UvA-DARE (Digital Academic Repository) Hendrik Antoon Lorentz’s struggle with quantum theory Kox, A.J. DOI 10.1007/s00407-012-0107-8 Publication date 2013 Published in Archive for History of Exact Sciences Link to publication Citation for published version (APA): Kox, A. J. (2013). Hendrik Antoon Lorentz’s struggle with quantum theory. Archive for History of Exact Sciences, 67(2), 149-170. https://doi.org/10.1007/s00407-012-0107-8 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Jan 2023 Arch.Hist.ExactSci.(2013)67:149–170 DOI10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A.J.Kox Received:15June2012/Publishedonline:24July2012 ©TheAuthor(s)2012.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentzinquantumtheory.Althoughespeciallyhisearlyworkisvaluable,themain importanceofLorentz’sworkliesintheconceptualclarificationsheprovidedandin hiscritiqueofthefoundationsofquantumtheory. 1 Introduction TheDutchphysicistHendrikAntoonLorentz(1853–1928)isgenerallyviewedasan icon of classical, nineteenth-century physics—indeed, as one of the last masters of thatera.Thus,itmaycomeasabitofasurprisethathealsomadeimportantcontribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- mentinphysics.TheimportanceofLorentz’sworkliesnotsomuchinhisconcrete contributions to the actual physics—although some of his early work was ground- breaking—butratherintheconceptualclarificationsheprovidedandhiscritiqueof thefoundationsandinterpretationsofthenewideas.Especiallyinhiscorrespondence withcolleagues,suchasMaxPlanck,WilhelmWienandAlbertEinstein,hetimeand againtriedtoclarifythequantumprinciplesandexploretheirconsequences. InthispaperIwillgiveanoverviewofLorentz’sworkinquantumtheory,includ- inghisinformalcontributionsindiscussionsandcorrespondence.Iwillfirstdiscuss Lorentz’searlyworkonradiationtheory,inwhichhegivesaderivationofaradiation lawfromclassicalelectrontheory.ThenIwilldiscussLorentz’s1908Romelecture Communicatedby:JedBuchwald. B A.J.Kox( ) InstituteforTheoreticalPhysics,UniversityofAmsterdam, Amsterdam,TheNetherlands e-mail:[email protected] 123 150 A.J.Kox insometechnicaldetail,becausethetheoryLorentzdevelopsinthelectureisadaring newapplicationofGibbs’sstatisticalmechanicsandbecauseitsoutcomeisthatthe mostgeneralclassicaltheoryonecanthinkofleadsinescapablytotheRayleigh–Jeans radiationlaw.Akeyelementinthisderivationisthetheoremofequipartitionofenergy. TheRomelecturewaswidelydiscussed,bothincorrespondenceandinpapers.As wewillsee,inthediscussionswithLorentzandalsoinhislaterworkthreequestions willkeepcomingback.Thefirstoneisthevalidityofthelawofequipartitionofenergy anditspossiblemodifications.Asecondtheme,howtodealwiththequantumdiscon- tinuity(alsodiscussedinthelecture,althoughlessexplicit),wouldsoonevolveinthe specificquestionofwheretolocalizethediscontinuity:intheether,intheinteraction betweenmatterandether,intheresonatorsorelsewhere.Athirdtheme,notexplicitly presentintheRomelecture,butgainingmuchprominenceinlaterwork,isthematter ofthelightquantum.Doindependentlightquantaexist,andifso,howtoreconcile theirexistencewithtypicalwavephenomenasuchasinterference?Thislastthemeis inparticulardiscussedincorrespondencewithEinstein. ThepaperconcludeswithadiscussionofthewayLorentzdealtwiththeparallel developments of matrix mechanics and wave mechanics. He carefully studied both theories but engaged with them in totally different ways: he extensively discussed andcriticizedwavemechanics,especiallyincorrespondencewithErwinSchrödinger, whereasinthecaseofmatrixmechanicshelimitedhimselftotryingtomasterthefor- malismandgraspingitsconsequences.Althoughhehadmuchrespectandadmiration fortheworkoftheyoungergeneration,heremainedcriticalandtotheendcouched hisquantumworkinclassicalterms. 2 Earlyworkonradiationtheory Lorentz’sworkonradiationtheoryischaracterizedbythesamemethodologicalcon- sistencythatwefindthroughouthisworkandthatculminatedinhismaturetheoryof electronsinthefirstdecadeofthetwentiethcentury.Hebaseshimselfonanontology ofparticlesandfields,or,tousehisownterminology,onastrictseparationofmat- ter—consistingofchargedandneutralparticles—andether.Thelatteractsascarrier oftheelectromagneticaction,causedbythepresenceofchargedparticles.Etherand matterareseparateentities,thatactoneachother,butmustbetreateddifferently.The particles obey the laws of classical mechanics; the ether is governed by Maxwell’s equations.1 ThefirstpaperIwanttodiscussdatesfrom1903,andhasthetitle:“Ontheemis- sionandabsorptionbymetalsofraysofheatofgreatwave-lengths”(Lorentz1903). LorentzbaseshimselfonthetheoriesofPaulDrudeandEduardRieckefortheelectri- calconductivityofmetals,inwhichitisassumedthatmetalscontainlargequantities offreelymovingelectrons,thatregularlycollidewiththemetalatoms.Applyinghis electrontheorytothismodel,Lorentzcalculatestheenergydensityofradiationemit- ted by the electrons by assuming that they only radiate when colliding with atoms, 1 InLorentz’searlyworktheetherisstilltreatedasamechanicalsystem,butgraduallyitlosesallofits mechanicalpropertiessaveone:itsimmobility.SeeKox(1980)forfurtherdetails. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 151 limitinghimselftothecaseoflongwavelengths.Inadazzlingshowofmathematical prowesshefindsthattheradiationisdistributedaccordingtotheRayleigh–Jeanslaw (which,ofcourse,wasnotyetknownbythatnamein1903)andalsothatitconforms tothelongwavelengthlimitofPlanck’sbrand-newradiationlaw: 8πkT f(λ,T)= . (1) λ4 In this paper Lorentz makes his first comments on Planck’s quantum hypothesis. Hewrites: […]thehypothesisregardingthefinite“unitsofenergy”,whichhasledtothe introduction of the constant h, is an essential part of the theory; also that the questionastothemechanismbywhichtheheatofabodyproduceselectromag- neticvibrationsintheaetherisstillleftopen.Nevertheless,theresultsofPlanck aremostremarkable. Andlateron,whencomparinghisresultwithPlanck’swork,hecomments: There appears therefore to be a full agreement between the two theories in thecaseoflongwaves,certainlyaremarkableconclusion,asthefundamental assumptionsarewidelydifferent. ItisinterestingtonotethatinhispaperLorentzcharacterizesPlanck’stheoryinthe followingway: It will suffice to mention an assumption that is made about the quantities of energy that may be gained or lost by the resonators. These quantities are sup- posed to be made up of a certain number of finite portions, whose amount is fixed for every resonator; according to Planck, the energy that is stored up in aresonatorcannotincreaseordiminishbygradualchanges,butonlybywhole “unitsofenergy”,aswemaycalltheportionswehavejustspokenof. AccordingtoThomasKuhn,thisisan“anomalous”readingofPlanck’swork,that Lorentzcorrectedlater.2 CloserstudyofLorentz’spublishedandunpublishedutter- ances shows, however, that Lorentz never strayed very far from this interpretation. Forinstance,inhis1908Romelecture(seeSect.3),heusesalmostidenticalwords, whereas Kuhn uses a quotation from a letter from Lorentz to Wilhelm Wien (to the effectthatprocessesintheethertakeplaceinacontinuousway),whichwaswritten a bit after the lecture, to argue that Lorentz had dropped his earlier interpretation.3 WhatLorentzwasuncertainabout,aswillbeshowninSect.6below,waswherethe discontinuitylay:intheinteractionbetweenetherandmatter(i.e.,theresonators)or intheinteractionbetweentheresonatorsandtheothermatter. 2 SeeKuhn(1978,p.138). 3 SeeKuhn(1978,p.194).Theletterinquestionisdated6June1908;itisreproducedinKox(2008)as Letter171.SeealsoSect.4.1belowforafurtherdiscussionoftheLorentz–Wiencorrespondence. 123 152 A.J.Kox 3 TheRomelecture FromLorentz’slaterworkonradiationtheory,itbecomesclearthatthepaperdiscussed intheprevioussectionsetsthemethodologicalstageforlaterdevelopmentsalongsim- ilarlinesandthatitscriticaltoneaboutthemysteryoftheunderlyingmechanismin Planck’stheoryofenergyelementsremainsanimportanttheme. Thefirstimportantoneofthelaterpapersisthe1908Romelecture.Itwasdelivered atasomewhatstrangevenue,namely,the4thInternationalCongressofMathemati- ciansinApril1908.Itsimpacthasbeenconsiderable,ifonlybecauseitmadeindis- putablyclear thatPlanck’s energy elements werefundamentally foreigntoclassical mechanicsandelectrodynamics. The lecture, entitled “The distribution of energy between ponderable matter and ether”,4startswithalengthyandverygeneraldiscussionofthefoundationsofmechan- ics, kinetic gas theory, and electrodynamics, clearly meant for an audience of non- physicists.ItisusefultofollowLorentz’sreasoninginsomedetail,becauseitbrings outthesystematicwayhehassetupthispaper. Lorentzfirstreviewsthebasicsofradiationtheory.FromKirchhoff’sworkitfollows thatauniversalradiationlawexists:theenergydensityofradiationinthewavelength intervalλ,λ+dλattemperatureT isgivenby: F(λ,T)dλ, (2) with F afunctionthatisindependent ofthespecificpropertiesofthebodythathas producedtheradiation. Next Lorentz discusses the law of equipartition of energy, Boltzmann’s work in kineticgastheory,andtheatthattimenotwidelyknownstatisticalmechanicsofGibbs, asanalternativetoBoltzmann’sapproach.Hestressesthatthephasespaceapproach takenbyGibbsonlyworksifthesystemunderconsiderationcanbedescribedusing Hamilton’s equations, so that the ensemble behaves like an incompressible fluid (in otherwords,ifLiouville’stheoremholdsfortheensembledensity).Hethenintroduces theensembledensityofthecanonicalensembleintheform: ϕ =Ce−E/Θ (3) andexplainshowonecandeterminemacroscopicquantitiesfromensembleaverages. Lorentznowturnstoelectromagnetism.Hearguesthatoneneedstobasethistheory onavariationalprincipleoftheform: (cid:2) δ (L−U)dt =0 (4) 4 Thelecturewaspublishedindifferentversionsandinvariousplaces;seeLorentz(1908a)inthebibliog- raphyformoredetails. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 153 with L the magnetic energy and U the electric energy. This becomes the standard Lagrangianfortheelectromagneticfieldifonetakes: (cid:2) 1 L = H2dV (5) 2 and (cid:2) 1 U = D2dV (6) 2 whereDisthedielectricdisplacementandHthemagneticforce.Notethat,although theintegrandin(3)hastheformofa“standard”lagrangian,inthiscasetheterms L andU donothavetheirusualmeaningsofkineticandpotentialenergy,respectively. ItwillbecomeclearinthefollowingwhyLorentzisusingthissuggestivenotation. Havingsetthestage,Lorentzproceedstoconsiderthemostgeneralphysicalsys- tem he can think of. It consists of charged particles (‘electrons’), neutral particles (‘atoms’),andether(i.e.,electricandmagneticfields),enclosedinarectangularbox. The particles are all in motion; the electrons may be free or bound inside of atoms. Thissystemcanbedescribedbyfoursetsofgeneralizedcoordinates: – {q }fortheneutralparticles, 1 – {q }forthechargedparticles, 2 – {q ,q(cid:2)}fortheelectricfield. 3 3 While{q }and{q }haveastraightforwardmeaning,the‘coordinates’{q ,q(cid:2)}havea 1 2 3 3 morecomplicatedinterpretation.Foreachinstantoftimeonecansplittheelectricfield intotwoparts:thefirstisthefieldthatwouldexistifallchargedparticleswereatrest at their positions q , while the second part obeys the source-free Maxwell equation 2 ∇·D=0.ThislatterpartcanbeexpandedinaFourierseriesofthemodesthatfitin thebox;{q ,q(cid:2)}arethecoefficientsappearinginthisexpansion.Thus,thethethree 3 3 componentsofDcanbewrittenas: (cid:3) uπ vπ wπ D = (q α+q(cid:2)α(cid:2))cos xsin ysin z x 3 3 f g h u,v,w (cid:3) uπ vπ wπ D = (q β+q(cid:2)β(cid:2))sin xcos ysin z (7) y 3 3 f g h u,v,w (cid:3) uπ vπ wπ D = (q γ +q(cid:2)γ(cid:2))sin xsin ycos z. x 3 3 f g h u,v,w Here f,g,harethelengthsofthesidesoftheboxandu,v,wareintegersrunningfrom 1to∞.5 Foreachcomponentandforeachset{u,v,w}threedirectionsaredefined, perpendiculartoeachother.Oneisdeterminedbythevector(u,v,w),andtheother f g h two,correspondingtothetwopolarizationstatesofthefield,havethedirectioncosines 5 Theparticularchoiceofsinesandcosinesisdictatedbytheboundaryconditionsinthebox:thesidesof theboxaresupposedtobeperfectlyconducting,whichmeansthatDisalwaysperpendiculartothesides. 123 154 A.J.Kox α andα(cid:2),β andβ(cid:2),andγ andγ(cid:2),respectively.Thecoefficients{q ,q(cid:2)}(which,fol- 3 3 lowingLorentz’susage,willbeabbreviatedto{q }inthefollowing)obviouslydepend 3 on{u,v,w}andont. The next step is to write the Lagrangian L −U as a function of the generalized coordinates.BecauseLorentznowconsidersamoregeneralsystemthanjustelectro- magneticfields,heincludeskineticenergytermsin L andpotentialenergytermsin U,inadditiontothefieldterms.ForU hefinds (cid:3) 1 U =U + fgh q2 (8) 0 16 3 withU0 afunctionofthecoordinatesq1 an(cid:4)dq2,accountingforthepotentialenergy betweentheparticles;thesecondtermis 1 D2dV. 2 The term L consists in the first place of a part representing the kinetic energy of theelectronsandoftheneutral(cid:4)particles,denotedby L0 andquadraticinq˙1 andq˙2. Further,tofindthefieldpart 1 H2dV ithastobetakenintoaccountthatmagnetic 2 fields are generated by moving charges as well as by changing electric fields. This givesrisetotermsinHproportionaltoq˙ andtoq˙ ,respectively,whichleadstoterms 2 3 in L proportional toq˙2,q˙2, andq˙ q˙ . The terms proportional toq˙2 are absorbed in 2 3 2 3 2 L ;theexplicitformofthepartproportionaltoq˙2isfoundbyfirstcalculatingD˙ from 0 3 (7)andthenusing∇∧H=(1/c)D˙ tofindH.Thefinalresultis: fhg (cid:3) q˙2 (cid:3) L = L + 3 + l q˙ q˙ . (9) 0 16c2 π2(u2/f2+v2/g2+w2/h2) ij 2i 3j ij In the last term the index i refers to the individual electrons; the index j abbrevi- atesthedependenceofthequantitiesq˙ onu,v,wandthedirectioncosinesα,β,γ. 3 Accordingly,thecoefficientsl dependonu,v,w,α,β,γ andonthecoordinatesq . ij 2i From this Lagrangian the Lagrange equations follow easily. Lorentz explicitly writes down the equations for q and shows that they give rise to standing waves, 3 withwavelength 2 λ= (cid:5) (10) u2/f2+v2/g2+w2/h2 WheneverthereisavalidLagrangianformalism,onecanalsowritedownHamilto- nianequations.ThatdoesnotmeanthatGibbsianstatisticalmechanicscanbeapplied to the system under consideration yet. A major obstacle remains: because there are infinitelymanytermsinthesum(7)therearealsoinfinitelymanycoordinatesq ,so 3 thatphasespacewouldbecomeinfinitelydimensional,precludingtheexistenceofa meaningfulensembledensity.Lorentz’sworkroundsolutionistointroducewhathe calls“fictitiousconnections”(“liaisonsfictives”)intheetherbywhichstandingwaves withsmallerwavelengthsthansomevalueλ areexcluded.Ascanbeseenfrom(10) 0 this means that an upper limit is imposed on the values taken by u,v,w. Lorentz justifieshisconditionbypointingoutthatonecanmakeλ assmallasonewishes.To 0 this“fictitious”systemGibbsianstatisticalmechanicsisthenapplied. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 155 Lorentznowreturnstoexpression(3)fortheensembledensity.Hefirstnotesthatin L thetermL containstermsoftheform(1/2)mq˙2.BecauseE = L+U,theexpo- 0 1 nentialin(3)containsthesetermsaswell.Takingtheensembleaverageof(1/2)mq˙2 1 using (3) (i.e., calculating the mean kinetic energy of a neutral particle), now gives (1/2)Θ;forthethree-dimensionalmotionoftheparticlesthisbecomes(3/2)Θ.Ear- lierinthepaper,Lorentzhasexplainedthatoneofthemostimportantresultsofkinetic gastheoryisthatthemeankineticenergyofamovingmoleculeoratomisequaltoαT, withT thetemperatureandαauniversalconstant(nottobeconfusedwiththedirec- tioncosineintroducedearlier).Thus(3/2)Θ =αT (or,inmodernnotation,Θ =kT). Inthisway,LorentzextendsthestandardinterpretationofΘ formechanicalsystems tohismuchmorecomplicatedsystemofparticlesandfields. NowLorentzturnstothesecondtermin(8).Sincethetermsinthissumarequa- draticinq ,acalculationsimilartotheoneaboveshowsthatinanensembleaverage 3 eachtermwillcontribute(1/2)Θ =(1/3)αT tothemeanelectricenergy.Takinginto (cid:2) accountthetwopolarizationstatesrepresentedbythecoordinatesq andq ,wegeta 3 3 totalcontributionbytheq ’sof2αT/3.Thiscanalsobeinterpretedasthecontribution 3 ofonemode(u,v,w)tothemeanelectricenergy. Returningtotherectangularbox,itiseasytoseethatthenumberofmodeswith wavelengthsbetweenλandλ+dλthatfitinthebox(whichissupposedtobesuffi- cientlylarge)isequalto 4π fghdλ. (11) λ4 Takingintoaccounttheearlierresultforthemeanelectricenergypermode,Lorentz finds 8παT dλ (12) 3λ4 fortheenergydensity.Becausethemeanmagneticenergyisequaltothemeanelectric energy,thetotalmeanelectromagneticenergydensityisgivenbytwicethisexpression, sothattheradiationfunction(2)isnowgivenby: 16παT F(λ,T)= (13) 3λ4 ThisistheRayleigh–Jeanslaw. In this way, Lorentz has generalized his earlier paper on long-wave radiation in metals,inwhichhefirstspecifiedamechanismbywhichradiationisgeneratedand thenexplicitlycalculatedtheenergy-densityofthisradiation. Lorentzofcourserealizestheconsequencesofhisresult.Itisclearlyincontradic- tion with the observed radiation curve, which shows a maximum when plotted as a functionofλ.Moreover,itimpliesthatinthecaseofamaterialbodyinequilibrium withtheetherthelatterwillcontainaninfiniteamountofenergyandtheenergywill 123 156 A.J.Kox becomeconcentratedinevershorterwavelengths.6 Thishadalreadybeenconcluded byJeans.AsLorentzremarks: […]whenJeanspublishedhistheory,Ihadhopedthatoncloserinspectionone couldshowthatthetheoremofequipartitionofenergyonwhichhebasedhim- self cannot be applied to the ether and that in this way one could find a true maximumofthefunctionF(λ,T).Theprecedingconsiderationsseemtoprove thatthisisnotthecaseandthatJeans’sconclusionswillbeinescapableunless thefundamentalhypothesesofthetheoryareprofoundlymodified.7 This is a crucial conclusion. To summarize: Lorentz has shown that the valid- ity of the equipartition theorem for material particles inescapably implies its valid- ity for his more complicated mechanical–electromagnetical system (or, using his own words, for the ether). This then immediately leads to the Rayleigh–Jeans law.8 Isthereawaytoreconciletheexperimentalresultswithwhathehasfound,Lorentz wonders.Onethingiscertain:forlongwavelengthsthelawissatisfactory;theprob- lemliesintheshort-wavelengthregime.Apossiblesolutionisthatthemaximumin the observed curve is an artefact of the experiment, perhaps due to the fact that the radiatingbodiesusedintheexperimentsarenotblackforsmallwavelengthsandthus radiatemuchlessenergyforthesewavelengthsthanisassumed.Inthiswayequilib- rium between radiation and matter will take a very long time to set in—it is in fact neverobserved. InthefinalparagraphsLorentzemphasizesthathedoesnotpretendtohaveprovided thedefinitivesolutiontotheradiationproblem.Thewayoneproceedsintheoretical physics, he argues, is to examine the relative likelihood of various hypotheses and theoriesforagivenphenomenonandstudytheconsequencesthatfollowfromthose hypotheses. In the case of the Planck radiation law versus the Rayleigh–Jeans law, one has to conclude that the latter is very hard to bring in agreement with experi- ments, whereas Planck’s law is in good agreement with them but requires a funda- mental change in our thinking about electromagnetic phenomena. This is already clear if one looks at a freely moving electron emitting radiation with a continu- ousfrequencyspectrum.ThequestionremainshowtoapplyPlanck’shypothesisof energy elements in this case. Lorentz concludes by expressing the hope that future experiments will provide firm evidence for one or the other of the two radiation laws. 6 ThisiswhatPaulEhrenfestdubbedthe‘ultravioletcatastrophe’. 7 “[…]lorsqueJeanspubliasathéorie,j’aiespéréqu’enyregardantdeplusprès,onpourraitdémontrerque lethéorèmedel’“equipartitionofenergy”,surlequelils’étaitfondéestinapplicableàl’éther,etqu’ainsi onpourraittrouverunvraimaximumdelafonctionF(λ,T).Lesconsidérationsprécédentesmesemblent prouverqu’iln’enestrienetqu’onnepourraéchapperauxconclusionsdeJeansàmoinsqu’onnemodifie profondémentleshypothèsesfondamentalesdelathéorie.” 8 AsEinsteinhadalreadyshown,giventhevalidityoftheequipartitionlaw,theRayleigh–Jeanslawfollows evenwithoutinvokingtheapparatusofstatisticalmechanics.SeeSect.4.2belowfordetails. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 157 4 ReactionstotheRomelecture 4.1 WilhelmWien OncetheRomelecture’scontentsbecameknownamongthephysicists,itstirredup quitesomeemotion.WilhelmWienwrotetoArnoldSommerfeldon18May1908: ThelectureLorentzdeliveredinRomehasdisappointedmegreatly.Thathedid notdomorethanpresenttheoldtheoryofJeanswithoutpresentinganewpoint of view is in my opinion a bit shabby. […] This time Lorentz has not shown himselfasaleaderofscience.9 Wien points out in rather strong terms that the question of the validity of Jeans’s law—orratheritsnon-validity—isapurelyexperimentalmatter.Heemphasizesthat Lorentz’s theoretical views on this point are irrelevant, because experiments show enormousdeviationsfromJeans’slawinaregionwhereonecaneasilyestablishhow muchtheradiatingbodydeviatesfromablackbody. WienalsocommunicatedhisobjectionstoLorentzhimself,thoughinarathermore cautiousway,inaletterdated17May1908:10 WithmuchinterestIhavereadthelectureyougaveinRome.Ithinkthatitis veryusefultocontinuetokeepalltheoreticalpossibilitiesinmind.ButIdonot thinkthatanyone whohaseverdoneexperimentsinthefieldofradiationwill admitthatthereiseventheremotestpossibilityforthetheoryofJeanstoreach agreementwithexperience.11 He then points out that one can easily determine, by measuring their absorptive power,thattheradiatingbodiesusedinexperimentsdepartatmostafewpercentfrom ideal black bodies and that the discrepancies of Jeans’s law with experiment are so largethatthereisnowaytheoryandexperimentcanbereconciled.Theletterfinishes withanadmonitionofsorts: Ifearthatfurtherresistanceandclingingtoviewsthataretoosimplewillbean impedimenttotheprogressofscience.12 9 “DerVortrag,denLorentzinRomgehaltenhat,hatmichschwerenttäuscht.Daßerweiternichtsvor- brachtealsdiealteTheorievonJeansohneirgendeinenneuenGesichtspunkthineinzubringenfindeich etwasdürftig.[…]LorentzhatsichdiesmalnichtalseinFührerderWissenschafterwiesen.”SeeEckart andMärker(2000,nr.132). 10 SeeKox(2008,Letter170). 11 “IchhabemitgrossemInteressedenVortraggelesendenSieinRomgehaltenhaben.Ichglaubedass esdurchauszweckmässigistalletheoretischenMöglichkeitendauerndimAugezubehalten.Aberich glaubenicht,dassirgendjemand,derjemalsexperimentellaufdemGebietederStrahlunggearbeitethat, Ihnenzugebenwird,dassfürdieTheorievonJeansauchnurdieentferntesteMöglichkeitbestehtmitder ErfahrunginÜbereinstimmungzukommen.” 12 “Ichfürchtedaher,dasseinlängeresSträubenundFesthaltenanzueinfachenVorstellungenhemmend aufdenFortschrittderWissenschaftwirkenkann.” 123
Description: