ebook img

Heavy Flavor Production at the Tevatron PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heavy Flavor Production at the Tevatron

Heavy Flavor Production at the Tevatron Chunhui Chen (RepresentingtheCDFandDØCollaboration) DepartmentofPhysicsandAstronomy,UniversityofPennsylvania,Philadelphia,PA19104,U.S.A. 4 0 0 Abstract. UsingasubsetofthecurrentRunIIdata,theCDFandDØhaveperformedseveralmeasurementsonheavyflavor 2 production.Inthispaper,wepresentanewmeasurementofpromptcharmmesonproductionbyCDF.Wealsoreportthelatest CDFIImeasurementsofinclusiveJ/Y productionandb-productionwithoutrequirementofminimumtransversemomentum n on J/Y and b-quark. They are the first measurements of the total inclusive J/Y and b quark cross section in the central a rapidity region at a hadron collider. The results of J/Y cross section as a function of rapidity, and b-jet production cross J sectionmeasuredbyDØarealsoreviewed. 6 1 1 INTRODUCTION celerator has delivered about 300pb−1 integrated lumi- v nosities,bothexperimentscollectedmorethan200pb 1 − 1 Measurementsof the productioncross section of heavy physics quality data. In this paper, we will give a brief 2 flavor quarks (c and b quarks) in the pp¯ collisions pro- summaryofthelatestresultsonheavyflavorproduction 0 vide us an opportunity to test the prediction based on fromTevatronRunII. 1 theQuantumChromodynamics(QCD).NoonlyisQCD 0 4 oneofthefourfundamentalforcesofthenature,butalso 0 many searches of new physics beyond Standard Model PROMPTCHARMMESON / requireagoodunderstandingoftheQCDbackground. x PRODUCTIONCROSSSECTION The Bottom quark production cross section has been e - measured by both the CDF and DØ experiments [1, p In orderto helpunderstandingthe discrepancybetween 2] at the Fermilab Tevatron in pp¯ collision at √s = e measured RunI Bottom quark cross section measure- h 1.8TeV, and found to be about three times larger than ment and theoretical calculation, one can repeat previ- : the next-to-leading order (NLO) QCD calculation [3, v ousmeasurementwithbettercontrolofexperimentalun- 4]. Since then, several theoretical explanation has been i certainties. An alternative approach is to examine the X proposed to solve the disagreement, such as the large production rate of another heavy quark. Charm meson r contributionsfrom the NNLO QCD processes, possible productioncrosssectionshavenotbeenmeasuredin pp¯ a contribution from “new physics” [5] etc. Recently, a collisions and may help to solve this disagreement.For more accuratedescriptionof b quarkfragmentationhas CDFIIupgrade,oneofthecrucialimprovementwithre- reducedthediscrepancytoafactor1.7[6].Nevertheless, specttotheCDFIistheimplementationofaSiliconVer- further experimental measurements on the heavy flavor texTrigger(SVT)[9],whichallowsustotriggerondis- production are essential to shed light on the remaining placedtracksdecayedfromlong-livedcharmandbottom cloudsofthislongstandingissue. hadrons. With this trigger, large amountof fully recon- Since the end of RunI (1996), the Tevatron had un- structedcharmmesonhasbeencollected,openinganew derdonemajorupgrade.Thecenterofmassenergyinthe window for heavy flavor production studies at hadron pp¯ collisionwas increasedfrom√s=1.8TeVto√s= collider. 1.96TeV. The large luminosity enhancement dramati- Usingjust5.8 0.3pb 1 data,CDFperformsa mea- − callyincreasesthediscoveryreachandmovestheexper- ± surement of prompt charm meson production cross imental programinto a regime of precision hadron col- section [10]. The charm mesons are reconstructed in liderphysics.Atthesametime,bothCDF[7]andD0[8] thefollowingdecaymodes:D0 K p +,D + D0p + experimentalcollaborationssignificantlyupgradedtheir with D0 K p +, D+ K p→+p +−, D+ ∗fp→+ with detectorstoenrichthephysicscapabilities,especiallyfor f K+K→, a−nd their c→harg−e conjugates,→as shown in the heavy flavor physics program. The Tevatron RunII → − Fig. 1. We separate charm directly produced in pp¯ in- data taking period started in April 2002, so far the ac- teraction (prompt charm) from charm decayed from B 2Entries per 2 MeV/c213000000000 D0fi K-p + (a) 2Entries per 0.3 MeV/c284600000000 (b) D*+Dfi 0fiD0Kp +-,p + ss [nb/GeV/c]/dpd [nb/GeV/c]/dpdTT111111000000234234 D0 ss [nb/GeV/c]/dpd [nb/GeV/c]/dpdTT111100002323 D*+ 0 1.8 1.85 1.9 00.14 0.15 0.16 55 1100 1155 2200 55 1100 1155 2200 m(K-p +) [GeV/c2] m(K-p +p +)-m(K-p +) [GeV/c2] ppTT [[GGeeVV//cc]] ppTT [[GGeeVV//cc]] 110033 22 MeV/c2000 D+fi K-p +p + (c) 25 MeV/c230000 D+fi f p +Ds+fi f p + (d) [nb/GeV/c]/dp [nb/GeV/c]/dpTT110033 D+ [nb/GeV/c]/dp [nb/GeV/c]/dpTT110022 D+s s per 1000 s per ssdd110022 ssdd ntrie ntrie 100 1100 E E 0 1.7 1.8 1.9 2 0 1.8 1.9 2 2.1 55 1100 11pp55TT [[GGeeVV//cc]]2200 55 1100 11pp55TT [[GGeeVV//cc]]2200 m(K-p +p +) [GeV/c2] m(K+K-p +) [GeV/c2] FIGURE 2. The measured differential cross section mea- FIGURE 1. Charm signals summed over all pT bins: (a) surements for y 1, shown by the points. The inner bars invariant mass distribution of D0 K−p + candidates; (b) represent the s|ta|ti≤stical uncertainties; the outer bars are the mass difference distribution of D∗+→ D0p + candidates; (c) quadratic sums of the statistical and systematic uncertainties. invariantmassdistributionofD+ K→−p +p + candidates;(d) Thesolidcurves arethetheoretical predictionsfromCacciari icnavnadriidaanttesm.ass distribution of D+→→ fp + and D+s → fp + abnadndNs.asTohne[1d1a]s,hwedithcuthrveeunshcoewrtaninwtiietshinthdeicDate+dbcyrotshsessehcatdioend ∗ isthetheoreticalpredictionfromKniehl[12];thedottedlines indicatetheuncertainty.NopredictionisavailableyetforD+ s mesons(secondarycharm)usingtheimpactparameterof production. thecharmcandidatewithrespecttotheprimaryinterac- tion point. Promptcharm meson points to the beamline and its impact parameter is zero. The secondary charm underestimate B meson production at √s=1.8TeV by meson candidate does not necessarily point back to the similarfactors[2,6,13]. primary vertex, it has a rather wide impact parameter distribution. The shape of the impact parameter distri- bution of secondary charm is obtained from a Monte INCLUSIVEJ/Y PRODUCTIONCROSS Carlosimulation.Thedetectorimpactparameterresolu- SECTION tion is modeled from a sample of K0 p +p decays S → − that satisfy the same trigger requirement. The prompt The CDFII detector has improved the dimuon trigger charm fraction is measured as a function of charm me- systemwithalowerthresholdof1.5GeV/c.Thisallows son pT. Average over all pT bins, (86.6 0.4)%of the ustotriggertheJ/Y m m +eventwithtransversemo- tDainc0daml(u7en7sco.3enrs±t,a(i3n8.t88i).e1%s±oon1fl.yD1)).+s%aorefDpr∗o+m,(p8tl9y.1p±r±od0u.4c)e%d(osftaDti+s-, maJb/eoYnuttucm3an9ad.7lildptabht−ees1w(dasayttaadt→,iosCwtiDcna−FtlourpenTcco(eJnr/tsatYrinu)tcy=teod0nG2ly9e)9V,8/a0sc0.s±Uhos8iwn0gn0 The measured prompt charm meson integrated cross inFig.4.AnewmeasurementofthetotalinclusiveJ/Y section are found to be s (D0,pT 5.5GeV/c, y crosssectionin the centralrapidityregion y 0.6has 1)=13.3 0.2 1.5m b,s (D∗+,pT≥ 6.0GeV/c,|y| ≤ beencarriedout.Thisisthefirstmeasurem|en|t≤oftheto- 1) = 5.2 ±0.1 ±0.8m b, s (D+,pT ≥6.0GeV/c,|y|≤ talinclusiveJ/Y crosssectioninthecentralrapidityre- 11))==40..37±5±0.10.±0±50.7m0.b2a2nmdbs,(wDh+se,repTt≥h≥e8fi.r0sGt ueVnc/ecr,t|a|yi|n|≤≤ty gshioonwantianhFaidgr.o5n,caonldlidtheer.iTnhteegdraiftfeedrecnrotisaslsceroctsisosneicstimoneais- ± ± is statistical and the second systematic. The measured suredtobe: differential cross sections are compared to two recent calculations [11, 12], as shown in Fig. 2 and Fig. 3. s (pp¯ J/Y X, y(J/Y 0.6) Br(J/Y mm ) → | |≤ × → Theyarehigherthanthetheoreticalpredictionsbyabout 100%atlow p and50%athigh p .However,theyare =240 1(stat)+35(syst)nb, T T ± 28 compatible within uncertainties. The same models also − (1) yy22..55 yy22..55 oror oror TheThe 22 D0 TheThe 22 D*+ Data/Data/11..55 Data/Data/11..55 40000 CDF Run II Preliminary 299,800 ± 800 Events 11 11 Luminosity = 39.7 pb-1 Width = 24 MeV/c2 00..55 00..55 30000 00 00 55 1100 1155 2200 55 1100 1155 2200 2 ppTT [[GGeeVV//cc]] ppTT [[GGeeVV//cc]] V/c TheoryTheory22..2255 D+ s/5 Me20000 ata/ata/ ent DD11..55 v E 11 10000 00..55 00 55 1100 1155 2200 pp [[GGeeVV//cc]] 0 TT 2.70 2.90 3.10 3.30 3.50 M(mm ) GeV/c2 FIGURE3. Ratioofthemeasuredcrosssectionstothethe- oretical calculationfromCacciariand Nason. Theinner error FIGURE4. TheinvariantmassdistributionoftriggeredJ/Y barrepresentsthestatisticaluncertainty,theoutererrorbarthe quadraticsumofthestatisticalandsystematicuncertainty.The eventsreconstructedinthe39.7pb−1ofCDFIIdata. hatchedbandrepresentstheuncertaintyfromvaryingtherenor- malizationandfactorizationscale. Taking advantage of the large azimuth coverage of its CDF Run II Preliminary 102 muon system, the DØ measured the differential cross ) sectionoftheinclusiveJ/Y asafunctionoftherapidity V/c Data with stat. uncertainties using4.74pb 1.ThedistributionisshowninFig.6. Ge Systematic uncertainties − ( b/ n ) 101 BOTTOM QUARKPRODUCTION CROSSSECTION →mm yJ/ ( r B TsuhreedRubnyICcDenFtraanldb-DquØarhkapsroadmucintiiomnucmrostsrasnescvteiorsnemmeoa-- 6) . 1 mentumcutontheb-hadronsduetothetriggerrequire- <0. ments. Since those measurements only explore a small ||(y T fraction( 10%)oftheb-hadron p spectrum,itisnot p clearfrom∼thedatawhethertheexceTssoverthetheoryis /d 10-1 duetoanoveralldiscrepancyofthebb¯productionrate,or sd 0 4 8 12 16 itiscausedbyashiftinthespectrumtowardhigher pT. p (J/y ) GeV/c An inclusive measurement of bottom quark production T overalltransversemomentumcancertainlyhelpresolve FIGURE5. ThedifferentialcrosssectionforinclusiveJ/Y thisambiguity. asafunctionof pT with y 0.6. | |≤ Notice that large fraction of b-hadron H decays to b J/Y finalstates,whereH denotesbothhadronandanti- b hadron. CDF performed an analysis to extract the in- the prompt J/Y ’s, which are directly produced or de- clusive b-hadron cross section from the measured in- cayed from higher charmonium states, their vertex are clusive J/Y production cross section. Due to the long at the proton-antiprotoninteractionpoint. As the result, livelifetimeoftheb-hadrons,thevertexoftheJ/Y de- we can statistically separate these two components by cayedfromab-hadron(secondaryJ/Y )isusuallyhun- examining the projected J/Y decay distance along its dreds microns away from the primary vertex, while for JJ//yy CCrroossss SSeeccttiioonn ppeerr uunniitt ooff rraappiiddiittyy b102 c) oss Section, n D zppeTT((rJJo//yy R))>>u58nGG2ee VVP//ccRELIMINARY nb/(GeV/ 101 CDF RuDanta wIiIth Pstartiseticlaiml uncinertaainrtiyes Cr ) Systematic uncertainties 10 (Includes correlated uncertainties) →mm y(J/ 1 r B ) . X 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6J/y R1.a8pidity2 →yJ/ b 10-1 H FIGURE6. ThedifferentialcrosssectionforJ/Y asafunc- ( r B tionof y. | | ) . b H ( T p d 10-2 / 0 5 10 15 20 25 CDF Run II Preliminary sd p (H ) GeV/c T b 101 ) eV/c DSyastate wmitaht ics tuantiscteicrtaali nutniecsertainties oFfIGpTU(RHEb)8w.ithb-|yh|a≤dro0n.6d.ifferentialcrosssectionasafunction G (Includes correlated uncertainties) ( b/ n ) 1 Luckily, the b-hadron decayed at rest can still trans- fer a few ( 1.7) GeV/c transverse momentum to its →mm J/Y daught∼er because of the large b-hadronmass. The yJ/ knowledgeofthesecondaryJ/Y productionwithtrans- ( r verse momenta less than 2.0GeV/c allows us to probe B ) . 10-1 the b-hadrons with low transverse momenta down to zero. Therefore using the measured b-hadron differen- yp(J/T From b twiaelacrreoasbslseetcotieoxntrwacitthth1e.b2-5h≤adrpoTn(dJi/fYfe)re≤nti1a7l.c0roGsesVse/cc-, d / tionasafunctionofp (H )downtop (H )=0GeV/c. T b T b sd 10-2 Todoso,weperformaconvolutionthatisbasedonthe 0 4 8 12 16 p (J/y ) GeV/c Monte Carlo template of the b-hadron transverse mo- T mentum distribution. The unfolding procedure is then FIGURE7. b-hadrondifferentialcrosssectionasafunction repeated using the measured b-hadronproductionspec- of pT(J/Y ). trum as the input spectrum for the next iteration, until the c 2 comparison between the input and output spec- trumcalculatedaftereachiterationbecomesstable.The transverse momentum. The measured b-fraction is then measuredb-hadroncrosssectionasafunctionofpT(Hb) applied to the previouslymeasuredinclusive J/Y cross is plotted in Fig. 8. The total b-hadron cross section is sectiontoobtainthedifferentialproductioncrosssection foundtobe ofH J/Y X asafunctionof p (J/Y ).However,the b→ T s (pp¯ H X, y(H ) 0.6) Br(H J/Y X) above algorithmto extractb-fraction does not work for → b | b |≤ × b→ J/Y candidatewithlowtransversemomentum,because Br(J/Y mm )=24.5 0.5(stat)+4.7(syst)nb, ab-hadronwithlowpT doesnottravelfarawayfromthe × → ± 3.9 − (2) primaryvertexinthetransverseplane.Thereforeamini- mump (J/Y ) 1.25GeV/crequirementisimposedfor Thetotalsingleb-quarkcrosssectionisobtainedbydi- T ≥ videdthismeasurementbytwo,thebranchingfractions, theb-hadroncrosssectionmeasurementasafunctionof p (J/Y )inorderto havea reliabledeterminationofb- andtherapiditycorrectionfactorsobtainedfromMC.We T fraction.Themeasureddifferentialcrosssectionresultis showninFig.7. DØ Run 2 Preliminary precise measurements on the heavy flavor production V) will be available in the near future. At the same time, Ge sd (nb/jetdET10-1 DPyatthaia, CTEQ4M, dR<0.3 spneliosvmreer,asolutohcthehrearsasatphneeaclbtysb¯secosofrhrhaeevlaaevtiyaolnsfloaanvbdoerecnc¯prccooadrrrrueiceltaditoioonuntmdteuocreihnxag-- theproduction.Inthenextafewyears,acombinationof 10-2 betterexperimentaldataandimprovedtheoryshouldad- vanceourknowledgesoftheheavyquarksproduction. 10-3 20 30 40 50 60 70 80 90 100 ACKNOWLEDGMENTS EjTet (GeV) FIGURE 9. Measured RunII b-jet cross sectioncompared We thanktheCDFandDØcollaborationfortheirhelps totheoreticalprediction. whilepreparingthispaper.Wealsothanktheconference organizersforawonderfulmeeting. find: s (pp¯ b¯X, y(b) 0.6) REFERENCES → | |≤ (3) =18.0 0.4(stat) 3.8(syst)m b, ± ± 1. Abbott,B.,etal.,Phys.Lett.,B487,264–272(2000). and 2. Acosta,D.,etal.,Phys.Rev.,D65,052005(2002). s (pp¯ b¯X, y(b) 1) 3. Nason, P.,Dawson, S.,andEllis,R.K.,Nucl.Phys., → | |≤ (4) B327,49–92(1989). =29.4 0.6(stat) 6.2(syst)m b. 4. Albajar,C.,etal.,Phys.Lett.,B186,237(1987). ± ± 5. Berger, E.L.,et al.,Phys. Rev. Lett.,86, 4231–4234 (2001). B-JET PRODUCTIONCROSSSECTION 6. Cacciari,M.,andNason,P.,Phys.Rev.Lett.,89,122003 (2002). 7. Blair,R.,etal.(1996),FERMILAB-PUB-96-390-E. Using 3.4pb−1 of data, a b-jet productioncross section 8. Abachi,S.(1996),FERMILAB-PUB-96-357-E. analysishasbeenperformedbyDØ.Thecandidateevent 9. Ashmanskas, W.,et al.,Nucl. Instrum. Meth., A447, isselectedbyassociatingamuontrackwithajet,which 218–222(2000). isdefinedwithR=pD h 2+D f 2conealgorithm.Notice 10. Acosta,D.,etal.,Phys.Rev.Lett.,91,241804(2003). 11. Cacciari,M.,andNason,P.,JHEP,09,006(2003). thefactthatthemuondecayedfrombquarkhasahigher 12. Kniehl.,B.(Privatecommunication),Theircalculation transversemomentumwithrespecttothenetmomentum employsthemethoddescribedinB.A.Kniehl,G.Kramer, vector of combined muon and jet, the corresponding B.Potter,Nucl.Phys.B597,337-369(2001). distribution is then used to fit the b-jet fraction. The 13. Binnewies,J.,Kniehl,B.A.,andKramer,G.,Phys.Rev., signal template is modeled from a b m Monte Carlo D58,034016(1998). simulation, and the background tem→plate is extracted 14. Abbott,B.,etal.,Phys.Rev.Lett.,85,5068–5073(2000). from1.5millionQCDevents.Aftercorrectingthemuon andjetreconstructionefficiency,andthe calorimeterjet energyresolution,theb-jetcrosssectionisobtained.The preliminary result is shown in Fig. 9 compared to the theoretical prediction. This measurement is consistent withthepreviousRunImeasurement[14]. CONCLUSION Theunderstandingoftheheavyflavorproductioniscur- rently one of the most important challenges faced by QCD. In this paper, we present the most recent mea- surementsfrom CDF and DØ experiments.Given large amount of data that have already been collected, rapid improvement of Tevatron performance, and further un- derstanding of the detector, we expect that much more

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.