Nuclear Physics A NuclearPhysicsA00(2013)1–4 Heavy-quark spin symmetry for charmed and strange baryon resonances 3 1 Olena Romanetsa, Laura Tolosb,c, Carmen Garc´ıa-Reciod, Juan Nievese, 0 Lorenzo Luis Salcedod, Rob Timmermansa 2 n aTheoryGroup,KVI,UniversityofGroningen,Zernikelaan25,9747AAGroningen,TheNetherlands a bInstitutodeCienciasdelEspacio(IEEC/CSIC),CampusUniversitatAuto`nomadeBarcelona,FacultatdeCie`ncies,TorreC5,E-08193 J Bellaterra(Barcelona),Spain 8 cFrankfurtInstituteforAdvancedStudies,JohannWolfgangGoetheUniversity,Ruth-Moufang-Str.1,60438FrankfurtamMain,Germany 1 dDepartamentodeF´ısicaAto´mica,MolecularyNuclear,andInstitutoCarlosIdeF´ısicaTeo´ricayComputacional,UniversidaddeGranada, E-18071Granada,Spain ] eInstitutodeF´ısicaCorpuscular(centromixtoCSIC-UV),InstitutosdeInvestigacio´ndePaterna,Aptdo.22085,46071,Valencia,Spain h p - p e h Abstract [ Westudycharmedandstrangeodd-paritybaryonresonancesthataregenerateddynamicallybyaunitarybaryon-mesoncoupled- 2 channelsmodelwhichincorporatesheavy-quarkspinsymmetry.ThisisaccomplishedbyextendingtheSU(3)Weinberg-Tomozawa v chiralLagrangiantoSU(8)spin-flavorsymmetryplusasuitablesymmetrybreaking. Themodelgeneratesresonanceswithnega- 3 tiveparityfromthes-waveinteractionofpseudoscalarandvectormesonswith1/2+and3/2+baryonsinalltheisospin,spin,and 4 strangesectorswithone, two, andthreecharmunits. Someof ourresultscanbeidentifiedwithexperimentaldatafromseveral 9 facilities,suchastheCLEO,Belle,orBaBarCollaborations,aswellaswithothertheoreticalmodels,whereasothersdonothave 3 astraightforwardidentificationandrequirethecompilationofmoredataandalsoarefinementofthemodel. . 2 1 c 2012PublishedbyElsevierLtd. 2 (cid:13) 1 Keywords: Charm,heavy-quarkspinsymmetry,dynamicallygeneratedbaryonresonances : v i X 1. Introduction r a The propertiesof heavy-flavoredhadronicresonanceshave attracted a lot of attentionlately. The study of such states can help in the interpretation of the nature of particles found in past and ongoing experiments (e.g. CLEO, BaBar, Belle, LHCb) [1], as well as in understanding states which will be discovered in future experiments (e.g. PANDA at GSI [2]). It is importantto understandwhetherbaryon(meson)resonancescan be describedas excited three-quark(quark-antiquark)states or rather as hadronmolecules; also a combined interpretationof such states is possible. Atpresentthereisalackofarobustschemetosystematicallyconstructaneffectivefieldtheoryapproachtostudy fourflavorphysics. Some stepsin thatdirectionhave beentakenby recentstudiesusingcoupled-channelsmodels. Among them one can find unitarized coupled-channels models [3, 4, 5, 6], the Ju¨lich meson-exchange model [7] andschemesbasedonhiddengaugeformalism[8]. Thesemodelsarenotfullyconsistentwiththeheavy-quarkspin symmetry (HQSS) [9], which is a propersymmetry of Quantum Chromodynamics(QCD) in the limit of infinitely heavyquarkmasses. Therehavealsobeensomeattemptstobuildaschemebasedonchiralperturbationtheoryfor hadronswhichcontainheavyquarks[10]. Moreover,aneffectivetheorywhichincorporatesheavy-quark,chiraland 1 OlenaRomanetsetal./NuclearPhysicsA00(2013)1–4 2 hiddenlocalgaugesymmetrieswasdevelopedforstudyingbaryon-baryoninteractions[11]. Besides,anSU(8)spin- flavor symmetric unitarized coupled-channelsmodel has been recently developedand used for variousnumbers of charmandstrangeness[12,13]. In this paper we study dynamically-generatedbaryon resonances, using the SU(8) spin-flavormodel. We have payed special attention to analyze the underlying symmetry of the interaction. In particular, we have studied the originalgroupmultipletsfromwhereeachofthefoundbaryonresonancesoriginatesandobtainedthedifferentHQSS multiplets. Ourstudiescoveredstates with charmand strangeness, and in the followingsectionswe will show and discussourresultsforbaryonresonanceswithcharmC =1,namelyΛ (strangenessS =0,isospinI =0),Σ (S =0, c c I =1),Ξ (S = 1,I =1/2)andΩ (S = 2,I =0). c c − − 2. Theoreticalframework We use the SU(8) spin-flavor model of [12, 13]. The interaction potential is an extension of the SU(3) chiral Weinberg-Tomozawa potential to the SU(8) symmetry. In this model vector mesons are treated on equal footing withpseudoscalarmesonsandbothspin-1/2andspin-3/2baryonsare takenintoaccount. We onlyconsiders-wave interaction,whichisappropriatecloseto themeson-baryonthresholds. InthisSU(8)schemethemesonsfallin the 63-plet,andthebaryonsareplacedinthe120-plet. Consequently,inthes-channel,thebaryon-mesonspacereduces intofourSU(8)irreps,threeofwhich(120,168and4752)areattractive. Wefindthatthemultiplets120and168are themostattractiveones,andthereforewehaveconcentratedourstudyonthestateswhichbelongtothesetwoirreps intheSU(8)symmetriclimit. WeconsiderthereductionoftheSU(8)symmetrySU(8) SU(6) SU (2) U (1),whereSU(6)isthespin-flavor C C ⊃ × × groupforthreelightflavors,SU (2)isthecharmquarkrotationgroup,andU (1)isthegroupgeneratedbythecharm C C quantumnumberC. TheSU(6)multipletscanbereducedunderSU(3) SU(2),whereSU(2)referstothespinof l l × thelightquarks. WefurtherreduceSU(2) SU (2) SU(2)whereSU(2)referstothetotalspin J;inthiswaywe l C × ⊃ maketheconnectionwiththelabeling(C,S,I,J). Thecontacttree-levelmeson-baryoninteractionoftheextendedSU(8)symmetricWeinberg-Tomozawapotential reads 2√s M M E +M E +M V (s)=D − i− j i i j j . (1) ij ij 4 fifj r 2Mi s 2Mj Here,iand jaretheoutgoingandincomingbaryon-mesonchannels; M, E,and f stand,respectively,forthemass i i i andthecenter-of-massenergyofthebaryonandthemesondecayconstantintheichannel;D arethematrixelements ij forthevariousCSIJ sectorsconsideredinthiswork,whichcanbefoundintheAppendicesof[12,14]. Thescatteringamplitudesarecalculatedbysolvingtheon-shellBethe-Salpeterequationinthecoupledchannels: 1 T(s)= V(s). (2) 1 V(s)G(s) − HereG(s)isadiagonalmatrixcontainingthebaryon-mesonpropagatorforeachchannel,andD,T andVarematrices incoupled-channelsspace. ThebareloopfunctionG0(s)islogarithmicallyultravioletdivergentandneedstoberenormalized.Wehaverenor- ii malizedouramplitudesbyusingasubtractionpointregularization,withasubtractionpoint √s = µ = m2 +M2, i th th wheremth andMth are,respectively,themassesofthemesonandthebaryonofthechannelwiththeloweqstthreshold inthegivenCSI sector, G (s)=G0(s) G0(µ2). (3) ii ii − ii i Inordertogetabetterfine-tuningwiththeexperimentaldata,onecandefinethesubtractionpointasµ = α(m2 +M2), i th th withαbeingslightlydifferentfromone. q Thebaryonresonancesareobtainedaspolesofthescatteringamplitudeonthecomplex-energyplane. Themass m andthewidthΓ ofthestatecanbeobtainedfromthecoordinate √s ofthecorrespondingpoleonthecomplex R R R energy √splane, √s = m iΓ ,andthecouplingstothemeson-baryonchannelscanbefoundfromtheresidues R R− 2 R oftheT-matrixaroundthepole. 2 OlenaRomanetsetal./NuclearPhysicsA00(2013)1–4 3 ThematrixelementsD displayexactSU(8)invariance,butthissymmetryisseverelybrokeninnature.Therefore ij weimplementsymmetry-breakingmechanisms.Itshouldbementionedherethatwehaveremovedthechannelswith thecc¯pairstobeconsistentwiththeHQSS.Inthepresentworkweusephysicalvaluesforthemassesofthehadrons andforthedecayconstantsofthemesons. ThesymmetryisbrokenfollowingthechainSU(8) SU(6) SU(3) ⊃ ⊃ ⊃ SU(2),wherethelastgroupSU(2)referstoisospin. Thissymmetrybreakingwasperformedbyadiabaticchangeof thehadronmassesandmesonweakdecayconstants.Inthiswaywecanlabeleachbaryonresonancewiththeoriginal groupmultipletanddefinetheHQSSmultiplets. 3. Dynamicallygeneratedbaryonresonances LetusbeginwiththeΛ states. OurmodelgeneratesfourΛ baryonresonances,threewithspin J =1/2andone c c with J = 3/2. By comparingthedominantchannelswiththe decaychannelsofthe experimentalstates, twoofour Λ ’shavebeenidentifiedwithexperimentallyknownstates. We identifytheexperimentalΛ (2595)resonancewith c c thestatethatwefoundaround2618.8 i0.6MeV. TheexperimentalvalueofthewidthofΛ (2595)3.6+2.0MeVisnot − c 1.3 reproduced,duetothefactthatwe havenotincludedthe three-bodydecaychannelΛ ππ,whichalre−adyrepresents c almostonethirdofthedecayevents[15].OurresultforΛ (2595)agreeswiththeresultsfromt channelvector-meson c − exchange(TVME)models[4,5],but, asitwasfirstpointedoutinRef.[12], weclaimadominantND component ∗ initsstructure,whereasintheTVMEmodelthe Λ (2595)isgeneratedmostlyasa NDboundstate. Wealsoobtain c a broadresonance with a mass veryclose to the Λ (2595), namely at 2617.3MeV. It couplesstrongly to the open c channel Σ π. The other pole with J = 1/2 that we find around 2828 i0.4MeV has not been identified with any c − knownexperimentalstate. In the J = 1/2 sector there are 16 coupled channels, which can generate Λ resonances. Every found baryon c resonance couples strongly only to some of the coupled channels, see [14]. Therefore, we study how the features (masses, widths and couplings) of the Λ resonances change, when we consider only the dominant meson-baryon c coupledchannels. It turnsoutthat the masses and widths, as well as couplingsdo notchangedrastically when we onlyconsidertherestrictedcoupled-channelsspace. The widthofthe Λ (2617.3)resonanceincreasesfrom89.8to c 97.3MeV,whereasthemassandthecouplingtotheΣ πstayunchanged.TheΛ (2618.8)resonanceslightlyincreases C c itsmassby2.6MeV,andthewidthdecreasesfrom1.2to1.1MeV,whilethecouplingtoND channelremainsalmost ∗ thesame. Finally,themassoftheΛ (2828.4)stateraisesby8.6MeV,anditswidthisnow1.0MeV;thecouplingsto c thedominantΛ ηandΣ ρchannelsslightlyvary. c ∗c Further,wefindoneΛ resonancewith J =3/2locatedat(2666.6 i26.7MeV). Weidentifythisresonancewith c − the experimentalΛ (2625) [15]. The experimental Λ (2625) has a very narrow width, Γ < 0.97MeV, and decays c c mostlytoΛ ππ. Bychangingthesubtractionpoint,suchthatthemassoftheresonanceisclosertothevalueofthe c experimental one, the phase space would be reduced. A similar resonance was found at 2660MeV in the TVME modelofRef.[6]. However,inourcalculationweobtainanon-negligiblecontributionfromthebaryon-vectormeson channelstothegenerationofthisresonance,asalreadyobservedinRef.[12].Whenrestrictingthenumberofcoupled channels to the four ones, to which Λ (2666.6) couples the most, namely Σ π, ND , Σ ρ and Σ ρ, the resonance ∗c ∗c ∗ c ∗c featuresarechangedasfollows. Themasssomewhatincreasesby1.2MeV,whilethewidthgrowsby8.2MeV,and couplingsremainalmostunchanged. Weobtainthreespin-1/2Σ resonances,withmasses2571.5,2622.7and2643.4MeV.Thesestatesarepredictions c ofourmodel,sincethereisnoexperimentaldatainthisenergyregion.IntheSU(4)modelofRef.[5]twoΣ spin-1/2 c resonancesarepredicted.Inthisreference,thefirst Σ resonancehasamass2551MeVandawidthof0.15MeV,and c itcanbeassociatedwiththeΣ (2572)stateofourmodelwhichwegeneratewiththewidthΓ=0.8MeV. However,in c ourmodelthisresonancecouplesmoststronglytothechannelswhichincorporatevectormesons,whereasinRef.[5] it is notthe case. The otherresonance predictedin Ref. [5] cannotbe comparedto any of ourresults. Further, we obtaintwospin-3/2Σ resonances.Thefirstone,aboundstateat2568.4MeV,liesbelowthethresholdofanypossible c decaychannelandisthoughttobethecharmedcounterpartofthehyperonicΣ(1670)resonance. Thesecondstateat 2692.9 i33.5 MeVhasnodirectcomparisonwiththeavailableexperimentaldata. − OurmodelgeneratessixΞ stateswithJ =1/2andthreeoneswith J =3/2.Inthissectortherearetwonegative- c parityexperimentallyknownresonancesthatcanbeidentifiedwithsomeofourdynamically-generatedstates,namely experimentalΞ (2790)JP =1/2 andΞ (2815)JP =3/2 [15]. ThestateΞ (2790)hasawidthofΓ<12 15MeV c − c − c − anditdecaystoΞ π,withΞ Ξ γ. Weassignittothe2804.8 i13.5MeVstatefoundinourmodelbecauseofthe ′c ′c → c − 3 OlenaRomanetsetal./NuclearPhysicsA00(2013)1–4 4 largeΞ πcoupling.Aslightmodificationofthesubtractionpointcanlowerthepositionofourresonanceto2790MeV ′c andmostprobablyreduceitswidthasitwillgetclosertothe Ξ πchannel. Itcouldbealsopossibletoidentifyour ′c poleat2733MeVwiththeexperimentalΞ (2790)state. Inthatcase,onewouldexpectthatiftheresonanceposition c getscloserto the physicalmass of2790MeV, its width will increase andit will easily reach valuesof the orderof 10MeV. The full width of the experimentalΞ resonancewith JP = 3/2 is expectedto be less than 3.5MeVfor c − Ξ+(2815)andlessthan6.5MeVforΞ0(2815),andthedecaymodesareΞ+π+π ,Ξ0π+π . Weobtaintworesonances c c c − c − at2819.7 i16.2MeVand2845.2 i22.0MeV,respectively,thatcouplestronglytoΞ π,withΞ Ξ π. Allowing − − ∗c ∗c → c forthis possible indirectthree-bodydecaychannel, we mightidentifyone of themto the experimentalresult. This assignmentis possible forthe state at 2845.2MeVif we slightly changethe subtractionpoint, which will lowerits positionandreduceitswidthasitgetsclosertothethresholdoftheopenΞ πchannel. ∗c WeobtainthreeΩ boundstateswithmasses2810.9,2884.5and2941.6MeV.Thereisnoexperimentalinforma- c tiononthoseexcitedstates. However,ourpredictionscanbecomparedtorecentcalculationsofRef.[5]. Inthiswork three Ω resonancesare predicted,with masses higherthanthe onesofourresonancesbyapproximately100MeV. c Further,weobtaintwospin-3/2boundstatesΩ withmasses2814.3and2980.0MeV,whichmainlycoupletoΞD c ∗ andΞ D ,andtoΞ K¯,respectively.Asinthe J =1/2sector,noexperimentalinformationisavailablehere. ∗ ∗ ∗c 4. Summary Charmedbaryonresonances,inparticularΛ ,Σ ,Ξ andΩ odd-paritystateshavebeenstudiedwithinacoupled- c c c c channelsunitaryapproachthatimplementsHQSS.ForthispurposetheSU(8)spin-flavorsymmetricmodelofRef.[12] hasbeenused. We haveobtainedfourΛ baryonresonances,two ofwhichcan beidentifiedwith the experimental c Λ (2595)andΛ (2625)states. Whenthenumberofcoupledchannelsisreducedtothedominantones,thefeatures c c (mass, width, couplingconstants) of the correspondingresonance do not change significantly. Further, five Σ and c nine Ξ resonances are obtained. Some of our resonances can be identified with experimentallyknown Σ and Ξ c c c states,whileothersrequirethecompilationofmoredataandarefinementofthemodel. 5. Acknowledgments ThisresearchwassupportedbyDGIandFEDERfunds,undercontractsFIS2011-28853-C02-02,FIS2011-24149, FPA2010-16963and the Spanish Consolider-Ingenio2010 Programme CPAN (CSD2007-00042), by Junta de An- daluc´ıagrantFQM-225,by GeneralitatValencianaundercontractPROMETEO/2009/0090and by the EU Hadron- Physics2project,grantagreementn. 227431. O.R.wishesto acknowledgesupportfromtheRosalindFranklinFel- lowship. L.T.acknowledgessupportfromRamonyCajalResearchProgramme,andfromFP7-PEOPLE-2011-CIG undercontractPCIG09-GA-2011-291679. References [1] http://www.lepp.cornell.edu/Research/EPP/CLEO/;http://belle.kek.jp/;http://www.slac.stanford.edu/BF/;http://lhcb.web.cern.ch/lhcb/. [2] http://www-panda.gsi.de/. [3] M.F.M.LutzandE.E.Kolomeitsev,Nucl.Phys.A730,110(2004);M.F.M.LutzandE.E.Kolomeitsev,Nucl.Phys.A755,29(2005); [4] L.Tolos,J.Schaffner-BielichandA.Mishra,Phys.Rev.C70,025203(2004);T.MizutaniandA.Ramos,Phys.Rev.C74,065201(2006). [5] C.E.Jimenez-Tejero,A.RamosandI.Vidana,Phys.Rev.C80,055206(2009). [6] J.HofmannandM.F.M.Lutz,Nucl.Phys.A763,90(2005);J.HofmannandM.F.M.Lutz,Nucl.Phys.A776,17(2006). [7] J.Haidenbauer, G.Krein,U.G.MeissnerandA.Sibirtsev,Eur.Phys.J.A33,107(2007);J.Haidenbauer, G.Krein,U.G.Meissnerand A.Sibirtsev,Eur.Phys.J.A37,55(2008);J.Haidenbauer,G.Krein,U.G.MeissnerandL.Tolos,Eur.Phys.J.A47,18(2011). [8] J.-J.Wu,R.Molina,E.OsetandB.S.Zou,Phys.Rev.Lett.105,232001(2010);K.P.Khemchandanietal.,Phys.Rev.D83,114041(2011); K.P.Khemchandanietal.,Phys.Rev.D84,094018(2011);K.P.Khemchandanietal.,Phys.Rev.D85,114020(2012). [9] N.Isgur,M.B.Wise,Phys.Lett.B232,113(1989);M.Neubert,Phys.Rept.245,259-396(1994);A.V.ManoharandM.B.Wise,Camb. Monogr.Part.Phys.Nucl.Phys.Cosmol.10,1(2000). [10] M.B.Wise,Phys.Rev.D45,(1992)R2188;Casalbuonietal.,Phys.Lett.B292,(1992)371;Yanetal.,Phys.Rev.D46,(1992)1148. [11] Y.R.Liu,M.Oka,Phys.Rev.D85,014015(2012);W.Meguro,Y.R.LiuandM.Oka,Phys.Lett.B704,547-550(2011). [12] C.Garcia-Recio,V.K.Magas,T.Mizutani,J.Nieves,A.Ramos,L.L.SalcedoandL.Tolos,Phys.Rev.D79,054004(2009). [13] D.Gamermann,C.Garcia-Recio,J.Nieves,L.L.SalcedoandL.Tolos,Phys.Rev.D81,094016(2010). [14] O.Romanets,L.Tolos,C.Garcia-Recio,J.Nieves,L.L.SalcedoandR.G.E.Timmermans,Phys.Rev.D85,114032(2012). [15] J.Beringeretal.(ParticleDataGroup),Phys. Rev. D86,010001(2012). 4