ebook img

Hendrik Antoon Lorentz's struggle with quantum theory Kox, AJ PDF

23 Pages·2013·0.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hendrik Antoon Lorentz's struggle with quantum theory Kox, AJ

UvA-DARE (Digital Academic Repository) Hendrik Antoon Lorentz’s struggle with quantum theory Kox, A.J. DOI 10.1007/s00407-012-0107-8 Publication date 2013 Published in Archive for History of Exact Sciences Link to publication Citation for published version (APA): Kox, A. J. (2013). Hendrik Antoon Lorentz’s struggle with quantum theory. Archive for History of Exact Sciences, 67(2), 149-170. https://doi.org/10.1007/s00407-012-0107-8 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Jan 2023 Arch.Hist.ExactSci.(2013)67:149–170 DOI10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A.J.Kox Received:15June2012/Publishedonline:24July2012 ©TheAuthor(s)2012.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentzinquantumtheory.Althoughespeciallyhisearlyworkisvaluable,themain importanceofLorentz’sworkliesintheconceptualclarificationsheprovidedandin hiscritiqueofthefoundationsofquantumtheory. 1 Introduction TheDutchphysicistHendrikAntoonLorentz(1853–1928)isgenerallyviewedasan icon of classical, nineteenth-century physics—indeed, as one of the last masters of thatera.Thus,itmaycomeasabitofasurprisethathealsomadeimportantcontribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- mentinphysics.TheimportanceofLorentz’sworkliesnotsomuchinhisconcrete contributions to the actual physics—although some of his early work was ground- breaking—butratherintheconceptualclarificationsheprovidedandhiscritiqueof thefoundationsandinterpretationsofthenewideas.Especiallyinhiscorrespondence withcolleagues,suchasMaxPlanck,WilhelmWienandAlbertEinstein,hetimeand againtriedtoclarifythequantumprinciplesandexploretheirconsequences. InthispaperIwillgiveanoverviewofLorentz’sworkinquantumtheory,includ- inghisinformalcontributionsindiscussionsandcorrespondence.Iwillfirstdiscuss Lorentz’searlyworkonradiationtheory,inwhichhegivesaderivationofaradiation lawfromclassicalelectrontheory.ThenIwilldiscussLorentz’s1908Romelecture Communicatedby:JedBuchwald. B A.J.Kox( ) InstituteforTheoreticalPhysics,UniversityofAmsterdam, Amsterdam,TheNetherlands e-mail:[email protected] 123 150 A.J.Kox insometechnicaldetail,becausethetheoryLorentzdevelopsinthelectureisadaring newapplicationofGibbs’sstatisticalmechanicsandbecauseitsoutcomeisthatthe mostgeneralclassicaltheoryonecanthinkofleadsinescapablytotheRayleigh–Jeans radiationlaw.Akeyelementinthisderivationisthetheoremofequipartitionofenergy. TheRomelecturewaswidelydiscussed,bothincorrespondenceandinpapers.As wewillsee,inthediscussionswithLorentzandalsoinhislaterworkthreequestions willkeepcomingback.Thefirstoneisthevalidityofthelawofequipartitionofenergy anditspossiblemodifications.Asecondtheme,howtodealwiththequantumdiscon- tinuity(alsodiscussedinthelecture,althoughlessexplicit),wouldsoonevolveinthe specificquestionofwheretolocalizethediscontinuity:intheether,intheinteraction betweenmatterandether,intheresonatorsorelsewhere.Athirdtheme,notexplicitly presentintheRomelecture,butgainingmuchprominenceinlaterwork,isthematter ofthelightquantum.Doindependentlightquantaexist,andifso,howtoreconcile theirexistencewithtypicalwavephenomenasuchasinterference?Thislastthemeis inparticulardiscussedincorrespondencewithEinstein. ThepaperconcludeswithadiscussionofthewayLorentzdealtwiththeparallel developments of matrix mechanics and wave mechanics. He carefully studied both theories but engaged with them in totally different ways: he extensively discussed andcriticizedwavemechanics,especiallyincorrespondencewithErwinSchrödinger, whereasinthecaseofmatrixmechanicshelimitedhimselftotryingtomasterthefor- malismandgraspingitsconsequences.Althoughhehadmuchrespectandadmiration fortheworkoftheyoungergeneration,heremainedcriticalandtotheendcouched hisquantumworkinclassicalterms. 2 Earlyworkonradiationtheory Lorentz’sworkonradiationtheoryischaracterizedbythesamemethodologicalcon- sistencythatwefindthroughouthisworkandthatculminatedinhismaturetheoryof electronsinthefirstdecadeofthetwentiethcentury.Hebaseshimselfonanontology ofparticlesandfields,or,tousehisownterminology,onastrictseparationofmat- ter—consistingofchargedandneutralparticles—andether.Thelatteractsascarrier oftheelectromagneticaction,causedbythepresenceofchargedparticles.Etherand matterareseparateentities,thatactoneachother,butmustbetreateddifferently.The particles obey the laws of classical mechanics; the ether is governed by Maxwell’s equations.1 ThefirstpaperIwanttodiscussdatesfrom1903,andhasthetitle:“Ontheemis- sionandabsorptionbymetalsofraysofheatofgreatwave-lengths”(Lorentz1903). LorentzbaseshimselfonthetheoriesofPaulDrudeandEduardRieckefortheelectri- calconductivityofmetals,inwhichitisassumedthatmetalscontainlargequantities offreelymovingelectrons,thatregularlycollidewiththemetalatoms.Applyinghis electrontheorytothismodel,Lorentzcalculatestheenergydensityofradiationemit- ted by the electrons by assuming that they only radiate when colliding with atoms, 1 InLorentz’searlyworktheetherisstilltreatedasamechanicalsystem,butgraduallyitlosesallofits mechanicalpropertiessaveone:itsimmobility.SeeKox(1980)forfurtherdetails. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 151 limitinghimselftothecaseoflongwavelengths.Inadazzlingshowofmathematical prowesshefindsthattheradiationisdistributedaccordingtotheRayleigh–Jeanslaw (which,ofcourse,wasnotyetknownbythatnamein1903)andalsothatitconforms tothelongwavelengthlimitofPlanck’sbrand-newradiationlaw: 8πkT f(λ,T)= . (1) λ4 In this paper Lorentz makes his first comments on Planck’s quantum hypothesis. Hewrites: […]thehypothesisregardingthefinite“unitsofenergy”,whichhasledtothe introduction of the constant h, is an essential part of the theory; also that the questionastothemechanismbywhichtheheatofabodyproduceselectromag- neticvibrationsintheaetherisstillleftopen.Nevertheless,theresultsofPlanck aremostremarkable. Andlateron,whencomparinghisresultwithPlanck’swork,hecomments: There appears therefore to be a full agreement between the two theories in thecaseoflongwaves,certainlyaremarkableconclusion,asthefundamental assumptionsarewidelydifferent. ItisinterestingtonotethatinhispaperLorentzcharacterizesPlanck’stheoryinthe followingway: It will suffice to mention an assumption that is made about the quantities of energy that may be gained or lost by the resonators. These quantities are sup- posed to be made up of a certain number of finite portions, whose amount is fixed for every resonator; according to Planck, the energy that is stored up in aresonatorcannotincreaseordiminishbygradualchanges,butonlybywhole “unitsofenergy”,aswemaycalltheportionswehavejustspokenof. AccordingtoThomasKuhn,thisisan“anomalous”readingofPlanck’swork,that Lorentzcorrectedlater.2 CloserstudyofLorentz’spublishedandunpublishedutter- ances shows, however, that Lorentz never strayed very far from this interpretation. Forinstance,inhis1908Romelecture(seeSect.3),heusesalmostidenticalwords, whereas Kuhn uses a quotation from a letter from Lorentz to Wilhelm Wien (to the effectthatprocessesintheethertakeplaceinacontinuousway),whichwaswritten a bit after the lecture, to argue that Lorentz had dropped his earlier interpretation.3 WhatLorentzwasuncertainabout,aswillbeshowninSect.6below,waswherethe discontinuitylay:intheinteractionbetweenetherandmatter(i.e.,theresonators)or intheinteractionbetweentheresonatorsandtheothermatter. 2 SeeKuhn(1978,p.138). 3 SeeKuhn(1978,p.194).Theletterinquestionisdated6June1908;itisreproducedinKox(2008)as Letter171.SeealsoSect.4.1belowforafurtherdiscussionoftheLorentz–Wiencorrespondence. 123 152 A.J.Kox 3 TheRomelecture FromLorentz’slaterworkonradiationtheory,itbecomesclearthatthepaperdiscussed intheprevioussectionsetsthemethodologicalstageforlaterdevelopmentsalongsim- ilarlinesandthatitscriticaltoneaboutthemysteryoftheunderlyingmechanismin Planck’stheoryofenergyelementsremainsanimportanttheme. Thefirstimportantoneofthelaterpapersisthe1908Romelecture.Itwasdelivered atasomewhatstrangevenue,namely,the4thInternationalCongressofMathemati- ciansinApril1908.Itsimpacthasbeenconsiderable,ifonlybecauseitmadeindis- putablyclear thatPlanck’s energy elements werefundamentally foreigntoclassical mechanicsandelectrodynamics. The lecture, entitled “The distribution of energy between ponderable matter and ether”,4startswithalengthyandverygeneraldiscussionofthefoundationsofmechan- ics, kinetic gas theory, and electrodynamics, clearly meant for an audience of non- physicists.ItisusefultofollowLorentz’sreasoninginsomedetail,becauseitbrings outthesystematicwayhehassetupthispaper. Lorentzfirstreviewsthebasicsofradiationtheory.FromKirchhoff’sworkitfollows thatauniversalradiationlawexists:theenergydensityofradiationinthewavelength intervalλ,λ+dλattemperatureT isgivenby: F(λ,T)dλ, (2) with F afunctionthatisindependent ofthespecificpropertiesofthebodythathas producedtheradiation. Next Lorentz discusses the law of equipartition of energy, Boltzmann’s work in kineticgastheory,andtheatthattimenotwidelyknownstatisticalmechanicsofGibbs, asanalternativetoBoltzmann’sapproach.Hestressesthatthephasespaceapproach takenbyGibbsonlyworksifthesystemunderconsiderationcanbedescribedusing Hamilton’s equations, so that the ensemble behaves like an incompressible fluid (in otherwords,ifLiouville’stheoremholdsfortheensembledensity).Hethenintroduces theensembledensityofthecanonicalensembleintheform: ϕ =Ce−E/Θ (3) andexplainshowonecandeterminemacroscopicquantitiesfromensembleaverages. Lorentznowturnstoelectromagnetism.Hearguesthatoneneedstobasethistheory onavariationalprincipleoftheform: (cid:2) δ (L−U)dt =0 (4) 4 Thelecturewaspublishedindifferentversionsandinvariousplaces;seeLorentz(1908a)inthebibliog- raphyformoredetails. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 153 with L the magnetic energy and U the electric energy. This becomes the standard Lagrangianfortheelectromagneticfieldifonetakes: (cid:2) 1 L = H2dV (5) 2 and (cid:2) 1 U = D2dV (6) 2 whereDisthedielectricdisplacementandHthemagneticforce.Notethat,although theintegrandin(3)hastheformofa“standard”lagrangian,inthiscasetheterms L andU donothavetheirusualmeaningsofkineticandpotentialenergy,respectively. ItwillbecomeclearinthefollowingwhyLorentzisusingthissuggestivenotation. Havingsetthestage,Lorentzproceedstoconsiderthemostgeneralphysicalsys- tem he can think of. It consists of charged particles (‘electrons’), neutral particles (‘atoms’),andether(i.e.,electricandmagneticfields),enclosedinarectangularbox. The particles are all in motion; the electrons may be free or bound inside of atoms. Thissystemcanbedescribedbyfoursetsofgeneralizedcoordinates: – {q }fortheneutralparticles, 1 – {q }forthechargedparticles, 2 – {q ,q(cid:2)}fortheelectricfield. 3 3 While{q }and{q }haveastraightforwardmeaning,the‘coordinates’{q ,q(cid:2)}havea 1 2 3 3 morecomplicatedinterpretation.Foreachinstantoftimeonecansplittheelectricfield intotwoparts:thefirstisthefieldthatwouldexistifallchargedparticleswereatrest at their positions q , while the second part obeys the source-free Maxwell equation 2 ∇·D=0.ThislatterpartcanbeexpandedinaFourierseriesofthemodesthatfitin thebox;{q ,q(cid:2)}arethecoefficientsappearinginthisexpansion.Thus,thethethree 3 3 componentsofDcanbewrittenas: (cid:3) uπ vπ wπ D = (q α+q(cid:2)α(cid:2))cos xsin ysin z x 3 3 f g h u,v,w (cid:3) uπ vπ wπ D = (q β+q(cid:2)β(cid:2))sin xcos ysin z (7) y 3 3 f g h u,v,w (cid:3) uπ vπ wπ D = (q γ +q(cid:2)γ(cid:2))sin xsin ycos z. x 3 3 f g h u,v,w Here f,g,harethelengthsofthesidesoftheboxandu,v,wareintegersrunningfrom 1to∞.5 Foreachcomponentandforeachset{u,v,w}threedirectionsaredefined, perpendiculartoeachother.Oneisdeterminedbythevector(u,v,w),andtheother f g h two,correspondingtothetwopolarizationstatesofthefield,havethedirectioncosines 5 Theparticularchoiceofsinesandcosinesisdictatedbytheboundaryconditionsinthebox:thesidesof theboxaresupposedtobeperfectlyconducting,whichmeansthatDisalwaysperpendiculartothesides. 123 154 A.J.Kox α andα(cid:2),β andβ(cid:2),andγ andγ(cid:2),respectively.Thecoefficients{q ,q(cid:2)}(which,fol- 3 3 lowingLorentz’susage,willbeabbreviatedto{q }inthefollowing)obviouslydepend 3 on{u,v,w}andont. The next step is to write the Lagrangian L −U as a function of the generalized coordinates.BecauseLorentznowconsidersamoregeneralsystemthanjustelectro- magneticfields,heincludeskineticenergytermsin L andpotentialenergytermsin U,inadditiontothefieldterms.ForU hefinds (cid:3) 1 U =U + fgh q2 (8) 0 16 3 withU0 afunctionofthecoordinatesq1 an(cid:4)dq2,accountingforthepotentialenergy betweentheparticles;thesecondtermis 1 D2dV. 2 The term L consists in the first place of a part representing the kinetic energy of theelectronsandoftheneutral(cid:4)particles,denotedby L0 andquadraticinq˙1 andq˙2. Further,tofindthefieldpart 1 H2dV ithastobetakenintoaccountthatmagnetic 2 fields are generated by moving charges as well as by changing electric fields. This givesrisetotermsinHproportionaltoq˙ andtoq˙ ,respectively,whichleadstoterms 2 3 in L proportional toq˙2,q˙2, andq˙ q˙ . The terms proportional toq˙2 are absorbed in 2 3 2 3 2 L ;theexplicitformofthepartproportionaltoq˙2isfoundbyfirstcalculatingD˙ from 0 3 (7)andthenusing∇∧H=(1/c)D˙ tofindH.Thefinalresultis: fhg (cid:3) q˙2 (cid:3) L = L + 3 + l q˙ q˙ . (9) 0 16c2 π2(u2/f2+v2/g2+w2/h2) ij 2i 3j ij In the last term the index i refers to the individual electrons; the index j abbrevi- atesthedependenceofthequantitiesq˙ onu,v,wandthedirectioncosinesα,β,γ. 3 Accordingly,thecoefficientsl dependonu,v,w,α,β,γ andonthecoordinatesq . ij 2i From this Lagrangian the Lagrange equations follow easily. Lorentz explicitly writes down the equations for q and shows that they give rise to standing waves, 3 withwavelength 2 λ= (cid:5) (10) u2/f2+v2/g2+w2/h2 WheneverthereisavalidLagrangianformalism,onecanalsowritedownHamilto- nianequations.ThatdoesnotmeanthatGibbsianstatisticalmechanicscanbeapplied to the system under consideration yet. A major obstacle remains: because there are infinitelymanytermsinthesum(7)therearealsoinfinitelymanycoordinatesq ,so 3 thatphasespacewouldbecomeinfinitelydimensional,precludingtheexistenceofa meaningfulensembledensity.Lorentz’sworkroundsolutionistointroducewhathe calls“fictitiousconnections”(“liaisonsfictives”)intheetherbywhichstandingwaves withsmallerwavelengthsthansomevalueλ areexcluded.Ascanbeseenfrom(10) 0 this means that an upper limit is imposed on the values taken by u,v,w. Lorentz justifieshisconditionbypointingoutthatonecanmakeλ assmallasonewishes.To 0 this“fictitious”systemGibbsianstatisticalmechanicsisthenapplied. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 155 Lorentznowreturnstoexpression(3)fortheensembledensity.Hefirstnotesthatin L thetermL containstermsoftheform(1/2)mq˙2.BecauseE = L+U,theexpo- 0 1 nentialin(3)containsthesetermsaswell.Takingtheensembleaverageof(1/2)mq˙2 1 using (3) (i.e., calculating the mean kinetic energy of a neutral particle), now gives (1/2)Θ;forthethree-dimensionalmotionoftheparticlesthisbecomes(3/2)Θ.Ear- lierinthepaper,Lorentzhasexplainedthatoneofthemostimportantresultsofkinetic gastheoryisthatthemeankineticenergyofamovingmoleculeoratomisequaltoαT, withT thetemperatureandαauniversalconstant(nottobeconfusedwiththedirec- tioncosineintroducedearlier).Thus(3/2)Θ =αT (or,inmodernnotation,Θ =kT). Inthisway,LorentzextendsthestandardinterpretationofΘ formechanicalsystems tohismuchmorecomplicatedsystemofparticlesandfields. NowLorentzturnstothesecondtermin(8).Sincethetermsinthissumarequa- draticinq ,acalculationsimilartotheoneaboveshowsthatinanensembleaverage 3 eachtermwillcontribute(1/2)Θ =(1/3)αT tothemeanelectricenergy.Takinginto (cid:2) accountthetwopolarizationstatesrepresentedbythecoordinatesq andq ,wegeta 3 3 totalcontributionbytheq ’sof2αT/3.Thiscanalsobeinterpretedasthecontribution 3 ofonemode(u,v,w)tothemeanelectricenergy. Returningtotherectangularbox,itiseasytoseethatthenumberofmodeswith wavelengthsbetweenλandλ+dλthatfitinthebox(whichissupposedtobesuffi- cientlylarge)isequalto 4π fghdλ. (11) λ4 Takingintoaccounttheearlierresultforthemeanelectricenergypermode,Lorentz finds 8παT dλ (12) 3λ4 fortheenergydensity.Becausethemeanmagneticenergyisequaltothemeanelectric energy,thetotalmeanelectromagneticenergydensityisgivenbytwicethisexpression, sothattheradiationfunction(2)isnowgivenby: 16παT F(λ,T)= (13) 3λ4 ThisistheRayleigh–Jeanslaw. In this way, Lorentz has generalized his earlier paper on long-wave radiation in metals,inwhichhefirstspecifiedamechanismbywhichradiationisgeneratedand thenexplicitlycalculatedtheenergy-densityofthisradiation. Lorentzofcourserealizestheconsequencesofhisresult.Itisclearlyincontradic- tion with the observed radiation curve, which shows a maximum when plotted as a functionofλ.Moreover,itimpliesthatinthecaseofamaterialbodyinequilibrium withtheetherthelatterwillcontainaninfiniteamountofenergyandtheenergywill 123 156 A.J.Kox becomeconcentratedinevershorterwavelengths.6 Thishadalreadybeenconcluded byJeans.AsLorentzremarks: […]whenJeanspublishedhistheory,Ihadhopedthatoncloserinspectionone couldshowthatthetheoremofequipartitionofenergyonwhichhebasedhim- self cannot be applied to the ether and that in this way one could find a true maximumofthefunctionF(λ,T).Theprecedingconsiderationsseemtoprove thatthisisnotthecaseandthatJeans’sconclusionswillbeinescapableunless thefundamentalhypothesesofthetheoryareprofoundlymodified.7 This is a crucial conclusion. To summarize: Lorentz has shown that the valid- ity of the equipartition theorem for material particles inescapably implies its valid- ity for his more complicated mechanical–electromagnetical system (or, using his own words, for the ether). This then immediately leads to the Rayleigh–Jeans law.8 Isthereawaytoreconciletheexperimentalresultswithwhathehasfound,Lorentz wonders.Onethingiscertain:forlongwavelengthsthelawissatisfactory;theprob- lemliesintheshort-wavelengthregime.Apossiblesolutionisthatthemaximumin the observed curve is an artefact of the experiment, perhaps due to the fact that the radiatingbodiesusedintheexperimentsarenotblackforsmallwavelengthsandthus radiatemuchlessenergyforthesewavelengthsthanisassumed.Inthiswayequilib- rium between radiation and matter will take a very long time to set in—it is in fact neverobserved. InthefinalparagraphsLorentzemphasizesthathedoesnotpretendtohaveprovided thedefinitivesolutiontotheradiationproblem.Thewayoneproceedsintheoretical physics, he argues, is to examine the relative likelihood of various hypotheses and theoriesforagivenphenomenonandstudytheconsequencesthatfollowfromthose hypotheses. In the case of the Planck radiation law versus the Rayleigh–Jeans law, one has to conclude that the latter is very hard to bring in agreement with experi- ments, whereas Planck’s law is in good agreement with them but requires a funda- mental change in our thinking about electromagnetic phenomena. This is already clear if one looks at a freely moving electron emitting radiation with a continu- ousfrequencyspectrum.ThequestionremainshowtoapplyPlanck’shypothesisof energy elements in this case. Lorentz concludes by expressing the hope that future experiments will provide firm evidence for one or the other of the two radiation laws. 6 ThisiswhatPaulEhrenfestdubbedthe‘ultravioletcatastrophe’. 7 “[…]lorsqueJeanspubliasathéorie,j’aiespéréqu’enyregardantdeplusprès,onpourraitdémontrerque lethéorèmedel’“equipartitionofenergy”,surlequelils’étaitfondéestinapplicableàl’éther,etqu’ainsi onpourraittrouverunvraimaximumdelafonctionF(λ,T).Lesconsidérationsprécédentesmesemblent prouverqu’iln’enestrienetqu’onnepourraéchapperauxconclusionsdeJeansàmoinsqu’onnemodifie profondémentleshypothèsesfondamentalesdelathéorie.” 8 AsEinsteinhadalreadyshown,giventhevalidityoftheequipartitionlaw,theRayleigh–Jeanslawfollows evenwithoutinvokingtheapparatusofstatisticalmechanics.SeeSect.4.2belowfordetails. 123 HendrikAntoonLorentz’sstrugglewithquantumtheory 157 4 ReactionstotheRomelecture 4.1 WilhelmWien OncetheRomelecture’scontentsbecameknownamongthephysicists,itstirredup quitesomeemotion.WilhelmWienwrotetoArnoldSommerfeldon18May1908: ThelectureLorentzdeliveredinRomehasdisappointedmegreatly.Thathedid notdomorethanpresenttheoldtheoryofJeanswithoutpresentinganewpoint of view is in my opinion a bit shabby. […] This time Lorentz has not shown himselfasaleaderofscience.9 Wien points out in rather strong terms that the question of the validity of Jeans’s law—orratheritsnon-validity—isapurelyexperimentalmatter.Heemphasizesthat Lorentz’s theoretical views on this point are irrelevant, because experiments show enormousdeviationsfromJeans’slawinaregionwhereonecaneasilyestablishhow muchtheradiatingbodydeviatesfromablackbody. WienalsocommunicatedhisobjectionstoLorentzhimself,thoughinarathermore cautiousway,inaletterdated17May1908:10 WithmuchinterestIhavereadthelectureyougaveinRome.Ithinkthatitis veryusefultocontinuetokeepalltheoreticalpossibilitiesinmind.ButIdonot thinkthatanyone whohaseverdoneexperimentsinthefieldofradiationwill admitthatthereiseventheremotestpossibilityforthetheoryofJeanstoreach agreementwithexperience.11 He then points out that one can easily determine, by measuring their absorptive power,thattheradiatingbodiesusedinexperimentsdepartatmostafewpercentfrom ideal black bodies and that the discrepancies of Jeans’s law with experiment are so largethatthereisnowaytheoryandexperimentcanbereconciled.Theletterfinishes withanadmonitionofsorts: Ifearthatfurtherresistanceandclingingtoviewsthataretoosimplewillbean impedimenttotheprogressofscience.12 9 “DerVortrag,denLorentzinRomgehaltenhat,hatmichschwerenttäuscht.Daßerweiternichtsvor- brachtealsdiealteTheorievonJeansohneirgendeinenneuenGesichtspunkthineinzubringenfindeich etwasdürftig.[…]LorentzhatsichdiesmalnichtalseinFührerderWissenschafterwiesen.”SeeEckart andMärker(2000,nr.132). 10 SeeKox(2008,Letter170). 11 “IchhabemitgrossemInteressedenVortraggelesendenSieinRomgehaltenhaben.Ichglaubedass esdurchauszweckmässigistalletheoretischenMöglichkeitendauerndimAugezubehalten.Aberich glaubenicht,dassirgendjemand,derjemalsexperimentellaufdemGebietederStrahlunggearbeitethat, Ihnenzugebenwird,dassfürdieTheorievonJeansauchnurdieentferntesteMöglichkeitbestehtmitder ErfahrunginÜbereinstimmungzukommen.” 12 “Ichfürchtedaher,dasseinlängeresSträubenundFesthaltenanzueinfachenVorstellungenhemmend aufdenFortschrittderWissenschaftwirkenkann.” 123

Description:
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.