ebook img

Hecke algebras, Galois representations, and abelian varieties PDF

158 Pages·2016·1.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hecke algebras, Galois representations, and abelian varieties

Heckealgebras,Galoisrepresentations,andabelianvarieties Thesiscommittee: Prof.dr.F.Beukers,UniversiteitUtrecht Prof.dr.J.Hartmann,UniversityofPennsylvania Prof.dr.E.Mantovan,CaliforniaInstituteofTechnology Prof.dr.B.deSmit,UniversiteitLeiden Dr.M.S.Solleveld,RadboudUniversiteit ISBN:978-90-393-6563-2 Copyright©2016byValentijnKaremaker. Allrightsreserved. Hecke algebras, Galois representations, and abelian varieties Hecke algebra’s, Galois voorstellingen en abelse variëteiten (meteensamenvattinginhetNederlands) Proefschrift terverkrijgingvandegraadvandoctoraandeUniversiteitUtrechtopgezagvande rectormagnificus,prof.dr.G.J.vanderZwaan,ingevolgehetbesluitvanhet collegevoorpromotiesinhetopenbaarteverdedigenopmaandag13juni2016des middagste2.30uur door Valentijn Zoë Karemaker geborenop13april1990teUtrecht Promotor: Prof.dr.G.L.M.Cornelissen This thesis has been financially supported by the Netherlands Organisation for Sci- entific Research (NWO) under the research project “Quantum statistical mechanics andanabeliangeometry”. Contents 1 Introduction 5 1.1 Heckealgebrasandadelicpoints . . . . . . . . . . . . . . . . . . . 5 1.2 Galoisrepresentations . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Abelianvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I Heckealgebrasandadelicpoints 19 2 Arithmeticequivalenceandlocalisomorphism 21 2.1 Arithmeticequivalenceandlocalisomorphism . . . . . . . . . . . . 21 2.2 Theadditivegroupofadeles . . . . . . . . . . . . . . . . . . . . . 22 2.3 Themultiplicativegroupofadeles . . . . . . . . . . . . . . . . . . 25 3 Adelicpointsonalgebraicgroups 29 3.1 Algebraicgroupsandfertility . . . . . . . . . . . . . . . . . . . . . 29 3.2 Divisibilityandunipotency . . . . . . . . . . . . . . . . . . . . . . 32 3.3 ProofofTheorem3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Heckealgebrasoverglobalandlocalfields 41 4.1 Heckealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 L1-isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Moritaequivalences . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II Galoisrepresentations 55 5 Galoisrepresentationsforabelianvarieties 57 5.1 StructuretheoryofGSp. . . . . . . . . . . . . . . . . . . . . . . . 57 1 2 Contents 5.2 Galoisrepresentationsattachedtothe(cid:96)-torsionofabelianvarieties . 58 5.3 SurjectiveGaloisrepresentations . . . . . . . . . . . . . . . . . . . 60 5.4 SemistablecurvesandtheirgeneralisedJacobians . . . . . . . . . . 64 6 AlgorithmforGaloisrealisationsofGSp (F ) 67 2n (cid:96) 6.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 Anumericalexampleingenus3 . . . . . . . . . . . . . . . . . . . 69 7 ConstructingJacobianswithlargeGaloisimages 71 7.1 Hyperellipticcurvesandcurvesofgenus3 . . . . . . . . . . . . . . 71 7.2 Statementofmainresult . . . . . . . . . . . . . . . . . . . . . . . 72 7.3 Localconditionsatp . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.4 Localconditionsatq . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Proofofthemaintheorem . . . . . . . . . . . . . . . . . . . . . . 82 7.6 CountingirreducibleWeilpolynomialsofdegree6 . . . . . . . . . 83 III Abelianvarieties 95 8 Abelianvarietiesoverfinitefieldsandtwists 97 8.1 L-polynomialsandsupersingularabelianvarieties . . . . . . . . . . 97 8.2 Twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9 Theperiodandtheparity 109 9.1 Definitionsandpropertiesofperiodandparity . . . . . . . . . . . . 109 9.2 Analysisinlowgenus . . . . . . . . . . . . . . . . . . . . . . . . . 116 10 Arithmeticstatisticsofdimension 123 11 Samenvatting 131 12 Acknowledgements 137 13 CurriculumVitae 141 Bibliography 143 4 Contents 1 CHAPTER Introduction Oneofthemainobjectsofstudyofmodernalgebraicnumbertheoryistheabsolute Galois group G = Gal(K/K) of a local or global field K with separable closure K K. In particular, one wants to understand the absolute Galois group of the rational numbers,G = Gal(Q/Q).Thisisaverylargegroup,yetitiscompactwithrespect Q totheprofinitetopology. One way of gaining insight into G is by studying its representations. These K mayariseindifferentways. Firstofall,throughtheLanglandscorrespondence,they cancomefromautomorphicrepresentations,orequivalently,fromrepresentationsof certainHeckealgebras. Secondly,byconsideringtheactionofG onvectorspaces K associated to varieties (e.g. the geometric torsion points of an abelian variety), one findsgeometricGaloisrepresentations. This thesis treats three questions related to G and its representations. The K first of these, which is anabelian in nature, asks to what extent the representation theory of a Hecke algebra of a field K (which is either a number field or a local non-archimedean field of characteristic zero) determines K. The second question concerns Galois representations attached to abelian varieties, and especially those with surjective image, which realise symplectic groups as Galois groups. The third question focuses on supersingular abelian varieties over finite fields, and arithmetic properties of these varieties which are determined by the characteristic polynomial oftheFrobeniusendomorphism;thetopologicalFrobeniusmapisageneratorofG K forfinitefieldsK. 1.1 Heckealgebrasandadelicpoints Let K be a field and let G denote its absolute Galois group. First suppose that K K is a number field. When K is Galois over Q, Neukirch [78] proved that G K ∼ determines K, in the sense that any isomorphism G = G (as profinite groups) K L ∼ induces a unique field isomorphism K = L. Uchida [117] later proved this result whenK isnotnecessarilyGalois;asNeukirchpointsoutin[79],thesameresultwas obtainedindependentlybyIwasawa(unpublished),usingresultsbyIkeda[47]. 5 6 Introduction Bycontrast,theabelianisationGab,correspondingtotheone-dimensionalrepre- K sentationsofG ,doesnotdetermineK,cf.[83]or[3]. K Now suppose that K is a non-archimedean local field of characteristic zero. In this case, Yamagata showed in [129] that the analogous statement of the result by Neukirch and Uchida is false. Jarden and Ritter [52] prove that G determines the K absolutefielddegree[K: Q ]andthemaximalabeliansubextensionofK overQ . p p In addition, Mochizuki [76] proved that the absolute Galois group together with its ramificationfiltrationdoesdeterminealocalfieldofcharacteristic0,andAbrashkin [1],[2]extendedthisresulttoanycharacteristicp > 0. A couple of natural questions then arise: when K is a number field, do irre- ducible two-dimensional (being the “lowest-dimensional non-abelian”) representa- tionsofG determineK? WhenK isanon-archimedeanlocalfieldofcharacteris- K ticzero,towhatextentdoestherepresentationtheoryofG determineK? K BythephilosophyoftheLanglandsprogramme, n-dimensionalirreduciblerep- resentations of G (or, more generally, of the Weil group W ) should be in cor- K K respondence with certain automorphic representations of GL , while preserving L- n series. Over non-archimedean local fields of characteristic zero, the local Langlands correspondence was proven by Harris and Taylor [40] and Henniart [42]. More precisely, their results state that equivalence classes of admissible irreducible rep- resentations of GL (K) are in bijection with equivalence classes of n-dimensional n Frobenius semisimple representation of the Weil-Deligne group W(cid:48) of K, see e.g. K [122]; W(cid:48) is a group extension of the Weil group W , from which there exists a K K continuoushomomorphismtoG withdenseimage. K When K is a number field, no analogous result is known, although various spe- cial caseshave beenconsidered. Onebelieves thatirreduciblen-dimensional repre- sentations of G should correspond to cuspidal representations of GL (A ) “of K n K Galois type” [22, p. 244]. Moreover, all cuspidal representations of GL (A ) n K should be in correspondence with irreducible n-dimensional representations of the so-called Langlands group, which is the conjectural global analogue of the Weil- Delignegroup. Automorphic (admissible) representations of GL (A ) in turn correspond to n K (admissible) modules over the Hecke algebra H (K). Therefore, our questions GLn inspirethenextquestion.

Description:
college voor promoties in het openbaar te verdedigen op maandag 13 juni 2016 des .. A Galois representation is a continuous homomorphism ρ : GQ → GLn(R), where R is a topological ring, e.g. C, Z/nZ or Fq with the discrete topology, or Ql Since Uk = {0} for k>n, we have U/Uk = U for such k.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.