ebook img

Hedenius, M., Persson, J., Alm, P.A., Ullman, M.T., Howard, J.H., Howard, D.V., & Jennische, M. PDF

12 Pages·2013·0.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hedenius, M., Persson, J., Alm, P.A., Ullman, M.T., Howard, J.H., Howard, D.V., & Jennische, M.

ResearchinDevelopmentalDisabilities34(2013)3924–3935 ContentslistsavailableatScienceDirect Research in Developmental Disabilities Impaired implicit sequence learning in children with developmental dyslexia Martina Hedeniusa,*, Jonas Perssonb, Per A. Alma, Michael T. Ullmanc, James H. Howard Jr.d,e,f, Darlene V. Howardd, Margareta Jennischea aUnitforSpeechandLanguagePathology,DepartmentofNeuroscience,UniversityofUppsala,P.O.Box256,SE-75105Uppsala,Sweden bAgingResearchCenter,KarolinskaInstituteandStockholmUniversity,Ga¨vlegatan16,SE-11330Stockholm,Sweden cBrainandLanguageLab,DepartmentofNeuroscience,GeorgetownUniversity,37thandOStreets,N.W.,Washington,DC20057,USA dDepartmentofPsychology,GeorgetownUniversity,37thandOStreets,N.W.,Washington,DC20057,USA eDepartmentofNeurology,GeorgetownUniversity,Washington,DC,USA fDepartmentofPsychology,CatholicUniversityofAmerica,620MichiganAvenue,N.E.,Washington,DC20064,USA ARTI CLE INFO ABS TRA CT Articlehistory: It has been proposed that an impairment of procedural memory underlies a range of Received18June2013 linguistic,cognitiveand motor impairments observedindevelopmental dyslexia (DD). Receivedinrevisedform15August2013 However,studiesdesignedtotestthishypothesisusingtheimplicitsequencelearning Accepted15August2013 paradigmhaveyieldedinconsistentresults.Afundamentalaspectofprocedurallearningis Availableonline thatittakesplaceoveranextendedtime-periodthatmaybedividedintodistinctstages basedonbothbehaviouralcharacteristicsandneuralcorrelatesofperformance.Yet,no Keywords: study of implicit sequence learning in children with DD has included learning stages Developmentaldyslexia beyondasinglepracticesession.Thepresentstudywasdesignedtofillthisimportantgap Proceduralmemory byextendingtheinvestigationtoincludetheeffectsofovernightconsolidationaswellas Implicitsequencelearning those of further practice on a subsequent day. The results suggest that the most pronounced procedural learning impairment in DD may emerge only after extended practice,inlearningstagesbeyondasinglepracticesession. (cid:2)2013ElsevierLtd.Allrightsreserved. 1. Introduction Developmental dyslexia (DD) is characterized by unexpected difficulties with reading, in the context of typical educationalopportunitiesand intactintellectual and sensoryabilities(Lyon,Shaywitz,& Shaywitz,2003).The disorder, whichhasastronggeneticcomponent(Hensler,Schatschneider,Taylor,&Wagner,2010),hasbeenestimatedtoaffectabout 5–12%ofchildren(Shaywitz,Shaywitz,Fletcher,&Escobar,1990).ChildrenwithDDhavedifficultieswithwrittenword recognitionandphonologicaldecoding(usingletter-soundmappingknowledgetodecodenovelwords),whichiswidely believed to result from underlying phonological impairments (Snowling, 2000; Stanovich, 1988; Vellutino, Fletcher, Snowling,&Scanlon,2004). * Correspondingauthorat:UnitforSpeechandLanguagePathology,DepartmentofNeuroscience,Box593,UppsalaUniversity,75124Uppsala,Sweden. Tel.:+46184714746;fax:+4618511540. E-mailaddresses:[email protected](M.Hedenius),[email protected](J.Persson), [email protected](P.A.Alm),[email protected](M.T.Ullman),[email protected](J.H.HowardJr.),[email protected](D.V.Howard), [email protected](M.Jennische). 0891-4222/$–seefrontmatter(cid:2)2013ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.ridd.2013.08.014 M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 3925 However,whilephonologicalimpairmentsareindeedfoundinanoverwhelmingmajorityofstudiesofDD(Ramus& Ahissar, 2012), otherimpairments,whichare noteasily explainedby a specific phonologicaldeficit,arealso commonly reported.Theseincludeimpairmentsofmotorfunctions(Nicolson,Fawcett,&Dean,2001),workingmemory(Smith-Spark& Fisk,2007;Swanson,Xinhua,&Jerman,2009),executivefunctions(Brosnanetal.,2002),oculomotorandvisuoperceptual functions(Quercia,Feiss,&Michel,2013),implicitsequencelearning(Howard,Howard,Japikse,&Eden,2006;Jimenez- Fernandez, Vaquero, Jimenez, & Defior, 2011; Vicari, Marotta, Menghiai, Molinari, & Petrosini, 2003), artificial grammar learning(Pavlidou,Williams,&Kelly,2009)aswellasproblemswithotheraspectsoflanguagethatappeartobeprimaryin nature(i.e.notonlyaconsequenceofimpairedreading;Lyytinenetal.,2004;Snowling,Gallagher,&Frith,2003;Wimmer& Schurz,2010). Thispatternofwide-rangingimpairmentshasencouragedattemptstoprovideaunitaryexplanationforDDthatmay account for both the phonological and non-phonological deficits in the form of a more general underlying deficit. Such theoretical accounts include the proposals that DD is the result of impaired temporal perception (Tallal, 1980), of an abnormaldevelopmentofthebrain’smagnocellularsystems(Stein,2001),ofadeficitinattentionalmechanisms(Hari& Renvall,2001),oringeneralprocessingspeed(Wolf&Bowers,1999).Oneinfluentialtheoreticalview,whichisthefocusof thepresentstudy,positsthattheunderlyingdeficitinDDiscausedbyadysfunctionintheproceduralmemorysystem, specificallytothecortico-cerebellar(Nicolson,Fawcett,Brookes,&Needle,2010;Nicolsonetal.,2001)and/ortothecortical– striatal(Ullman,2004)circuitsinthebrain. Theproceduralmemorysystemunderliesthenon-declarative/implicitacquisition,consolidationandprocessingofskills andhabits(Gabrieli,1998;Henke,2010;Squire&Zola,1996;Willingham,Salidis,&Gabrieli,2002).Thesystemreliesona networkofbrainstructuresinwhichthecortico-striatalandcortical–cerebellarcircuitsplaycrucial,andlargelyoverlapping, roles(forareview,seeDoyonandcolleagues,2009). Althoughpreviouslyconsideredtobeimportantmainlyformotorfunctions(suchaslearninghowtorideabicycle),itis becomingincreasinglyclearthatthissystemalsounderliesarangeofperceptual,cognitive,andlinguisticskills.Alarge literaturesuggeststhattheproceduralmemorysystemplaysacrucialroleinthelearningandcomputationofsequences (Aldridge&Berridge,1998;Knowlton,Mangels,&Squire,1996;Poldrack,Prabhakaran,Seger,&Gabrieli,1999;Saint-Cyr, Taylor, & Lang, 1988; Willingham et al., 2002). This system also appears to be important for other functions, including statisticallearning(McNealy,Mazziotta,&Dapretto,2010;Reeder,Newport,&Aslin,2013;Saffran,Aslin,&Newport,1996), probabilisticclassificationlearning(Poldracketal.,2001;Poldrack&Rodriguez,2004),andtaskstappingcomplexlearned motorskills(Ullman&Pierpont,2005).Accumulatingevidenceindicatesthatproceduralmemoryalsounderliesthelearning anduseofrule-governedaspectsofgrammar,acrosssyntax,morphologyandphonology(Conway,Bauernschmidt,Huang,& Pisoni, 2010; Conway & Pisoni, 2008; Dominey, Hoen, Blanc, & Lelekov-Boissard, 2003; Karuza et al., 2013; Teichmann, Dupoux,Kouider,&Bachoud-Levi,2006;Ullman,2001,2004;Ullmanetal.,1997;Ullman&Pierpont,2005). Anextensivelyusedtaskforthestudyofnon-languageproceduralmemory,specificallyimplicitsequencelearning,isthe serialreactiontime(SRT)task(Nissen&Bullemer,1987).Inthistask,participantsaretypicallyshownfourboxesorcircles arrangedhorizontallyacrossacomputerscreen.Wheneverastimulusappearsinoneofthefourpositions,subjectsareto pressoneoffourcorrespondingresponsekeysasquicklyandaccuratelyaspossible.Intheimplicitversionofthistask, participantsarenottoldthatthestimuliarepresentedaccordingtoafixedsequence(asopposedtotheexplicitversion,in which the sequential pattern is verbalized and memorized prior to practice). Sequence learning is operationalized as improvementsintheaccuracyand/orreactiontimesofresponsestothesequence,ascomparedtorandomlyordereditems introducedasacontrolconditionattheendofpractice.Whenadministeredasanimplicittask,learningintheSRTtask appearstobelargely,thoughnotcompletely,incidentalandnon-conscious(Howard&Howard,1992;Willingham,Nissen,& Bullemer,1989). AfundamentalaspectofsequencelearningintheSRTtask,andofprocedurallearningmoregenerally,isthatittakesplace overanextendedtime-period.Thisperiodmaybedividedintodistinctstagesonthebasisofbothbehaviouralcharacteristics andneuralcorrelatesofperformance(Debasetal.,2010;Hauptmann,Reinhart,Brandt,&Karni,2005;Korman,Raz,Flash,& Karni,2003;Orbanetal.,2010;Robertson,Pascual-Leone,&Miall,2004). Typically,aninitialfastacquisitionstage,characterizedbyarapidimprovementinperformance(asevidencedbya decrease in both response speed and errors), is followed by a gradual decrease in the learning rate and a trend towardsanasymptote(Hauptmannetal.,2005;Kormanetal.,2003).Thisasymptoticshapeofthelearningcurvehas been suggested to reflect a saturation of learning that appears to be necessary for consolidation processes to occur normally(Hauptmann&Karni,2002;Hauptmannetal.,2005;Karnietal.,1998).Consolidationreferstotheprocess by which an initially labile memory trace becomes more robust and resistant to interference (Doyon et al., 2009; Robertsonetal.,2004).Sometimesconsolidationinvolvesanactualincreaseinperformance,withoutfurtherpractice, a phenomenon referred to as off-line learning (Hauptmann et al., 2005; Nemeth et al., 2010; Song, 2009; Song, Howard,&Howard,2007).Theendpointofprocedurallearningisautomaticityofthelearnedbehaviour.Whenaskill isautomatizeditcanbeperformedeffortlesslyevenwhenattentionisdirectedelsewhere(asindualtasksituations; Seger & Spiering, 2011). BrainimagingstudiessuggestthatimplicitsequencelearningintheSRTtaskdependslargelyonproceduralmemory brainstructures,inparticularthestriatum,cerebellum,associatedmotorcorticalregions,aswellasportionsofprefrontal andparietalcortex(Grafton,Hazeltine,&Ivry,1995;Peigneuxetal.,2000;Rauchetal.,1997;forareview,seeDoyonand colleagues, 2009). In addition, recent studies have highlighteda role for the medial temporal lobe in sequence learning 3926 M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 (Albouyetal.,2008;Gheysen,VanOpstal,Roggeman,VanWaelvelde,&Fias,2011;Schendan,Searl,Melrose,&Stern,2003; Simon,Vaidya,Howard,&Howard,2012)underbothexplicitandimplicitconditions. Importantly,theneuralcorrelatesofsequencelearninghavebeenshowntobemodulatedbytheamountofpracticewith thetask;whereasearlylearningischaracterizedbyaratherwidespreadactivationpatternthatincludesthemedialtemporal lobe,prefrontalcortex,striatumandcerebellum,studiesincludingextendedpractice,andlaterlearningstages,suggestan increasingly important role for the striatum in learning stages beyond the fast acquisition stage (Doyon et al., 2009; Rieckmann&Backman,2009;Rieckmann,Fischer,&Backman,2010;Simonetal.,2012). StudiesinvestigatingimplicitsequencelearninginDDusingvariantsoftheSRTtaskhavenotyieldedconsistentresults. Althoughthemajorityofpublishedstudieshavefoundasequencelearningdeficitinadults(Du&Kelly,2013;Howardetal., 2006;Menghini,Hagberg,Caltagirone,Petrosini,&Vicaria,2006;Stoodley,Harrison,&Stein,2006)andchildren(Jimenez- Fernandezetal.,2011;Vicarietal.,2003,2005)withDD,intactperformancehasalsobeenreported(Deroostetal.,2010; Kelly,Griffiths,&Frith,2002;Russeler,Gerth,&Munte,2006). Ithasbeenproposedthatthetypeofsequenceusedaswellasthetimeintervalexamined,couldaccountforsomeofthis inconsistency (Du & Kelly, 2013; Orban, Lungu, & Doyon, 2008). Nevertheless, previous studies have focused almost exclusivelyonlearninginasinglepracticesession,andthefastacquisitionstage,whileneglectingovernightconsolidation andlaterlearning.ThisnarrowexperimentalfocusistroublesomesincetheeffectofDDonperformanceinlaterlearning stagesshouldbeoftheoreticalaswellasclinicalandpedagogicalinterest. ThepresentstudyextendedtheexaminationofprocedurallearninginchildrenwithDDtoincludenotonlyaninitial practicesession,butalsoovernightconsolidationandfurtherpracticeonasubsequentday.Toourknowledge,ourstudyis thefirsttoinvestigatetheseimportant,andpotentiallytheoreticallyinformative,aspectsofproceduralmemoryfunctionsin childrenwithDD.Inaddition,weusedavariantoftheSRTtaskthathasnotpreviouslybeenusedwithchildrenwithDD,the alternatingserialreactiontime(ASRT)task(Howardetal.,2004;Howard&Howard,1997). TheASRTtaskhasanimportantadvantageovertheSRTtasksusedinpreviousstudies;intheASRTtaskrandomtrialsare alternatingwithtrialsfollowingthefixedsequencethroughoutthetask,e.g.1-r-2-r-4-r-3(wherethenumberscorrespondto locationsonthescreenandrstandsforrandomlocationsamongthefourpositions).Thealternatingstructureinthisdesign allows for an assessment of sequence specific learning separate from general motor skill learning (i.e. the overall improvementinresponsespeedthatisduetopracticewiththetask).Moreover,itispossibletoexaminesequencelearning continuouslythroughoutthetask,ratherthanonlyatasinglepointattheend ofthetask.Thepresentstudymaythus providenewinformationaboutthenatureofapotentialprocedurallearningdeficitinDD. 2. Method 2.1. Ethicsstatement ThestudywasapprovedbytheethicalreviewboardinthecityofUppsala.Allparentsorguardiansprovidedinformed writtenconsent;childrenprovidedinformedwrittenassentandreceivedacinematicketfortheirparticipation. 2.2. Participants Twelvechildrenwithdevelopmentaldyslexia(DD)and17typicallydeveloping(TD)controlchildrenparticipatedinthe study.Thegroupswerematchedforsex,ageandhandedness(Table1). ChildrenwithDDwererecruitedviaspeech–languagepathologyclinicsinthecitiesofStockholm,Uppsala,Ga¨vleand Va¨stera˚s,inSweden.AllchildrenwithDDhadbeenindependentlytestedanddiagnosedwithdyslexiabyacertifiedspeech– language pathologist within 1.5 years prior to participation. The TD group consisted of a subset of children who were Table1 Participantdemographicsandcognitivecharacteristics. Variable DD(n=12) TD(n=17) Comparison Mean SD Mean SD t p Ageinyears 11.0 0.71 11.1 0.68 0.388 .701 Sex(f/m) 5/7 5/12 x2=0.47 .494 Handedness 85.1 16.4 92.2 10.2 1.42 .167 PIQ 87.9 12.1 97.1 15.0 1.74 .093 Phonologicaldecoding 1.75 0.87 5.24 1.15 8.87 <.001 Orthographicreading 1.92 1.16 5.76 1.15 8.84 <.001 NWR 106 5.2 111 5.4 2.29 .030 TROG 57.9 30.1 75.6 18.4 1.96 .060 PPVT 152 16.4 160 13.5 1.47 .154 Abbreviations:PIQ,PerformanceIQ(Raven,1998);NWR,Nonwordrepetition(Wassetal.,2008);TROG,TestforReceptionofGrammar(Bishop,1982);PPVT, PeabodyPictureVocabularyScale–ThirdEdition(Dunn&Dunn,1997).Note:HandednessscoresarebasedontheEdinburghHandednessInventory (Oldfield,1971). M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 3927 recruitedfromschoolsinandaroundthecitiesofStockholmandUppsalaaspartofalargerstudyonmemoryandlanguagein typicallydevelopingchildren.AllchildreninthestudywerereportedbytheirparentstobemonolingualSwedish-speaking, tohavenormal(orcorrectedtonormal)visionandhearing,andtohavenoknowncognitiveormotorimpairment,exceptfor readingproblemsintheDDgroup. Participants were given a set of behavioural tests in order to characterize their vocabulary (Dunn & Dunn, 1997), grammatical comprehension (Bishop, 1982; Holmberg & Lunda¨lv, 2002), verbal working memory (nonword repetition; Wassetal.,2008),orthographicreading,phonologicaldecoding,andperformanceIQ(PIQ;Raven,1998)Asexpected,there weresignificantgroupdifferencesforthetworeadingmeasuresaswellasforverbalworkingmemory.Bycontrast,thetwo groups did not differ significantly in vocabulary, grammatical comprehension or PIQ, although the differences in both grammaticalcomprehensionandPIQapproachedsignificance(Table1). PerformanceIQwasincludedfordescriptiveratherthanexclusionarypurposesinthisstudysincewewantedourDD sampletoreflectthepopulationofchildrenwhoareclinicallyidentifiedanddiagnosedwithDDinSweden.Inlinewith evidencesuggestingthatthereisaweak,ifany,relationshipbetweenPIQandthereadingproblemscharacteristicofdyslexia (Ferrer,Shaywitz,Holahan,Marchione,&Shaywitz,2010;Rispens,vanYperen,&vanDuijn,1991),PIQisnotusedasan exclusionaryfactorforaclinicaldiagnosisofDDinSweden.ThePIQrangeintheDDgroupwas70–115andtheTDrangewas 80–140. ThetworeadingtestswerepaperandpencilSwedishadaptations(Olofsson,2003)ofthecomputerizedphonological decodingandorthographicreadingtasksdevelopedbyOlson,Forsberg,Wise,andRack(1994).Inthephonologicaldecoding test,thetaskwastodecide,andunderlinewithapencil,whichoneofthreeorfourpseudo-wordswasapseudo-homophone of a real word. (i.e. ‘‘sounds’’ like a real word). The score corresponds to the number of correctly identified pseudohomophones within 2min, with a maximum score of 80. In the orthographic reading test, participants were askedtounderlinethetruewordintrueword-pseudohomophonepairs.Becausethephonologicalcodesforthepairswere identical,thewordanditspseudo-homophonewouldbepronouncedthesameinSwedish.Thus,inordertomakeacorrect responsesubjectshadtouseword-specificorthographicknowledge.Thescorewasthenumberofcorrectlychosenwordsin 2min,withamaximumscoreof120. AllTDchildrenhadstaninescores(cid:2)4outof9onbothreadingtests(correspondingtoperformanceatorabove–0.75SD). AllchildrenintheDDgrouphadstaninescoresof(cid:3)3onbothtests,exceptforonechildwhohadastaninescoreof5onthe orthographic reading test. The performance of this child is consistent with previous evidence suggesting that the phonological decoding problems characteristic of DD can sometimes occur together with intact or even superior orthographicskills(Siegel,Share,&Geva,1995). 2.3. Stimuliandprocedure SequencelearningwastestedwithaversionoftheAlternatingSerialReactionTime(ASRT)task(Howardetal.,2004; Howard & Howard, 1997). As with classic SRT tasks, a sequence of visual stimuli appeared in one of four horizontally arrangedlocations(indicatedbyopencircles)onthecomputerscreen.Thestimuluswasapictureofadog.Subjectswere askedtopressoneoffourhorizontallyarrangedbuttonswheneverthestimulusappearedinthecorrespondinglocationon thescreen.Specifically,theywereaskedto‘‘catchthedog’’asquicklyandaccuratelyaspossiblebypressingthebutton correspondingtothecircleinwhichthedogappeared(Hedeniusetal.,2011).Thesequenceregularitywasnotmentioned. Subjectswereinstructedtousethemiddleandindexfingersofbothhands,andresponseswerecollectedwithaPSTSerial ResponseBox.Stimuliwerepresented(onaLCDscreen),andresponsetimeswereacquired,withE-Primeversion1.2. Targetlocationsweredeterminedbyarepeatingeight-elementstructureinwhichfixedandrandomlocationsalternated. Allparticipantsreceivedthesame8-itemsequencepattern,1r2r4r3r.Thatis,thedogappearedinposition1(theleft-most circle),thenrandomlyinanyofthefourcircles,theninposition2,andsoon.Onrandomtrials,theeventsweresampledfrom auniformdistributionsuchthatthefourlocationswereequallylikely. Eachstimuluspresentationandresponseconstitutedonetrial.Trialswereorganizedintoblocksof85trials:5warm-up randomtrials (notincludedinanalyses)followedby 10repetitionsof the8-itemsequence(Howardet al.,2004).Short breakswereofferedbetweenblocks.Feedbackwasgivenattheendofeachblock,toguidesubjectstoanaccuracylevelof about92%.Allinstructionsandfeedbackweredisplayedvisuallyonthescreenaswellasreadaloudtotheparticipants.The taskwasself-paced,suchthatthecorrectbuttonhadtobepressedbeforeanewstimuluswouldappearonthescreen. However, the experimenter controlled the beginning of each new block by clicking the mouse. Reaction time (RT) was measuredfromtargetonsettothefirstresponse.Thenextstimulusfollowedthecorrectresponseafterafixed120msdelay. Testingwascarriedoutovertwoseparatesessionsonconsecutivedays.Onday1,subjectscompleted20blocks(1700 trials and 200 repetitions of the 8-item sequence). Twenty-four hours later they completed 5 blocks (425 trials and 50 repetitionsofthesequence). 2.4. Statisticalanalysis FollowingpreviousASRTstudies,trialsthatconstitutedthefinaltrialin‘‘trills’’(e.g.121)and‘‘repetitions’’(e.g.111)were excluded,astheyhavebeenshowntobeassociatedwithpre-existingresponsetendencies(fordetails,seeHowardetal., 2004).ForRTs,medianvalueswerecalculatedseparatelyforpatternandrandomtrialsforeachblockandeachsubject.Next, 3928 M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 thesemedianvalueswereaveragedacross10consecutiveblocksinsession1,andacrossthe5blocksinsession2,inorderto obtainmeanvaluesforpatternandrandomtrials,againforeachsubject,foranearlylearningstage(stage1:blocks1–10),an intermediatelearningstage(stage2:blocks11–20)andalatelearningstage,whichoccurredafteranovernightinterval (stage3:blocks21–25).Asimilardatareductionprocedurewasperformedonaccuracy. IntheASRTtask,sequencespecificlearningistypicallyexpressedasanincreasingdifferencebetweentrialsthatfollowthe sequentialpatternandtrialsthatarerandom.ForRTs,sequencelearningisseenasincreasinglyfasterresponsestopattern comparedtorandomtrials.Foraccuracy,sequencelearningistypicallyexpressedasaprogressivedecreaseintheaccuracy ofresponsestorandomtrialswhereasaccuracyforpatterntrialstendstoremainstablethroughoutthetask.Generalskill learning, on the other hand, is seen in the form of the sequence independent (across both pattern and random trials) reductioninresponsetimeasafunctionofpractice. Groupdifferencesingeneralskilllearningand/orsequencespecificlearningwereexaminedwith2(group:DDvsTD)(cid:4)2 (trial type: pattern vs random)(cid:4)3 (learning stage: 1–3) mixed design ANOVAs, for RT and accuracy, with group as a between-subjectvariableandtrialtypeandlearningstageaswithin-subject(repeatedmeasures)variables. 3. Results 3.1. Reactiontimeanalyses ThetwogroupsdidnotdifferwithrespecttooverallRT(RTinmilliseconds(ms):DDmean=450,SD=93;TDmean=433, SD=59,maineffectofgroup:F(1,27)<1).ConsistentwithFig.1,generalskilllearningwasseenasasignificantmaineffect oflearningstage(F(1,54)=84.9,p<.0001,h 2=.759),inwhichresponsesforbothpatternandrandomtrialsbecamefaster p withpractice.Thelackofanygroup(cid:4)learningstageinteraction(F(2,54)<1)suggeststhatthiseffectwassimilarinthetwo groups. EvidenceforsequencespecificlearningwasfoundinthatRTsweresignificantlyfasterforpattern(mean=438,SD=73) comparedtorandom(mean=442,SD=75)trialsacrossthetaskasawhole(maineffectoftrialtype:F(1,27)=6.56,p=.016, h 2=.195).Thiseffectwasstablethroughoutthetaskanddidnotincreasesignificantlywithpractice(non-significanttrial- p type(cid:4)learningstageinteraction: F(2,54)<1).Ofparticular interesthere,thetwo groupsdid notdifferwithrespectto sequencelearningeffectsonRT(group(cid:4)trial-typeinteraction:F(1,27)<1;group(cid:4)trial-type(cid:4)learningstageinteraction: F(2,54)=1.51,p=.230,h 2=.053). p Insum,thegroup(cid:4)trialtype(cid:4)learningstageANOVAwithRTasthedependentvariablerevealedsignificantgeneralskill learningthatcontinuedtodevelopthroughoutthetask.Evidenceforsequencespecificlearningwassomewhatweakerasit wasobservedonlyasamaineffectacrossthetaskaswhole,andtherewasnoevidenceforanincreaseinsensitivitytothe sequenceregularitywithpractice.Notably,theRTanalysesdidnotrevealanygroupdifferencesinoverallRT,generalskill learning,orsequencespecificlearning. [(Fig._1)TD$FIG] Fig.1.Reactiontimesinmillisecondsforpatternandrandomtrialsasafunctionoflearningstageforthedevelopmentaldyslexia(DD)andtypically developing(TD)groups.Thefiguredisplaysmeansandstandarderrorsforthethreelearningstages. [(Fig._2)TD$FIG] M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 3929 Fig.2.(A)Accuracyinpercentforpatternandrandomtrialsasafunctionoflearningstageforthedevelopmentaldyslexia(DD)andtypicallydeveloping(TD) groups.(B)Accuracydifferencebetweenpatternandrandomtrialsasafunctionoflearningstageforthedevelopmentaldyslexia(DD)andtypically developing(TD)groups.Thefiguredisplaysmeansandstandarderrorsforthethreelearningstages. 3.2. Accuracyanalyses The two groups performed at similar accuracy levels across the task as a whole (DD mean=87.9%, SD=15.2%; TD mean=92.4%,SD=2.73%;maineffectofgroup:F(1,27)=1.53,p=.227,h 2=.053;group(cid:4)learningstageinteraction:F(2, p 54)<1).Accuracylevelsdidnotchangesignificantlywithpractice(maineffectoflearningstage:F(1,27)=2.51,p=.091, h 2=.085). p Fig.2Aplotsthemeanaccuracyforpatternandrandomtrialsasafunctionoflearningstage,andFig.2Bplotsthemean accuracydifferencebetweenpatternandrandomtrialsasafunctionoflearningstage.ConsistentwithFig.2A,evidencefor sequence learning, across all children, was found in that accuracy was higher for pattern (mean=91.7%, SD=10.1%) comparedtorandom(mean=89.6%,SD=9.77%)trials(maineffectoftrialtype:F(1,27)=32.7,p<.0001,h 2=.548).The p accuracydifferencebetweenpatternandrandomtrialsincreasedasafunctionoflearningstage(trialtype(cid:4)learningstage interaction:F(1,27)=7.04,p=.002,h 2=.207),suggestingthatparticipantsbecameincreasinglysensitivetothesequence p regularity with practice. Most importantly, however, there was a group difference in sequence learning (group(cid:4)trial type(cid:4)learningstageinteraction:F(1,27)=3.84,p=.028,h 2=.124). p The triple interaction was followed-up with between-groups one-way ANOVAs with the pattern-random accuracy differenceforeachlearningstageasthedependentvariable.TheseanalysesconfirmedthepatternsuggestedbyFig.2B. TherewasatrendtowardslesssequencelearningintheDDgroupinthefirstlearningstage(maineffectofgroup:F(1, 27)=3.82,p=.061,h 2=.124).Atstage2,theamountofsequencelearningwashighlysimilarinthetwogroups(maineffect p ofgroup:F(1,27)<1).Asignificantgroupdifferenceemergedatstage3,withpoorerlearningintheDDgroupcomparedto theTDgroup(maineffectofgroup:F(1,27)=4.38,p=.046,h 2=.139). p In sum, the accuracy analyses revealed no significant group differences in the first practice session (encompassing learningstages1and2),althoughtherewasatrend(p=.061)towardslesslearningintheDDgroupcomparedtotheTD groupinstage1.Lateinlearning,bycontrast,asignificantgroupdifferenceemerged.Bylearningstage3,afterextended practiceandincludinganovernightinterval,theDDgroupshowedsignificantlylesssequencelearningcomparedtotheTD group. 3.2.1. By-blockovernightconsolidationvsextendedpracticeeffects Giventhattheobservedaccuracy-basedgroupdifferenceinlatelearning(stage3)couldbeduetodifferencesinovernight consolidationand/orintheeffectsofextendedpractice,additionalanalyseswereperformedtodissociatetheseeffects. Apotentialgroupdifferenceinovernightconsolidationwasexaminedbycomparingaccuracyonthefinalblock(i.e.10 repetitionsofthesequentialpattern)onthefirstday(block20)andthefirstblockonthesecondday(block21)witha2 (group:DDvsTD)(cid:4)2(trialtype:patternvsrandom)(cid:4)2(block:20vs21)ANOVA.ConsistentwithFig.3,whichsuggests similarperformanceinthetwogroupsinbothblock20and21,thisanalysisrevealednogroupdifferencesinovernight consolidationofthelearnedsequence(group(cid:4)trialtype(cid:4)blockinteraction:F(1,27)<1).Therewasevidenceforsequence learningintheformofasignificantmaineffectoftrialtype(F(1,27)=7.40,p=.011,h 2=.215),reflectingoverallhigher p accuracyforpatterncomparedtorandomtrials,withasimilareffectinbothgroups(group(cid:4)trialtypeinteraction:F(1, 27)<1).Therewerenoindicationsofoff-linesequencelearningeffects,astheaccuracydifferencebetweenpatternand randomtrialsdidnotincreaseovernight(trialtype(cid:4)blockinteraction:F(1,27)<1).However,overallaccuracyincreased significantlyovernight(maineffectofblock:F(1,27)=20.4,p=.0001,h 2=.430),possiblyreflectingfatigueeffectsinthe p finalblockofsession1.Theovernightincreaseinoverallaccuracywasalsoverysimilarinthetwogroups(group(cid:4)block interaction:F(1,27)<1). [(Fig._3)TD$FIG] 3930 M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 Fig.3.Meanaccuracyforpatternandrandomtrialsasafunctionofpracticeblocksforthedevelopmentaldyslexia(DD)andtypicallydeveloping(TD)groups. Thefiguredisplaysmeansandstandarderrorsforthefinalblockonday1(block20)andthe5blocksonday2(blocks21–25).Theverticallinebetweenblocks20 and21representsa24hintervalduringwhichnofurtherpracticewasgiven.Groupdifferenceswereexaminedforovernightconsolidation(blocks20–21)and fortheeffectsofextendedpracticeonday2(blocks22–25).SeeSection3.2.1,foradetaileddescriptionoftheanalysesandresults. Thelackofanysignificantgroupdifferencesintheovernightconsolidationofthelearnedsequencesuggeststhatthe observedgroupdifferenceinlearningstage3maybeduetoadifferentialeffectoffurtherpracticeonday2inthetwogroups. This prediction was supported by a group(cid:4)trial type(cid:4)block ANOVA for the remaining four blocks (blocks 22–25) in learningstage3,againwithaccuracyasthedependentvariable(Fig.3).Inadditiontoasignificantmaineffectoftrialtype (F(1, 27)=24.7, p<.0001, h 2=.478), this ANOVA produced a group(cid:4)trial type interaction (F(1, 27)=7.19, p=.012, p h 2=.210),reflectingasmallerpattern-randomaccuracydifference(i.e.sequencelearningeffect)intheDDgroupcompared p to theTD group(DD mean=0.0139, SD=0.0337, TDmean=0.0464, SD=0.0310). The lack of a group(cid:4)trial type(cid:4)block interaction(F(3,81)<1)suggeststhattheTDadvantageremainedstableacrossthefinalfourblocks.Overallaccuracyand reaction times did not differ between groups in either the consolidation analysis or the extended practice analysis (all ps>.208). 3.3. Correlationbetweenimplicitsequencelearningandindividualreadingability Next,therelationshipbetweenimplicitsequencelearningandindividualreadingabilitywasexaminedwithacorrelation analysis. A composite measure of reading ability was calculated from the standardized raw scores of the phonological decodingandorthographicreadingtests(Table1).Thiscompositereadingscorewasplottedagainsttheaccuracydifference [(Fig._4)TD$FIG]betweenpatternandrandomtrialsatthefinallearningstage(stage3).AscanbeseeninFig.4,thisanalysisrevealeda Fig.4.Scatterplotshowingthecorrelationbetweenimplicitsequencelearning(pattern-randomaccuracydifference)atstage3andthecombinedword readingscore. M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 3931 significantpositivecorrelationbetweenimplicitsequencelearningandindividualreadingability,independentofdiagnostic category(r=.470,p=.010,r2=.221). BecauseinspectionofFig.4suggeststhatascoreinthelow-leftcornerofthescatterplotcouldpotentiallybedrivingthis correlation(thepattern-randomaccuracydifferencescoreforthisindividualwas(cid:5)3.0SDfromthemeanofallchildren,and (cid:5)2.4SDfromthemeanoftheDDgroup),werepeatedthecorrelationanalysiswiththischildexcluded.Thecorrelationwas stillsignificant(r=.426,p=.024,r2=.182),thussuggestingarobustassociationbetweensequencelearningandreadingskill asacontinuousvariable. 3.4. Controlanalyses In order to exclude the possibility that the group difference in sequence learning was an effect of lower general intellectual ability in the DD compared to the TD group (as indicated by the near-significant group difference in PIQ), additionalanalyseswereperformedinwhichtheeffectofPIQwasstatisticallycontrolledfor.Specifically,PIQwasaddedasa covariateina2(group)(cid:4)3(learningstage)ANCOVAperformedontheaccuracydifferencebetweenpatternandrandom trials(i.e.asdepictedinFig.2B).Thisanalysisproducedanidenticalsignificancepatterncomparedtotheanalyseswithout covariatesreportedabove(stage3maineffectofgroup:p<.05).Thus,thegroupdifferenceinsequencelearningwasnot explainedbylowergeneralintellectualabilityintheDDgroup.Importantly,theresultsheldalsowhenexcludingthechild identifiedasanoutlierinthecorrelationanalysisabove(stage3maineffectofgroup:p<.05). 4. Discussion The present study examined previously untested aspects of procedural memory, specifically of implicit sequence learning, in children with DD compared to typically developing (TD) control children. Our study went beyond earlier researchinexamininglearningstagesbeyonda singlepracticesession,andby allowingfora continuousassessmentof sequencespecificlearningseparatefromgeneralskilllearning. ChildrenwithDDshowedaselectivedeficitinimplicitsequencelearningwhilegeneralskilllearningwasnormal.In addition, although there was a trend towards poorer learning in the DD group in the first learning stage, the sequence learning impairment became significant only after extended practice, including an overnight interval. Further analyses suggestedthattheimpairmentmaynotberelatedtoovernightconsolidation,butrathertotheeffectoffurtherpracticeon day2. Controlanalysesrevealedthattheobservedgroupdifferenceinsequencelearningwasnotexplainedbylowergeneral intellectual ability in the DD group. In addition, the fact that overall reaction times and general skill learning were comparableinthetwogroupssuggeststhattheresultswerenotduetogroupdifferencesinfatigue,generalprocessing speed,orattention. SequencelearningintheASRTtaskistypicallyseenasincreasinglyfasterresponsestopatterncomparedtorandomtrials (RT based learning measure) and/or an increasing number of errors on random trials while accuracy for pattern trials typicallyremainsmorestable(accuracybasedlearningmeasure).Thepatternofanincreasingfrequencyoferrorsonthe unpredictabletrialswithpracticeistypicalwhenprobabilisticsequencesareused.Participantsoftenreportthattheirfingers seem to‘‘takeover’’,leadingthemto makemore‘‘oops’’errors. Unbeknownsttothem,however,theseerrorsreflect an increasingsensitivitytothesequentialregularity.Inthepresentstudy,significanteffectsofreadingskillasacategoricaland continuousvariablewerefoundfortheaccuracybasedlearningmeasureonly,andnotfortheRTbasedmeasure.Thisfinding isinlinewithtwopreviousstudiesexaminingsequencelearninginadultswithDDusingeithertheASRTtask(Howardetal., 2006)ortheTripletLearningTask,whichcontainsasimilarprobabilisticsequencestructure(Bennett,Romano,Howard,& Howard,2008).Inbothstudies,theaccuracybasedmeasureofsequencelearningwasshowntobemorestronglyrelatedto readingabilitycomparedtotheRTbasedmeasure.Interestingly,bothofthesestudiesonadultswithDDreportcorrelations betweenindividualreadingskillandtheaccuracybasedlearningscoreattheendofthetask,thatarestrikinglysimilartothe correlationobservedinthepresentstudyperformedonchildren. Overall,thefindingssupportthenotionofanassociationbetweenproceduralmemorydeficitsandDD.Theresultsarein linewithpreviousstudiesreportingimplicitsequencelearningimpairmentsinchildren(Jimenez-Fernandezetal.,2011; Vicarietal.,2003,2005)andadults(Du&Kelly,2013;Howardetal.,2006;Menghinietal.,2006;Stoodleyetal.,2006)with DD.Theyextendpreviousfindingsbyshowing,forthefirsttime,thatthesequencelearningimpairmentinchildrenwithDD may be most pronounced in learning stages beyond a single practice session and the early, fast acquisition phase. Interestingly,asimilarpatternofresultshaspreviouslybeenreportedforchildrenwithspecificlanguageimpairment,a conditionwhichoftenco-occurswithDD(Hedeniusetal.,2011). ThemajorityofpreviousstudiesofimplicitsequencelearninginDDhavefoundagroupdifferenceearlyinlearning,i.e. withinasinglepracticesession.Ourstudydidnotreplicatethesefindingsinthatthegroupdifferenceinearlylearningwas only marginallysignificant inour stage 1 (p=.061). However,it is possiblethat this reflects a lack of powerdue to the relativelysmallnumberofparticipants.Nevertheless,thelackofsignificanteffectsearlyinlearningisinterestinginlightof the inconsistent results of previous studies. Indeed, all of the three studies that have reported intact implicit sequence learninginchildrenwithDD(Deroostetal.,2010;Menghinietal.,2010;Waberetal.,2003)havefocusedonarelatively narrowpracticeinterval(rangingfrom24to104repetitionsofthesequentialpatterncomparedwiththe250repetitionsin 3932 M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 thepresentstudy)givenwithinasinglepracticesession.Inlightofthefactthatasignificantgroupdifferenceinthepresent studyemergedonlyinday2,aftermorethan200repetitionsofthesequence,itispossiblethatgroupdifferencesmayhave beenrevealedifthestudiesabovehadincludedawiderpracticeinterval. Impairmentonanon-languagetask,suchastheoneusedinthepresentstudy,challengesanyaccountthatpositsadeficit specifictophonologicalprocessingastheunderlyingcauseofDD(Snowling,2000;Stanovich,1988;Vellutinoetal.,2004). Per definition, any such account would predict intact non-language learning in DD, or at least, would not predict any correlationbetweennon-languagesequencelearningandindividualreadingskill,aswasfoundhere.Thepresentfindings are thus in line with data suggesting that the neurocognitive deficits in children with DD may go beyond a selective phonologicalimpairment(seeSection1). OurfindingsarecompatiblewiththeproceduralmemorydeficitviewofDD(Nicolsonetal.,2001,2010;Ullman,2004). The findings may also be compatible with the magnocellular theory of DD (Stein, 2001), since this theory includes the predictionthatcerebellarfunctions,andthusaspectsofproceduralmemory,areimpairedinthedisorder.Notably,thefact thatasignificantDDimpairmentemergedrelativelylateinlearningmaypointtoastriatalratherthan,orinadditionto,a cerebellar dysfunction (Doyon et al., 2009). As noted in the introduction, the relative contribution of different brain structures/circuitstosequencelearninghasbeenshowntochangeaslearningprogressesthroughthedifferentstages.Brain imagingstudiessuggestthatwhilethestriatum,thecerebellum,andthemedialtemporallobeshowsimultaneouslearning- dependentactivityinthefastacquisitionstage(withthemedialtemporallobeoftenbeingrecruitedveryearlyinlearning), activationinthecerebellumtypicallydecreaseswithpracticeandisusuallynolongerdetectablewhenthesequenceiswell learned(Doyonetal.,2002,2009;Jueptner,Frith,Brooks,Frackowiak,&Passingham,1997;Rieckmann&Backman,2009; Rieckmannetal.,2010;Simonetal.,2012).Thestriatum,bycontrast,remainsactivatedthroughtheasymptoticlearningas wellastheconsolidationandlatelearningstages(Doyon,Owen,Petrides,Sziklas,&Evans,1996;Lehericyetal.,2005).This patternofbrainactivationhasbeentakenasevidenceforanincreasinglycriticalroleofthestriatuminthelearningstages beyondthefastacquisitionstage(Bennett,Madden,Vaidya,Howard,&Howard,2011;Doyonetal.,2009).However,any claimsabouttheneuralbasisoftheobservedsequencelearningdeficitinthepresentstudyarespeculative. Even though the majority of studies to date support the notion of an association between poor reading and implicit sequence learning deficits, the nature of this association remains to be elucidated. The association revealed here, and elsewhere,mayreflectoneofseveralpossiblerelationships.Onepossibilityisthatageneralproceduralmemorydeficit underlies the core phonological problems in DD as well as a range of previously reported cognitive and motor deficits (Nicolsonetal.,2010),includingthatofimplicitsequencelearningobservedinthepresentstudy.Thisistheproposalofthe proceduralmemorydeficitview(Nicolsonetal.,2001,2010;Ullman,2004).Onthisview,aproceduralmemorydeficitmay affectreadingbothdirectly,throughskillautomatizationproblems,andindirectly,viaphonologicalprocessingproblems (Nicolson&Fawcett,2011). Anotherpossibilityisthatreadingandproceduralmemorydeficitstendtoco-occurinDDbutarecausallyunrelated.That is,forreasonsyetunknown,aproceduralmemorydeficitmaybemorecommonindyslexicchildrencomparedtotheir typicallydevelopingpeers,butthisimpairmentdoesnotcausethereadingproblems,oraffecttheminanysubstantialway. Such a view is supported by evidence suggesting that sensori-motor impairments, such as those predicted by both the proceduraldeficitandmagnocellularviews,mayneitherbenecessarynorsufficienttocausethereadingproblemsobserved inDD(Ramus,2003;Whiteetal.,2006).However,whilethisviewiscompatiblewiththeobservedgroupdifferencein sequencelearning,itissomewhatdifficulttoreconcilewiththelinearrelationshipbetweenreadingandimplicitsequence learning,independentofdiagnosticcategory,observedhere,andinotherstudies(Bennettetal.,2008;Howardetal.,2006). Athirdpossibilityisthatthecorephonologicaldeficitandtheproceduralmemorydeficitarecausallyunrelatedbutthat theco-occurrenceofthesedeficitsmayleadtoreadingproblemsthataresevereenoughtodrawpedagogicalandclinical attention.Onthisview,procedurallearningproblemsmaynotcausethephonologicalimpairmentinDDbutmaycontribute independentvariancetoindividualreadingabilitybyaffecting,forexample,theabilitytoextractorthographicsequential regularities and the automatization of reading skills. Such a ‘‘double deficit’’ view has previously been proposed for phonologicalprocessingproblemsandrapidnamingability(Wolf&Bowers,1999).Thisviewwouldbeinlinewithstudiesof childrenatriskfordyslexia,inwhichithasbeenshownthatphonologicalproblemsalonearenotsufficienttocausesevere readingproblems(Gallagher,Frith,&Snowling,2000;Snowlingetal.,2003;Wimmer&Schurz,2010). Thedesignofthepresentstudydoesnotallowustospecifythenatureoftherelationshipbetweenproceduralmemory andreadingskill,butonlytodemonstratethatsucharelationshipexists.Futurestudies,withalongitudinaldesignstarting atbirth,andincludingawiderrangeoflinguistic,cognitiveandmotortasks,mayhelpshedlightonthisissue. Thepresentstudyhasvariousmethodologicallimitationsthatmaybeaddressedbyfutureresearch.Onesuchlimitation isthatsamplesizeswererelativelysmall.Asnotedabove,thismayhaveaffectedthepowertodetectagroupdifferencein earlylearning.Thus,thepresentfindingsneedtobereplicatedwithlargersamplesinordertoensuretheirgeneralizability. Inaddition,futurestudiesofproceduralmemoryconsolidationandextendedpracticeeffectsinchildrenwithDDwould benefitfromincludingamoredirecttestofconsolidation(suchastheamountofinterferencebyaneworrandomsequence; Robertsonetal.,2004),aswellasmorelearningtrialsfortheexaminationoffurtherpracticeonday2.Suchparadigmsmay helpshedfurtherlightontheDDdeficitinlatelearningdemonstratedhere. Futurestudieswouldalsobenefitfromneuroimagingdatatosupporttheassumptionthatchildrenrelyonprocedural memory for sequence learning in the ASRT task. Although previous fMRI-studies have indeed revealed activation of proceduralmemorybrainstructuresassociatedwithASRTlearninginadults(Bo,Peltier,Noll,&Seidler,2011),thelackof M.Hedeniusetal./ResearchinDevelopmentalDisabilities34(2013)3924–3935 3933 datafromstudiesofchildrenperformingthistaskprecludesanystrongconclusionsregardingbraincorrelatesoflearningin thisstudy. Keepingtheselimitationsinmind,thepresentfindingslendsupporttothenotionthatDDisassociatedwithaprocedural memorydysfunction.Further,theresultsemphasizetheimportanceofstudyingnotonlyinitiallearning,butalsomemory consolidation and longer-term learning in children with DD in order to obtain a deeper understanding of learning and memoryfunctionsinaffectedchildren.Suchknowledgewouldpotentiallybeofgreatimportancetothedevelopmentof effectivepedagogicalandtherapeuticremediationstrategies. Acknowledgments This workwas supportedby grants from theSven Jerring Foundationand the SunnerdahlDisability Foundation.We gratefullyacknowledgethehelpofthemanyschoolsandfamilieswhoparticipatedinthisstudy. References Albouy,G.,Sterpenich,V.,Balteau,E.,Vandewalle,G.,Desseilles,M.,Dang-Vu,T.,etal.(2008).Boththehippocampusandstriatumareinvolvedinconsolidationof motorsequencememory.Neuron,58,261–272. Aldridge,J.W.,&Berridge,K.C.(1998).Codingofserialorderbyneostriatalneurons:Anaturalactionapproachtomovementsequence.JournalofNeuroscience,18, 2777–2787. Bennett,I.J.,Madden,D.J.,Vaidya,C.J.,Howard,J.H.J.,&Howard,D.V.(2011).Whitematterintegritycorrelatesofimplicitsequencelearninginhealthyaging. NeurobiologyofAging,32,2317.e1–2317.e12. Bennett,I.J.,Romano,J.C.,Howard,J.H.J.,&Howard,D.V.(2008).Twoformsofimplicitlearninginyoungadultswithdyslexia.AnnalsoftheNewYorkAcademyof Sciences,1145,184–198. Bishop,D.V.(1982).T.R.O.GTestforreceptionofgrammar.Manchester:ChapelPress. Bo,J.,Peltier,S.J.,Noll,D.C.,&Seidler,R.D.(2011).Symbolicrepresentationsinmotorsequencelearning.Neuroimage,54,417–426. Brosnan,M.,Demetre,J.,Hamill,S.,Robson,K.,Shepherd,H.,&Cody,G.(2002).Executivefunctioninginadultsandchildrenwithdevelopmentaldyslexia. Neuropsychologia,40,2144–2155. Conway,C.M.,Bauernschmidt,A.,Huang,S.S.,&Pisoni,D.B.(2010).Implicitstatisticallearninginlanguageprocessing:Wordpredictabilityisthekey.Cognition, 114,356–371. Conway,C.M.,&Pisoni,D.B.(2008).Neurocognitivebasisofimplicitlearningofsequentialstructureanditsrelationtolanguageprocessing.AnnalsoftheNew YorkAcademyofSciences,1145,113–131. Debas,K.,Carrier,J.,Orban,P.,Barakat,M.,Lungu,O., Vandewalle,G.,etal.(2010).Brainplasticityrelatedtotheconsolidationofmotorsequencelearningand motoradaptation.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,107,17839–17844. Deroost,N.,Zeischka,P.,Coomans,D.,Bouazza,S.,Depessemier,P.,&Soetens,E.(2010).Intactfirst-andsecond-orderimplicitsequencelearninginsecondary- school-agedchildrenwithdevelopmentaldyslexia.JournalofClinicalandExperimentalNeuropsychology,32,561–572. Dominey,P.F.,Hoen,M.,Blanc,J.M.,&Lelekov-Boissard,T.(2003).Neurologicalbasisoflanguageandsequentialcognition:Evidencefromsimulation,aphasia, andERPstudies.BrainandLanguage,86,207–225. Doyon,J.,Bellec,P.,Amsel,R.,Penhune,V.B.,Monchi,O., Carrier,J.,etal.(2009).Contributionsofthebasalgangliaandfunctionallyrelatedbrainstructuresto motorlearning.BehaviouralBrainResearch,199,61–75. Doyon,J.,Owen,A.M.,Petrides,M.,Sziklas,V.,&Evans,A.C.(1996).Functionalanatomyofvisuomotorskilllearninginhumansubjectsexaminedwithpositron emissiontomography.EuropeanJournalofNeuroscience,8,637–648. Doyon,J.,Song,A.,Karni,A.,Lalonde,F.,Adams,M.,&Ungerleider,L.(2002).Experience-dependentchangesincerebellarcontributionstomotorsequence learning.ProceedingsoftheNationalAcademyofScienceoftheUnitedStatesofAmerica,99,1017–1022. Du,W.,&Kelly,S.W.(2013).Implicitsequencelearningindyslexia:Awithin-sequencecomparisonoffirst-andhigher-orderinformation.AnnalsofDyslexia,63, 154–170. Dunn,L.M.,&Dunn,L.M.(1997).Peabodypicturevocabularytest(3rded.).CirclePines:AmericanGuidanceService. Ferrer,E.,Shaywitz,B.A.,Holahan,J.M.,Marchione,K.,&Shaywitz,S.E.(2010).UncouplingofreadingandIQovertime:Empiricalevidenceforadefinitionof dyslexia.PsychologicalScience,21,93–101. Gabrieli,J.D.(1998).Cognitiveneuroscienceofhumanmemory.AnnualReviewofPsychology,49,87–115. Gallagher,A.,Frith,U.,&Snowling,M.J.(2000).Precursorsofliteracydelayamongchildrenatgeneticriskofdyslexia.JournalofChildPsychologyandPsychiatry,41, 203–213. Gheysen,F.,VanOpstal,F.,Roggeman,C.,VanWaelvelde,H.,&Fias,W.(2011).Theneuralbasisofimplicitperceptualsequencelearning.FrontiersinHuman Neuroscience,5,137. Grafton,S.T.,Hazeltine,E.,&Ivry,R.(1995).Functionalmappingofsequencelearninginnormalhumans.JournalofCognitiveNeuroscience,7,497–510. Hari,R.,&Renvall,H.(2001).Impairedprocessingofrapidstimulussequencesindyslexia.TrendsinCognitiveSciences,5,525–532. Hauptmann,B.,&Karni,A.(2002).Fromprimedtolearn:Thesaturationofrepetitionprimingandtheinductionoflong-termmemory.CognitiveBrainResearch,13, 313–322. Hauptmann,B.,Reinhart,E.,Brandt,S.A.,&Karni,A.(2005).Thepredictivevalueofthelevelingoffofwithin-sessionperformanceforproceduralmemory consolidation.CognitiveBrainResearch,24,181–189. Hedenius,M.,Persson,J.,Tremblay,A.,Adi-Japha,E.,Verı´ssimo,J., Dye,C.D.,etal.(2011).Grammarpredictsprocedurallearningandconsolidationdeficitsin childrenwithspecificlanguageimpairment.ResearchinDevelopmentalDisabilities,32,2362–2375. Henke,K.(2010).Amodelformemorysystemsbasedonprocessingmodesratherthanconsciousness.NatureReviewsNeuroscience,11,523–532. Hensler,B.S.,Schatschneider,C.,Taylor,J.,&Wagner,R.K.(2010).Behavioralgeneticapproachtothestudyofdyslexia.JournalofDevelopmentalandBehavioral Pediatrics,31,525–532. Holmberg,E.,&Lunda¨lv,E.(2002).T.R.O.G.svenskmanual.Go¨teborg:SpecialpedagogiskainstitutetLa¨romedel. Howard,D.V.,Howard,J.H.,Jr.,Japikse,K.C.,DiYani,C.,Thompson,A.,&Somberg,R.(2004).Implicitsequencelearning:Effectsoflevelofstructure,adultage,and extendedpractice.PsychologyandAging,19,79–92. Howard,D.V.,&Howard,J.H.,Jr.(1992).Adultagedifferencesintherateoflearningserialpatterns:Evidencefromdirectandindirecttests.PsychologyandAging, 7,232–241. Howard,J.H.,Jr.,&Howard,D.V.(1997).Agedifferencesinimplicitlearningofhigher-orderdependenciesinserialpatterns.PsychologyandAging,12,634–656. Howard,J.H.,Jr.,Howard,D.V.,Japikse,K.C.,&Eden,G.F.(2006).Dyslexicsareimpairedonimplicithigh-ordersequencelearning,butnotonimplicitspatial contextlearning.Neuropsychologia,44,1131–1144. Jimenez-Fernandez,G.,Vaquero,J.M.,Jimenez,L.,&Defior,S.(2011).Dyslexicchildrenshowdeficitsinimplicitsequencelearning,butnotinexplicitsequence learningorcontextualcueing.AnnalsofDyslexia,61,85–110.

Description:
Impaired implicit sequence learning in children with developmental dyslexia. Martina Hedenius a,*, Jonas Persson b, Per A. Alm a, Michael T. Ullman
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.