ebook img

Helicopter Unmanned Aerial Vehicle Path Planning to Optimise Power Line Inspections PDF

137 Pages·2015·2.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Helicopter Unmanned Aerial Vehicle Path Planning to Optimise Power Line Inspections

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION Attribution — You must give appropriate credit, provide a link to the license, and indicate if o changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your o contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date). Helicopter Unmanned Aerial Vehicle Path Optimisation for Power Line Inspections By Thembani Thabo Moyo DISSERTATION Submitted in partial fulfilment of the requirements for the degree MASTERS INGENERIAE In ELECTRICAL AND ELECTRONIC ENGINEERING SCIENCE In the FACULTY OF ENGINEERING AND THE BUILT ENVIRONMENT At the UNIVERSITY OF JOHANNESBURG STUDY LEADER: Francois du Plessis July 2014 Abstract Electricity is a highly valued resource used in households and to drive economic production in industry; its efficient generation and distribution to the end user is therefore critical. This necessitates frequent inspection of power lines and the associated components that allow for energy transmission over long distances. Current power line inspection methods such as manned helicopters and ground surveillance crews are expensive resulting in the use of Unmanned Aerial Vehicles (UAVs) being presented as a cost effective alternative. Extensive research has been done in the development of a UAV platform for a number of uses including power line inspection. However, issues arise from the use of UAVs for power line inspection. Some of these issues include ensuring that the platform is at a safe distance from power lines; procedures to be followed when conducting the inspections; and how the UAV responds to unexpected changes in the environment. The underlying hypothesis of this research is that the Travelling Salesman Problem (TSP) can be utilised in the optimisation of power line inspection using helicopter UAVs. A set of waypoints was collected based on the best position to view the overhead power line components and these waypoints represent the cities in the TSP. The UAV’s path is optimised to minimise the time taken, distance travelled and fuel used to complete the power line inspection. ii Acknowledgements Sincere gratitude to:  God for the opportunity and the grace to complete this project.  My family and friends for their support and prayers.  Francois du Plessis (Supervisor UJ) and Prof. Johan Meyer (co-supervisor UJ) for advice and guidance.  Materials Sensors and Manufacturing group at the Council for Scientific and Industrial Research for advice and mentorship.  Dean Grobbeler (Aerial concepts) for carrying out all flight inspections.  Brian Taylor from the South African Bureau of Standards (SABS) testing facility for allowing me to conduct testing at the facility. iii Contents Chapter 1 Introduction ............................................................................................................................ 1 1.1 Background ......................................................................................................................... 1 1.2 Problem Statement .............................................................................................................. 8 1.3 Hypothesis ......................................................................................................................... 12 1.4 Research Objectives .......................................................................................................... 13 1.5 Project Scope .................................................................................................................... 13 1.6 Document overview .......................................................................................................... 15 1.7 Conclusion ........................................................................................................................ 16 Chapter 2 Literature Review ................................................................................................................. 17 2.1 Introduction ....................................................................................................................... 17 2.2 State of the art in power line inspections .......................................................................... 17 2.3 Path planning .................................................................................................................... 28 2.4 Path Optimisation .............................................................................................................. 48 2.5 Difference between path planning and path optimisation ................................................. 59 2.6 Helicopter fuel burn model ............................................................................................... 59 2.7 Conclusion ........................................................................................................................ 62 Chapter 3 Theoretical Development ..................................................................................................... 65 3.1 Introduction ....................................................................................................................... 65 3.2 Inspection protocol ............................................................................................................ 65 3.3 Path planning formulation ................................................................................................. 66 3.4 Path optimisation formulation ........................................................................................... 77 3.5 Conclusion ........................................................................................................................ 80 Chapter 4 Experimental Analysis ......................................................................................................... 81 4.1 Introduction ....................................................................................................................... 81 4.2 Setting of simulation parameters and limit testing ............................................................ 81 4.3 Implementation of waypoint dataset ................................................................................. 84 4.4 Determining helicopter fuel flow ...................................................................................... 87 4.5 Comparison of paths generated using the different optimisation criteria with fixed start and end points ....................................................................................................................................... 89 4.6 Comparison of paths generated using the different optimisation criteria with variable start and end points ....................................................................................................................................... 90 4.7 Investigating the effect on the optimal path when helicopter speeds are varied ............... 91 iv 4.8 Investigating the effect on the path after increasing the fuel flow .................................... 92 4.9 Comparison of criteria values obtained from brute force and TSP-GA ............................ 94 4.10 Conclusion ........................................................................................................................ 96 Chapter 5 Conclusion ............................................................................................................................ 98 5.1 Introduction ....................................................................................................................... 98 5.2 Restatement of hypothesis ................................................................................................ 98 5.3 Research methodology ...................................................................................................... 98 5.4 Summary of findings ....................................................................................................... 101 5.5 Limitations of the study .................................................................................................. 103 5.6 Future work ..................................................................................................................... 104 Appendix ............................................................................................................................................. 106 Appendix A: Miniature Helicopter Modelling and Control ................................................................ 106 Appendix B: Minutes from meeting with ESKOM representatives ................................................... 109 Appendix C: Fuel Consumption ......................................................................................................... 113 Bibliography ...................................................................................................................................... 119 v Table of Figures Figure 1-1 Typical obstacles on conductors shown: (a) suspension insulator, (b) strain insulator, (c) damper, (d) spacer and (e) aircraft warning light [6] .............................................................................. 4 Figure 1-2 An example of a ceramic insulator [8] (left) and a polymeric insulator (right) .................... 5 Figure 1-3 Self-supporting pylon used in research ................................................................................. 6 Figure 1-4 An image of the MultiCAM (left) and an image taken with MultiCAM (right)[12] ............ 7 Figure 1-5 Image taken with MultiCAM [12] ........................................................................................ 8 Figure 1-6 (a)Manned helicopter inspection; (b) Foot patrol inspection; (c) and RUAV with gimbal shown clockwise [11] ............................................................................................................................. 9 Figure 1-7 MultiCAM attached to gimbal [12] ..................................................................................... 10 Figure 2-1 Expliner inspection robot [25] ............................................................................................. 19 Figure 2-2 The LineScout inspection robot [22] ................................................................................... 19 Figure 2-3 Diagram showing the AMPLIS system configuration [24] ................................................. 20 Figure 2-4 The CSIRO AVS used to test the stereo based navigation methods [27]. .......................... 21 Figure 2-5 Experimental set up showing trolley system with camera mounted on gimbals [29]. ........ 22 Figure 2-6 High level diagram showing how the various components will interact [30] ..................... 23 Figure 2-7 An image of the processed sensor layout. A: Line accelerometer; B: Tension sensor; C: Local processing and gateway; D: MAV landing pad and recharging station; E: Lightning arrestor and dipole VHF Yagi antenna; G: Helium canisters; H: Anemometry station; I: Temperature, humidity and vibration sensors; J: Magnetometer and EMF collector [30] ......................................................... 24 Figure 2-8 The MAV with robotic manipulators and on-board camera is shown [30] ......................... 24 Figure 2-9 The image to the left is an artist's impression of how the rotorcraft would traverse the line and the image to the right is a ducted fan rotorcraft model used as a proof of concept [32] ................ 25 Figure 2-10 Scaled experimental model of MoboLab concept [33] ..................................................... 26 Figure 2-11 Piano Mover's Problem [37] .............................................................................................. 30 Figure 2-12 Voronoi and Delaunay representation [40] ....................................................................... 32 Figure 2-13 The depth first search [42] ................................................................................................ 33 Figure 2-14 The breadth first search [42] ............................................................................................. 33 Figure 2-15 The RRT is shown in a square region. It is shown expanding in a few directions to explore the four corners of the square [45]. .......................................................................................... 35 Figure 2-16 Probalistic Road Map from node I to G used in robotic path planning [47] ..................... 36 Figure 2-17 Graph to describe the A* search........................................................................................ 38 Figure 2-18 Euclidean distance heuristic that is used on square grids that allow movement in any direction [56]. ........................................................................................................................................ 41 Figure 2-19 Manhattan distance heuristic is typically used on square grids that allow 4 directions of movement [56]. ..................................................................................................................................... 42 Figure 2-20 A representation of the Chebyshev distance used on square grids that allow diagonal movement [56]. ..................................................................................................................................... 42 Figure 2-21 Input devices for tracking [63] .......................................................................................... 45 Figure 2-22 Graph used to describe the TSP with cities A, B, C, D and E. The respective weights on edges between the cities are shown. The TSP will look to obtain a tour with the lowest weight [76]. 49 vi Figure 2-23 The roulette wheel selection [84] is shown. This wheel represents each individual solution with corresponding weights. The individuals with the larger weighting get selected ahead of the one with the lower weighting as the wheel is rotated. ................................................................................. 52 Figure 2-24 Flow chart describing how Genetic Algorithm works ...................................................... 54 Figure 2-25 Principle showing how ants choose shortest path between food and nest [87] ................. 55 Figure 2-26 Graph showing the number of possible tours for given waypoints ................................... 59 Figure 3-7 View from the ground of helicopter carrying out an inspection ......................................... 68 Figure 3-8 View from helicopter inspecting left side of pylon ............................................................. 68 Figure 3-9 Google earth image at the end of the inspection ................................................................. 68 Figure 3-1 Stages of environment development ................................................................................... 71 Figure 3-5 Three waypoints A, B and C with an obstacle are shown. A path that goes straight from A to C cannot be allowed because a collision would occur therefore such a path has a very high weighting. ............................................................................................................................................. 73 Figure 3-6 Control diagram showing implementation of A* with TSP for the power line inspection optimisation problem. The A* provides obstacle free paths obtained from the open list and provides the input to the GA based TSP which then provides an optima ............................................................ 74 Figure 3-4 The triangle forms the basis of determining the distance travelled between two points given the height difference and the 2D distance given by the A*. ................................................................. 75 Figure 3-5 First instance where two waypoints are separated by the pylon boundary ......................... 76 Figure 3-6 An illustration of unit vectors showing direction and orientation between waypoints. The green arrows represent orientations whereby the platform is facing one waypoint whilst stationary at another. The black arrows represent the platform facing the component to be inspected. ................... 78 Figure 4-1 Results for 64 waypoints (top); 128 waypoints (middle); 1000 waypoints (bottom) .......... 82 Figure 4-2 Graphs showing the increase in computational time as the number of waypoints (top) and iterations (bottom) increases ................................................................................................................. 83 Figure 4-3 Top view(A), side view(B) and front view (C) of the results of loading the pre-processed waypoints .............................................................................................................................................. 85 Figure 4-4 Graphs showing distribution of constraint values on 10 collected sample waypoints ........ 95 Figure 5-1 Research methodology followed ....................................................................................... 100 vii List of Tables Table 1-1 A summary of the main causes of power line faults. .............................................................. 3 Table 1-2 RUAV Specifications ........................................................................................................... 11 Table 2-1 A summary of work done by other researchers in an attempt to optimise power line inspections............................................................................................................................................. 27 Table 2-2 Values of 𝒄𝟏 for various flight phases [88] .......................................................................... 62 Table 3-1 Raw GPS data collected from telemetry downlink ............................................................... 69 Table 3-2 Cartesian representation of GPS data collected .................................................................... 70 Table 3-3 Waypoints referenced to pylon corner .................................................................................. 70 Table 3-4 Information in a typical waypoint file detailing the area to be inspected, platform used, inspector and waypoints with respective coordinate’s. ......................................................................... 73 Table 3-5 The new Distmat used with highlighted values showing the input from A* ........................ 76 Table 4-1 Estimate costs associated with different inspection methods ............................................... 87 Table 4-2 Results of fuel used in various flight phases ........................................................................ 88 Table 4-3 Paths obtained with different optimisation criteria ............................................................... 89 Table 4-4 Paths obtained with different optimisation criteria ............................................................... 90 Table 4-5 Results obtained for the different cases ................................................................................ 92 Table 4-6 Results obtained for the different cases continued .................. Error! Bookmark not defined. Table 4-7 Fuel flow results ................................................................................................................... 93 Table 4-8 Criteria values obtained using a brute force ......................................................................... 94 Table 4-9 Comparison of brute force and TSP-GA results ................................................................... 96 viii List of Acronyms ACO Ant Colony Optimisation ATSP Asymmetrical Travelling Salesman Problem AFCS Automatic Flight Control System CCD Charged Coupled Device CIFER Comprehensive Identification FrEquency Responses CPU Central Processing Unit DoF Degrees of Freedoms EA Evolutionary Algorithm EPDM Ethylene Propylene Diene Monomer FF Fuel Flow GA Genetic Algorithm GIS Geographic Information Systems GPS Global Positioning System GUI Graphical User Interface IMU Inertial Measurement Unit LiDAR Light Detection And Ranging NASA National Aeronautics Space Agency NP Hard Non-deterministic Polynomial-time Hard PC Personal Computer PID Proportional, Integral and Derivative PRM Probabilistic Road Map ix

Description:
The underlying hypothesis of this research is that the Travelling Salesman Problem (TSP) can be utilised in the optimisation of power line inspection
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.