ebook img

Heavy-quark spin symmetry for charmed and strange baryon resonances PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heavy-quark spin symmetry for charmed and strange baryon resonances

Nuclear Physics A NuclearPhysicsA00(2013)1–4 Heavy-quark spin symmetry for charmed and strange baryon resonances 3 1 Olena Romanetsa, Laura Tolosb,c, Carmen Garc´ıa-Reciod, Juan Nievese, 0 Lorenzo Luis Salcedod, Rob Timmermansa 2 n aTheoryGroup,KVI,UniversityofGroningen,Zernikelaan25,9747AAGroningen,TheNetherlands a bInstitutodeCienciasdelEspacio(IEEC/CSIC),CampusUniversitatAuto`nomadeBarcelona,FacultatdeCie`ncies,TorreC5,E-08193 J Bellaterra(Barcelona),Spain 8 cFrankfurtInstituteforAdvancedStudies,JohannWolfgangGoetheUniversity,Ruth-Moufang-Str.1,60438FrankfurtamMain,Germany 1 dDepartamentodeF´ısicaAto´mica,MolecularyNuclear,andInstitutoCarlosIdeF´ısicaTeo´ricayComputacional,UniversidaddeGranada, E-18071Granada,Spain ] eInstitutodeF´ısicaCorpuscular(centromixtoCSIC-UV),InstitutosdeInvestigacio´ndePaterna,Aptdo.22085,46071,Valencia,Spain h p - p e h Abstract [ Westudycharmedandstrangeodd-paritybaryonresonancesthataregenerateddynamicallybyaunitarybaryon-mesoncoupled- 2 channelsmodelwhichincorporatesheavy-quarkspinsymmetry.ThisisaccomplishedbyextendingtheSU(3)Weinberg-Tomozawa v chiralLagrangiantoSU(8)spin-flavorsymmetryplusasuitablesymmetrybreaking. Themodelgeneratesresonanceswithnega- 3 tiveparityfromthes-waveinteractionofpseudoscalarandvectormesonswith1/2+and3/2+baryonsinalltheisospin,spin,and 4 strangesectorswithone, two, andthreecharmunits. Someof ourresultscanbeidentifiedwithexperimentaldatafromseveral 9 facilities,suchastheCLEO,Belle,orBaBarCollaborations,aswellaswithothertheoreticalmodels,whereasothersdonothave 3 astraightforwardidentificationandrequirethecompilationofmoredataandalsoarefinementofthemodel. . 2 1 c 2012PublishedbyElsevierLtd. 2 (cid:13) 1 Keywords: Charm,heavy-quarkspinsymmetry,dynamicallygeneratedbaryonresonances : v i X 1. Introduction r a The propertiesof heavy-flavoredhadronicresonanceshave attracted a lot of attentionlately. The study of such states can help in the interpretation of the nature of particles found in past and ongoing experiments (e.g. CLEO, BaBar, Belle, LHCb) [1], as well as in understanding states which will be discovered in future experiments (e.g. PANDA at GSI [2]). It is importantto understandwhetherbaryon(meson)resonancescan be describedas excited three-quark(quark-antiquark)states or rather as hadronmolecules; also a combined interpretationof such states is possible. Atpresentthereisalackofarobustschemetosystematicallyconstructaneffectivefieldtheoryapproachtostudy fourflavorphysics. Some stepsin thatdirectionhave beentakenby recentstudiesusingcoupled-channelsmodels. Among them one can find unitarized coupled-channels models [3, 4, 5, 6], the Ju¨lich meson-exchange model [7] andschemesbasedonhiddengaugeformalism[8]. Thesemodelsarenotfullyconsistentwiththeheavy-quarkspin symmetry (HQSS) [9], which is a propersymmetry of Quantum Chromodynamics(QCD) in the limit of infinitely heavyquarkmasses. Therehavealsobeensomeattemptstobuildaschemebasedonchiralperturbationtheoryfor hadronswhichcontainheavyquarks[10]. Moreover,aneffectivetheorywhichincorporatesheavy-quark,chiraland 1 OlenaRomanetsetal./NuclearPhysicsA00(2013)1–4 2 hiddenlocalgaugesymmetrieswasdevelopedforstudyingbaryon-baryoninteractions[11]. Besides,anSU(8)spin- flavor symmetric unitarized coupled-channelsmodel has been recently developedand used for variousnumbers of charmandstrangeness[12,13]. In this paper we study dynamically-generatedbaryon resonances, using the SU(8) spin-flavormodel. We have payed special attention to analyze the underlying symmetry of the interaction. In particular, we have studied the originalgroupmultipletsfromwhereeachofthefoundbaryonresonancesoriginatesandobtainedthedifferentHQSS multiplets. Ourstudiescoveredstates with charmand strangeness, and in the followingsectionswe will show and discussourresultsforbaryonresonanceswithcharmC =1,namelyΛ (strangenessS =0,isospinI =0),Σ (S =0, c c I =1),Ξ (S = 1,I =1/2)andΩ (S = 2,I =0). c c − − 2. Theoreticalframework We use the SU(8) spin-flavor model of [12, 13]. The interaction potential is an extension of the SU(3) chiral Weinberg-Tomozawa potential to the SU(8) symmetry. In this model vector mesons are treated on equal footing withpseudoscalarmesonsandbothspin-1/2andspin-3/2baryonsare takenintoaccount. We onlyconsiders-wave interaction,whichisappropriatecloseto themeson-baryonthresholds. InthisSU(8)schemethemesonsfallin the 63-plet,andthebaryonsareplacedinthe120-plet. Consequently,inthes-channel,thebaryon-mesonspacereduces intofourSU(8)irreps,threeofwhich(120,168and4752)areattractive. Wefindthatthemultiplets120and168are themostattractiveones,andthereforewehaveconcentratedourstudyonthestateswhichbelongtothesetwoirreps intheSU(8)symmetriclimit. WeconsiderthereductionoftheSU(8)symmetrySU(8) SU(6) SU (2) U (1),whereSU(6)isthespin-flavor C C ⊃ × × groupforthreelightflavors,SU (2)isthecharmquarkrotationgroup,andU (1)isthegroupgeneratedbythecharm C C quantumnumberC. TheSU(6)multipletscanbereducedunderSU(3) SU(2),whereSU(2)referstothespinof l l × thelightquarks. WefurtherreduceSU(2) SU (2) SU(2)whereSU(2)referstothetotalspin J;inthiswaywe l C × ⊃ maketheconnectionwiththelabeling(C,S,I,J). Thecontacttree-levelmeson-baryoninteractionoftheextendedSU(8)symmetricWeinberg-Tomozawapotential reads 2√s M M E +M E +M V (s)=D − i− j i i j j . (1) ij ij 4 fifj r 2Mi s 2Mj Here,iand jaretheoutgoingandincomingbaryon-mesonchannels; M, E,and f stand,respectively,forthemass i i i andthecenter-of-massenergyofthebaryonandthemesondecayconstantintheichannel;D arethematrixelements ij forthevariousCSIJ sectorsconsideredinthiswork,whichcanbefoundintheAppendicesof[12,14]. Thescatteringamplitudesarecalculatedbysolvingtheon-shellBethe-Salpeterequationinthecoupledchannels: 1 T(s)= V(s). (2) 1 V(s)G(s) − HereG(s)isadiagonalmatrixcontainingthebaryon-mesonpropagatorforeachchannel,andD,T andVarematrices incoupled-channelsspace. ThebareloopfunctionG0(s)islogarithmicallyultravioletdivergentandneedstoberenormalized.Wehaverenor- ii malizedouramplitudesbyusingasubtractionpointregularization,withasubtractionpoint √s = µ = m2 +M2, i th th wheremth andMth are,respectively,themassesofthemesonandthebaryonofthechannelwiththeloweqstthreshold inthegivenCSI sector, G (s)=G0(s) G0(µ2). (3) ii ii − ii i Inordertogetabetterfine-tuningwiththeexperimentaldata,onecandefinethesubtractionpointasµ = α(m2 +M2), i th th withαbeingslightlydifferentfromone. q Thebaryonresonancesareobtainedaspolesofthescatteringamplitudeonthecomplex-energyplane. Themass m andthewidthΓ ofthestatecanbeobtainedfromthecoordinate √s ofthecorrespondingpoleonthecomplex R R R energy √splane, √s = m iΓ ,andthecouplingstothemeson-baryonchannelscanbefoundfromtheresidues R R− 2 R oftheT-matrixaroundthepole. 2 OlenaRomanetsetal./NuclearPhysicsA00(2013)1–4 3 ThematrixelementsD displayexactSU(8)invariance,butthissymmetryisseverelybrokeninnature.Therefore ij weimplementsymmetry-breakingmechanisms.Itshouldbementionedherethatwehaveremovedthechannelswith thecc¯pairstobeconsistentwiththeHQSS.Inthepresentworkweusephysicalvaluesforthemassesofthehadrons andforthedecayconstantsofthemesons. ThesymmetryisbrokenfollowingthechainSU(8) SU(6) SU(3) ⊃ ⊃ ⊃ SU(2),wherethelastgroupSU(2)referstoisospin. Thissymmetrybreakingwasperformedbyadiabaticchangeof thehadronmassesandmesonweakdecayconstants.Inthiswaywecanlabeleachbaryonresonancewiththeoriginal groupmultipletanddefinetheHQSSmultiplets. 3. Dynamicallygeneratedbaryonresonances LetusbeginwiththeΛ states. OurmodelgeneratesfourΛ baryonresonances,threewithspin J =1/2andone c c with J = 3/2. By comparingthedominantchannelswiththe decaychannelsofthe experimentalstates, twoofour Λ ’shavebeenidentifiedwithexperimentallyknownstates. We identifytheexperimentalΛ (2595)resonancewith c c thestatethatwefoundaround2618.8 i0.6MeV. TheexperimentalvalueofthewidthofΛ (2595)3.6+2.0MeVisnot − c 1.3 reproduced,duetothefactthatwe havenotincludedthe three-bodydecaychannelΛ ππ,whichalre−adyrepresents c almostonethirdofthedecayevents[15].OurresultforΛ (2595)agreeswiththeresultsfromt channelvector-meson c − exchange(TVME)models[4,5],but, asitwasfirstpointedoutinRef.[12], weclaimadominantND component ∗ initsstructure,whereasintheTVMEmodelthe Λ (2595)isgeneratedmostlyasa NDboundstate. Wealsoobtain c a broadresonance with a mass veryclose to the Λ (2595), namely at 2617.3MeV. It couplesstrongly to the open c channel Σ π. The other pole with J = 1/2 that we find around 2828 i0.4MeV has not been identified with any c − knownexperimentalstate. In the J = 1/2 sector there are 16 coupled channels, which can generate Λ resonances. Every found baryon c resonance couples strongly only to some of the coupled channels, see [14]. Therefore, we study how the features (masses, widths and couplings) of the Λ resonances change, when we consider only the dominant meson-baryon c coupledchannels. It turnsoutthat the masses and widths, as well as couplingsdo notchangedrastically when we onlyconsidertherestrictedcoupled-channelsspace. The widthofthe Λ (2617.3)resonanceincreasesfrom89.8to c 97.3MeV,whereasthemassandthecouplingtotheΣ πstayunchanged.TheΛ (2618.8)resonanceslightlyincreases C c itsmassby2.6MeV,andthewidthdecreasesfrom1.2to1.1MeV,whilethecouplingtoND channelremainsalmost ∗ thesame. Finally,themassoftheΛ (2828.4)stateraisesby8.6MeV,anditswidthisnow1.0MeV;thecouplingsto c thedominantΛ ηandΣ ρchannelsslightlyvary. c ∗c Further,wefindoneΛ resonancewith J =3/2locatedat(2666.6 i26.7MeV). Weidentifythisresonancewith c − the experimentalΛ (2625) [15]. The experimental Λ (2625) has a very narrow width, Γ < 0.97MeV, and decays c c mostlytoΛ ππ. Bychangingthesubtractionpoint,suchthatthemassoftheresonanceisclosertothevalueofthe c experimental one, the phase space would be reduced. A similar resonance was found at 2660MeV in the TVME modelofRef.[6]. However,inourcalculationweobtainanon-negligiblecontributionfromthebaryon-vectormeson channelstothegenerationofthisresonance,asalreadyobservedinRef.[12].Whenrestrictingthenumberofcoupled channels to the four ones, to which Λ (2666.6) couples the most, namely Σ π, ND , Σ ρ and Σ ρ, the resonance ∗c ∗c ∗ c ∗c featuresarechangedasfollows. Themasssomewhatincreasesby1.2MeV,whilethewidthgrowsby8.2MeV,and couplingsremainalmostunchanged. Weobtainthreespin-1/2Σ resonances,withmasses2571.5,2622.7and2643.4MeV.Thesestatesarepredictions c ofourmodel,sincethereisnoexperimentaldatainthisenergyregion.IntheSU(4)modelofRef.[5]twoΣ spin-1/2 c resonancesarepredicted.Inthisreference,thefirst Σ resonancehasamass2551MeVandawidthof0.15MeV,and c itcanbeassociatedwiththeΣ (2572)stateofourmodelwhichwegeneratewiththewidthΓ=0.8MeV. However,in c ourmodelthisresonancecouplesmoststronglytothechannelswhichincorporatevectormesons,whereasinRef.[5] it is notthe case. The otherresonance predictedin Ref. [5] cannotbe comparedto any of ourresults. Further, we obtaintwospin-3/2Σ resonances.Thefirstone,aboundstateat2568.4MeV,liesbelowthethresholdofanypossible c decaychannelandisthoughttobethecharmedcounterpartofthehyperonicΣ(1670)resonance. Thesecondstateat 2692.9 i33.5 MeVhasnodirectcomparisonwiththeavailableexperimentaldata. − OurmodelgeneratessixΞ stateswithJ =1/2andthreeoneswith J =3/2.Inthissectortherearetwonegative- c parityexperimentallyknownresonancesthatcanbeidentifiedwithsomeofourdynamically-generatedstates,namely experimentalΞ (2790)JP =1/2 andΞ (2815)JP =3/2 [15]. ThestateΞ (2790)hasawidthofΓ<12 15MeV c − c − c − anditdecaystoΞ π,withΞ Ξ γ. Weassignittothe2804.8 i13.5MeVstatefoundinourmodelbecauseofthe ′c ′c → c − 3 OlenaRomanetsetal./NuclearPhysicsA00(2013)1–4 4 largeΞ πcoupling.Aslightmodificationofthesubtractionpointcanlowerthepositionofourresonanceto2790MeV ′c andmostprobablyreduceitswidthasitwillgetclosertothe Ξ πchannel. Itcouldbealsopossibletoidentifyour ′c poleat2733MeVwiththeexperimentalΞ (2790)state. Inthatcase,onewouldexpectthatiftheresonanceposition c getscloserto the physicalmass of2790MeV, its width will increase andit will easily reach valuesof the orderof 10MeV. The full width of the experimentalΞ resonancewith JP = 3/2 is expectedto be less than 3.5MeVfor c − Ξ+(2815)andlessthan6.5MeVforΞ0(2815),andthedecaymodesareΞ+π+π ,Ξ0π+π . Weobtaintworesonances c c c − c − at2819.7 i16.2MeVand2845.2 i22.0MeV,respectively,thatcouplestronglytoΞ π,withΞ Ξ π. Allowing − − ∗c ∗c → c forthis possible indirectthree-bodydecaychannel, we mightidentifyone of themto the experimentalresult. This assignmentis possible forthe state at 2845.2MeVif we slightly changethe subtractionpoint, which will lowerits positionandreduceitswidthasitgetsclosertothethresholdoftheopenΞ πchannel. ∗c WeobtainthreeΩ boundstateswithmasses2810.9,2884.5and2941.6MeV.Thereisnoexperimentalinforma- c tiononthoseexcitedstates. However,ourpredictionscanbecomparedtorecentcalculationsofRef.[5]. Inthiswork three Ω resonancesare predicted,with masses higherthanthe onesofourresonancesbyapproximately100MeV. c Further,weobtaintwospin-3/2boundstatesΩ withmasses2814.3and2980.0MeV,whichmainlycoupletoΞD c ∗ andΞ D ,andtoΞ K¯,respectively.Asinthe J =1/2sector,noexperimentalinformationisavailablehere. ∗ ∗ ∗c 4. Summary Charmedbaryonresonances,inparticularΛ ,Σ ,Ξ andΩ odd-paritystateshavebeenstudiedwithinacoupled- c c c c channelsunitaryapproachthatimplementsHQSS.ForthispurposetheSU(8)spin-flavorsymmetricmodelofRef.[12] hasbeenused. We haveobtainedfourΛ baryonresonances,two ofwhichcan beidentifiedwith the experimental c Λ (2595)andΛ (2625)states. Whenthenumberofcoupledchannelsisreducedtothedominantones,thefeatures c c (mass, width, couplingconstants) of the correspondingresonance do not change significantly. Further, five Σ and c nine Ξ resonances are obtained. Some of our resonances can be identified with experimentallyknown Σ and Ξ c c c states,whileothersrequirethecompilationofmoredataandarefinementofthemodel. 5. Acknowledgments ThisresearchwassupportedbyDGIandFEDERfunds,undercontractsFIS2011-28853-C02-02,FIS2011-24149, FPA2010-16963and the Spanish Consolider-Ingenio2010 Programme CPAN (CSD2007-00042), by Junta de An- daluc´ıagrantFQM-225,by GeneralitatValencianaundercontractPROMETEO/2009/0090and by the EU Hadron- Physics2project,grantagreementn. 227431. O.R.wishesto acknowledgesupportfromtheRosalindFranklinFel- lowship. L.T.acknowledgessupportfromRamonyCajalResearchProgramme,andfromFP7-PEOPLE-2011-CIG undercontractPCIG09-GA-2011-291679. References [1] http://www.lepp.cornell.edu/Research/EPP/CLEO/;http://belle.kek.jp/;http://www.slac.stanford.edu/BF/;http://lhcb.web.cern.ch/lhcb/. [2] http://www-panda.gsi.de/. [3] M.F.M.LutzandE.E.Kolomeitsev,Nucl.Phys.A730,110(2004);M.F.M.LutzandE.E.Kolomeitsev,Nucl.Phys.A755,29(2005); [4] L.Tolos,J.Schaffner-BielichandA.Mishra,Phys.Rev.C70,025203(2004);T.MizutaniandA.Ramos,Phys.Rev.C74,065201(2006). [5] C.E.Jimenez-Tejero,A.RamosandI.Vidana,Phys.Rev.C80,055206(2009). [6] J.HofmannandM.F.M.Lutz,Nucl.Phys.A763,90(2005);J.HofmannandM.F.M.Lutz,Nucl.Phys.A776,17(2006). [7] J.Haidenbauer, G.Krein,U.G.MeissnerandA.Sibirtsev,Eur.Phys.J.A33,107(2007);J.Haidenbauer, G.Krein,U.G.Meissnerand A.Sibirtsev,Eur.Phys.J.A37,55(2008);J.Haidenbauer,G.Krein,U.G.MeissnerandL.Tolos,Eur.Phys.J.A47,18(2011). [8] J.-J.Wu,R.Molina,E.OsetandB.S.Zou,Phys.Rev.Lett.105,232001(2010);K.P.Khemchandanietal.,Phys.Rev.D83,114041(2011); K.P.Khemchandanietal.,Phys.Rev.D84,094018(2011);K.P.Khemchandanietal.,Phys.Rev.D85,114020(2012). [9] N.Isgur,M.B.Wise,Phys.Lett.B232,113(1989);M.Neubert,Phys.Rept.245,259-396(1994);A.V.ManoharandM.B.Wise,Camb. Monogr.Part.Phys.Nucl.Phys.Cosmol.10,1(2000). [10] M.B.Wise,Phys.Rev.D45,(1992)R2188;Casalbuonietal.,Phys.Lett.B292,(1992)371;Yanetal.,Phys.Rev.D46,(1992)1148. [11] Y.R.Liu,M.Oka,Phys.Rev.D85,014015(2012);W.Meguro,Y.R.LiuandM.Oka,Phys.Lett.B704,547-550(2011). [12] C.Garcia-Recio,V.K.Magas,T.Mizutani,J.Nieves,A.Ramos,L.L.SalcedoandL.Tolos,Phys.Rev.D79,054004(2009). [13] D.Gamermann,C.Garcia-Recio,J.Nieves,L.L.SalcedoandL.Tolos,Phys.Rev.D81,094016(2010). [14] O.Romanets,L.Tolos,C.Garcia-Recio,J.Nieves,L.L.SalcedoandR.G.E.Timmermans,Phys.Rev.D85,114032(2012). [15] J.Beringeretal.(ParticleDataGroup),Phys. Rev. D86,010001(2012). 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.