considered to exam- rangeof 20. 8–31 .5◦C al ongwithrelativ ehumidity betw e en54 inehowthethermalconditionswithintheatriumandcommunal and 76% in naturally ventilated building, with the aid of aver- spacewereaffectedbytheselecteddesignparameters. ageairmovementof0.15–1.0m/s;accordingtoMalaysiancases 2.3.1. Fullnaturalventilation (AbdulRahman&Kannan,1997;Sabarinah,2002)andThaistud- To simulate full natural ventilation, the following general ies(Rangsiraksa,2006;Yamtraipat,Khedari,&Hirunlabh,2005). assum ptionsan dset tingswe reconsidered for thetworo offorms • Ins hortstayspa ces,su chasanatr ium,ane v enwiderra ngeof andtheirvariations: comfortshouldbeappliedastheatriumspaceisnormallyused asarelaxingandtransitionalspace,thecomfortrequirementis • Theinternalconditionswerespecifiedaccordingly. th er eforeless stri ngent.Arece ntsurv ey overnear ly1150peop le • Mai nentran cesoneithe rside (eastan dwestsides)ofthelinear usingtran sitio nalspace s inthe tropics reve alsthat the neutral build ingwereco nsi dered asth emain low -leve lopen ing s(g round tempe ratureisbet ween2 6.1 and 27.6◦C ,althou ghth epr eferred level)forcrossventilationduetoeasterlywind.Itwasassumed temperatureisslightlylower(Jitkhajornwanicha&Pitts,2002). thatd urin goffi cehoursfro m08 00 to1800 h,the op enin gareaof Afurtherstu dy shows thata 3◦ higherthanthen or malc ooling bothexternaldoors,westandeastmainentrances,weremain- standard can result in 4.8–8.5% reduction in cooling energy in tained equal. The total area of each of the external doors was atriaunderBritishsummerconditions(Pitts&Saleh,2007).The 5m2. redu ctionw illbem oresign ificantwh enthe o utdoo rsisho tter • Th ehigh-level(rooflevel)openingforbothtop-litandside-lit andforal onge rp eriod. models was considered a half (50%) of the total area of low- level openings so that all openings would have the same size. Respe ctively, t he total are a was 85 m2 for clere stor y wind ows 2.5. Modelling tools and113.64m 2for theg lazed roof .Th eseout lets(cleres torywin- Thethreemajorapproachescommonlyemployedinpredicting dowventforside-litmodelandrooftopventfortop-litmodel) thermalconditionsinsideabuildinginthedesignstagearetheo- weresettoalwaysopen. • Thev ents fo rallwin dows,internaldoorsandexternaldoorswere retical calculation, physical simulation (either water tank or wind tunnel) and computer modelling. Theoretical calculation shows setto100%openstartingfrom1800to0700hthenextmorning clearly the quantitative relationships between the key variables fornightcooling. suchasventilationrateandotherdesignvariables,suchasopening 2.3.2. Pressurisedventilation areasandheightbetweentwosetofopeningsunderalimitedtem- Th etworepre sentativemodelsweresimulatedwithtwotypes perat ured ifferen cesbetw een the in doorand outdo or air(Ho lford ofpres suris edventilation: alloccu pied floorspres surise dan dthe &Hunt,2 003).Fora realbuil ding itcan bev eryhard to usethis gr oundflooron lypressuris ed. Thepress urised ventilation isas im- m ethod duetot hec o mple xityofbu ild ing geo metr yand flo wp aths pleand econ omic alsolutionp rima rilybecause itusesthe ai r from configur atio n.P hys icalmodell ing isnorm allyveryti mec onsu ming the surr oundingair conditio nedroom stocool th eatr ium an dno andexpensive ,asitin volvesscal ed modelte sted ina specialised retu rnairductw ork isneededin thebu ild ing. Itw asprop osed as labo ratoryenvi ron m entwith equipm ents,s uchas bo u ndarylayer alow-e ne rgyventila tio nschem e toco oltheatr iu msp ace,asitd id windtunn elswhichare norm allybiginsiz e(Sh arp les&Bens alim, n otexertextr acoolingon thecon tr acoo ling plant. Thisco uld a lso 2001) and a techniq ue of Planar Las er Indu ced Fluor es cence for save runn ingco stasth eo utdo orwea therin Malay siais gene rally quant itativ e visualisatio no fflow inaw atertank .Hence,itisd iffi- warm andhu midw it hlo wwindv elocityfo rm ostparts o ftheyear. culttobeap pliedtoeach atr ium de sig n. To mod elthe press urise dven tilation, the atriu mw as sup plied C om pu termod el lingh asbeen popularrecentlyduetoincrease witht heaira t23 ◦Cofftheadj acentoffices ,wh ichwer epre ssurised incomputing powerand cod ecap abilitya ndavaila bili ty. Inmany bysu ppl yin g1 8◦C coo lair duringo fficeho urs.T heam ountofthe pr actices,mod elling has been routinelyc arri edouttotes td esign sup plyairwa scalc ulate dl ocallyt oeach ofthe offi cezones .E ach options. A mong the se co mpu ter model ling too ls, c om put ational ofthes ezo nes wasspecifi edwith th eval ues of casual gainso fthe fluid dyn amics ( CFD) g ives more details of a flow field. A recent low eren dofth ere commend edra nge inCIBS E guides. revie wonmode llingt oolsre veals thatCFD w as afav ourab le choice Nig htc oo ling wasappliedfo routo fo fficeh ours. formos tst udiesonb uildin gventi lation per form a nce(Chen, 2009). Par ticula rlyitsh igh resolutio nforflowd omainallows detaile drep- 2.4. Criteriaforassessmentofindoorthermalperformanceand resentationofthegeometryandsecuresaccuratesolutionsofthe comfort pressure and velocities over large openings, the key concern in correctlymodellingnaturalventilationinatriumwithlargeopen- Fanger’stheoryprovidesaverysoundbaseformanythermal ings(Li,Pitts,&Li,2007).Thehighspaceresolutionalsoprovides comfort standards, including ASHRAE (1992) and CIBSE (2006). accurateaccountforthecontributiontothermalcomfortmadeby These standards have been challenged by many surveys carried longwaveradiationfromsurroundingsurfaces(Li&Pitts,2006). outinhotclimates,astheyoftenresultinovercoolingandcaus- However,duetoheavycomputation,itisnormallyusedforsteady- ingdiscomforttopeople(Tantasavasdi,Srebric,&Chen,2001).A statemodelling.Hencetheresultsarefeaturedwithhighresolution newconceptwasintroducedbyFergus(2004)asadaptivethermal forspacebutstaticintime.Nevertheless,specifyingtheboundary comforttoreflectthelocalclimateandpeople’spreference. conditions has to rely on other modelling to provide reasonable The predicted air, mean radiant temperatures and resultant values,particularlyformodellingnaturalventilationinatria(Tan temperature on the ground floor, the walkways on the first and &Glicksman,2005). A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 13 Theothertypeofcomputermodelling,dynamicthermalmod- theclerestoryspacewereofslopingtileroofconstructionwithaU- elling( DTM) progr am shavebe enroutinely usedto modelsm aller valu eof0.45W /m2K (Fig. 2a andb). The opa quepartsoft hefac a de spaces regar ded as ‘ro oms’ in co nventiona l bui ldi ngs (Ab dullah, were wi thU- valueof 1.93 W /m2 K, and theinte rnalw a llsh adthe 2007). Basedon am ulti-zon alm odel,theytr eateachro omwithin U-val ueof 2.12W/m 2 K.Gl azingma teria lsfo rextern alwal ls,m ain a building as a zone, calculate the heat and air flows moving entrance doors, windows, clerestory windows and transparent a mong the se zo nes th rough ene rgy and m ass bala nce eq uations rooftopw eresin gleclearfl oatglassw ithU-value sof 5.33W/m2K andpre dictd ynami ctherma lperfor manc eofa building (Megri& forwind ows (includ ingc learst oryw indo ws)and6 .2 3W/m 2Kfor Haghighat,2007).Thesimulationresultshavelowresolutionfor glazed roof, respectively. For side-lit and top-lit models without spacebuthighintime,normallyincludinghourlyfiguresthrough- wall-to-roofvoidareaasshowninFig.2(d)and(c),respectively, outatypicalyear.Hencetheyareoftenusedforoverallassessment theconcrete‘flatroof’constructionsurroundingtheclerestoryand of t h ermal p erfor mance and en ergy consu mp tion o f a specific tran sparentr ooft opar eashadaU-v alueof0.27W /m 2K. design (Chen, 2009). Apart from the whole year performance Theatriumwasdividedoverfivelevelsinto35and34zones assessment,DTMmethodalsoallowstheindoorconditionstobe respectivelyfortheoneswithandwithoutthewall-to-roofvoid, assessedonhourlybasis.Hencestatisticaldatacanbeobtainedfor sothatthetemperaturevariationoverandairmovementamong naturalventilationassessmentatthedesignstage,suchastheper- variouspartsoftheatriumspacecouldbecalculatedindividually centageofoccurrenceofoverheatingorthetemperatureexceeding (Tables1and2).Otherzonesweresimulatedasofficeswithtypical agiventhresholdinallzonesofthebuilding(Pollock,2011). casualheatgains(AppendixA). Forbuildingswithalargeandcomplexmulti-levelspacesuch BasicallyusingtheTASweatherdataforKualaLumpurforsim- asatria,assigningalargesinglezoneoronlydividingeachlevel ulationday80,parametricalstudiestoexaminetheimpactofsome intoonezonemaynotbesufficienttocorrectlymodelthespace. keydesignvariablesontheatriumindoorthermalperformancedue Inthisstudy,therefore,theatriumspacewasdividedbothver- tofullnaturalventilationwerecarriedoutasfollows: tically and horizontally into a group of small zones in order to improvethespatialresolutionforthesolutions.Theverticaldivi- (i) Varying low- and high-level opening sizes – the representa- sion is essential for simulating stratification (Voeltzel, Carrie, & tivemodelsweresimulatedtoinvestigatetheeffectofvarying Guarracino, 2001). In addition, each of the two horizontal direc- low- and high-level opening sizes on atrium indoor thermal tionsofthes pacew as furtherdi vided in toat leas tinthreese ctions perfo rma nce.Fouro peningsi zes(i .e.0 .5m2,0 .8m2,1 m2 and tocal cu late them ove mento fheatan dai rfl ows .Su chte chnique 2m2)wereco nsid ered.The hour lyw ind spe ed and d irection wa s an atte mpt to improve sp atial reso lut ion of DTM prediction w asfi xedat 3m/sand90 ◦res pective ly,wh ilethe othe rweather sothataDTMmodelcouldcorrectlymodelthestratificationand parametersremainedunchanged.Analysisofwindconditions otherthermalbehaviourswithinalargemulti-levelspaceofthe forKualaLumpurindicatesthatthewindvelocitythroughout atrium. The DTM model for this study was developed using TAS theyearisgenerallylowandtheNorth-easterlywindinMarch (Jones,2000). islessthan3.3m/s(MMS,2004). (ii) Varying wind speeds – the representative models were also 2.6. Validation simulate dtoi nvestiga te the effectofvaryin gwind speed son atrium indoor thermal performance due to cross ventilation TotestwhethertheDTMtechniquewassuitabletoinvestigate of the easterly wind. T hree different win d s peeds were con- atrium ve ntilation and strat ification, a real building w ith similar sid ere d: 3, 5 a nd 7m /s. Th ese are s ignific antly h igher than forman dfeatures,a swe llassituatedin a simi larclimat iccon ditions the actu al loc al co n ditio ns in o rder to see the w ind co oling wasm ode lledand th epre dic tedresu lts w ereco mpareda gainstthe effe cts.For these simulation s,t heare afo rea chof thelo w-level mea suredone s. opening sw asma intainedat0 .8m 2,wh ile theh ig h-le velopen- Thesel ectedbuildingsharedfourkeyfeaturesoutlinedasfol- ingwask ept totallyshut .H enc e,th ehou rly windspee dwas lows: cha nged acco rdingly andt hewin ddi rection wasfi xedat 90◦ • Alinearatriumwithretractablefabricblindsrightunderneath (easterly wind), while the other weather parameters remained unchanged. theroofglazing,externalsprayofevaporativecooling; • Sim ilarh eightof theatriu mspa ce ; (iii) With and without wall-to-roof void area – the representative • Interna l balcon ie s/w alkway s to each floor between the atrium models with wall-to-roof void (Fig. 2a and b) and without wall- to-roof void (Fig. 2c and d) were simulated and their results wellandthestandardair-conditionedrooms;and • Vent ilati ons chemes:n aturalventilatio n,grou ndflooronlypres- were compared to examine the effectiveness of the wall-to- roofvoidareainimprovingthermalconditionsparticularlyon surisedventilation. occupiedlevels.Forthesesimulations,theconditionandsizeof Validation conditions included a hot clear day and a cloudy day openingsweresimilartonumber(ii)above. tocovertw olevelsof solarimp ac tsan dfull occ upan cy ,toinc lude (iv) Withand with outroo fo verhangs ab ovetheclerestoryarea– hig hind oorc asual gai ns.Ap artfrom the sta ndardair-co nd itioned side-l itm odelswi than dwithout roofo verh angswere simu - room s, the atrium space was divid ed into 31 z ones in 6 lev- lated an d their pred icted results were compared to ex amine els (Fig . 4). The me asurem ent was carr ied o ut i n previ ou s s tudy theco ntri bution ofroofo verhang sinm inimising the effectof (Ab dulla he tal., 2009). sola rradiationon t heth ermalperfo rm ancewithin th eside- lit atrium .Thede pth of theroof overhangsab ovethe cle restory 2.7. Themodelandparametricstudy areaswas1.5m,whichwascalculatedtobesufficienttoblock directsunlightfromenteringthroughclerestorywindows(less IntheDTMmodels,thebuildingelementssuchasfloor,roof, than2 .75mhe ight) duetot helowes tsolaralti tudeof6 3◦ in wall and glazing constructions were all specified from the TAS equatorialregionsinJanuary(Ahmad&Rasdi,2000);forthese ConstructionDatabasewithreferencetocommonMalaysianprac- simulations,theweatherconditionsandthesizeofopenings tice (Abdullah, 2007). The ground floor was simulated as being were similar to that of number (iii) above. Apart from simu- constructed on grade without a false floor, and it U-value was lationforday21stMarch,themodelswerealsosimulatedfor 0.29W/m2K .In termed iatefloor s hadU -value of0 .95 W/m2K .The 21stJu ne, 21st Sept embera nd2 1stDec embe r.The sesimulat ion hipped roofs surrounding the wall-to-roof void areas and above dayswereparticularlyconsideredtoexaminetheeffectofSun’s 14 A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 Fig.4. TheTASmodelcreatedtorepresentthevalidationbuilding.(a)Themeasured/predictedairtemperaturesaveragedovereachlevelforhotandovercastday(26thof July).(b)Themeasured/predictedairtemperaturesaveragedovereachfloorforhotandclearday(27thofJuly).(c)Themeasured/predictedresultanttemperaturesandroof blindssurfacetemperaturesforhotandclearday(simulationday208).(d)Themeasured/predictedairandmeanradianttemperaturesaveragedovereachlevelat1400h duringtheclearday. altitudeandsolarradiationintensityduetoseasonalchanges clerestoryfacade.Thesenewbuildingelementswerespecifi- ontheatriumthermalperformance. callyputintothesubstitutebuildingelementandsubstitution (v) With and without internal solar blinds – the representative schedule columns of the original building elements for both models(withoutinternalsolarblinds)andmodelswithinternal atriumroofglassandclearglasswindow. solarblindsweresimulatedandtheirresultswerecomparedto examinetheeffectivenessofthesolarblindsinimprovingthe 3. Resultsanddiscussion atrium’sthermalconditionsparticularlyonoccupiedlevels.The sameweatherconditionsandsizeofopeningsasthatofnum- 3.1. Resultofvalidation ber(iii)and(iv)wereusedforthesesimulations.Inorderto simulatetheatriumthermalconditionswhentheblindswere Fig.5(a)and(b)showsthatthesimulationresultstendtobe extendedfrom0900to1800h,thenewsubstitutebuildingele- overestimatedforbothfirstandsecondfloors.Inadditiontothe ments were created to represent both the atrium roof glass dissimilarityinweatherconditions,thediscrepanciesbetweenthe withblindsandclearglasswindows/wallswithblindsatthe measuredandpredictedresultsmightalsobeduetothefollowings: A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 15 • Asaresultofuncertaintiesaboutthethermalpropertiesofthe that of the model; thus, resulting in higher prediction of the existingconstructionmaterials,thethermalpropertiesofbuild- indoornetheatgaininthemodel. ingelem entsincludin gtheglaz edo penings ofthemo de lwere • In the real buil ding , th ere were numerous infiltration airflow estimatedandspecifiedusingtheconstructiondetailsprogram- pathswhichallowedtheindoorheattobedissipated.However, merinbuildingdataeditor.Inaccuratespecificationsofthermal inthemodeltheinfiltrationrateswerefixedandthevaluescould propertydata,particularlyfortheglazedroofandwalls,hadledto bemuchlowerthanthatoftherealbuilding.Hence,lessheatdis- higherpredictionofsolarpenetrationinthemodel,whereasin sipationinthemodelledtohigherpredictionoftheindoorheat therealbuildingsolarpenetrationcouldbemuchsmallerthan gain. Fig.5. Comparisonbetweenthepredictedandmeasureddataofthevalidationcase. 16 A.H.Abdullah,F.Wang/SustainableCitiesandSociety2 (2012) 8–28 Fig.5. (continued). • Inthemodel,thefixedinternalconditionswerespecifiedbased resultsshowareasonablygoodagreementwiththemeasureddata on general assumptions and estimations. There is a tendency asrevealedbyFig.5(b).Similartotheresultsforhotandovercast fortheheatgainsfromoccupants,lightingandequipmenttobe day,thediscrepanciesbetweenthemeasuredandpredictedresults overestimatedinthemodelsincetheoccupancypatternandthe generallyoccurfromearlymorningtoaboutnoon.Anexplanation useoflightingandequipmentintherealconditionsweresome- forthiscouldbeduetothelargethermalstorageeffectcalculated whatirregular.Moreover,thereisalsoagreatpossibilitythatthe byTAS,whichwascarriedontothesimulationday,as10-daypre- infiltration rates and conditioned air supply rates were under- conditioningperiodwasconsideredforthesemodellings.Therefore estimatedduetotheuncertaintiesoftheactualflowratesand thehighairtemperatureduetothermalstorageeffectofthestruc- uncontrolledactionsoftheusersintherealbuilding.Allthese ture calculated by TAS a few days prior to the simulation day wouldresultinhigherpredictionoftheindoorheatgaininthe affected the air temperature of the simulation particularly from model. earlymorningtoaboutnoon.However,astheSun’saltitudegets higher,andsincesolarradiationisthedominantfactoraffecting However,bothgraphsaboveshowsimilartrendwhichindicates thermalconditionwithinabuildingwithlargeglazedenclosures, thatthetemperaturestratificationwouldoccurathighlevelinside acorrectsolarpredictioncouldcoverallsmallerrorswhichsubse- theatriumwheretheindoorairtemperatureonthesecondflooris quentlyledtomorereasonableoverallresultsparticularlyonthe wellabovetheoutdoorairtemperature.Forovercastdaythedif- secondfloor. ferenceinairtemperaturebetweenthefirstandsecondfloorsat In general for both simulation days, the predicted and mea- 1500h(thehottesthouroftheday)was9.3Kformeasuredand8K sured air temperatures on the second floor agree considerably forTASpredictionresultsrespectively.Forclearday(day208),on wellparticularlyfromnoontomidnight.However,fromlatenight theotherhand,theairtemperaturedifferenceat1400h(thehottest to around noon the predicted results were generally overesti- hour of the day) was 11K and 9.9K for measured and predicted mated, and particularly between 0800 and 1100h the predicted resultsrespectively.Theseresultsrevealedthatduringthehottest and measured air temperature show considerably large differ- hourofthedaythemeasuredconditionsrecordedslightlyhigher ences. On the contrary, predicted air temperatures on the first airtemperaturedifferencebetweenthefirstandsecondfloorscom- floor are slightly underestimated from 1900h to about mid- pared to that predicted by TAS. In general for both overcast and night. cleardaysthepredictedairtemperaturesonthefirstfloorinthe Thereasonforthelargediscrepanciesbetweenmeasuredand afternoonwascomparativelyhigherthanthemeasuredconditions. predictedairtemperaturesonthesecondfloorisapparentlydue Thedifferenceinairtemperatureonthefirstfloorintheafternoon to the large overestimation of internal surfaces temperatures by betweenmeasuredconditionandTASpredictionwasintherange TAS(asdepictedbyhigherpredictionofbothresultanttempera- of0.7–1.5Kforovercastdayand0.2–1.3Kforcleardayrespectively. tureandblindsurfacetemperatureinFig.5(c).Therefore,atnight Basicallythehigherairtemperatureonthesecondfloorwasdueto whentheexternalairtemperaturedrops,TAStookintoaccountthe thefactthattherewasnoprovisionofrooftopventtoexhaustthe heatreleasedbythehotinternalsurfaces,whichledtotherisein stratifiedhotairathigherleveloutofthebuilding. airtemperaturewithintheatriumparticularlyonhigherlevel.The ItwasfoundinFig.5(a)thatforhotandovercastday,itwas samesituationappliestothefirstfloorlevelwherethepredicted noteasytoestimateandmodifytheamountofsolarradiationand air temperature is generally greater than the measured air tem- cloudinesscomparedtothatofthehotandclearday,astherewas perature.However,whenthesolarblindswerefullyretractedat considerable discrepancies between predicted and measured air 1800h,thepredictedairtemperaturesfellbelowthemeasuredair temperatureonthesecondfloorparticularlyfromearlymorningto temperaturesstartingfromabout1900htomidnightastheeffect 1200hwherethedifferencesrangedfrom1.5to4.3K.Ontheother ofblind’ssurfacetemperaturewasnotconsidered. hand,thepredictedresultsonthefirstflooragreereasonablywell ItcanbeclearlyseenfromFig.5(c)and(d)thateventhough withthemeasuredairtemperatureseventhoughTAScalculations themeasuredandpredictedairtemperaturesonthesecondfloor tendtobeoverestimated. differslightly,theTASpredictionofresultant/meanradianttem- However,duringhotandcleardaywhenthewaterspraywas peratureswasrelativelyhigherthanthemeasurement.Thereason turnedoffandthesolarblindswereextended,theTASprediction wasthatintheDTMmodel,theblindswereassumedtocoverthe
Description: