ebook img

Heavy flavor production and spectroscopy at LHCb PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heavy flavor production and spectroscopy at LHCb

Heavy flavour production and spectroscopy at LHCb⋆ DiegoMilane´sa,onbehalfoftheLHCbCollaboration INFN,SezionediBari Abstract. WesummarizethemainmeasurementsperformedwiththeLHCbdetectoronproductionandspec- troscopyintheheavyflavoursector,usingdatasamplesrecordedduring2010and2011datatakinginproton- protoncollisionsat √s=7TeV. 1 Introduction 2 The LHCb detector The LHCb detector is a single-arm forward spectrome- Measurementsoftheheavyquarkproductioncross-sections ter coveringa uniquerapidity range (2 < η < 5), where inproton-protoncollisionstestthepredictionsofquantum bb¯ crosssectionispeaked.Duetothis,althoughitcovers chromodynamics(QCD),andprobesthespectrumanddy- 4% of the solid angle, it detects 40% of heavy quark namics of the colliding partons. The formation of heavy ∼ ∼ production cross-section.The LHCb detector [8] is spe- quarkoniastates(boundedqq¯)canbefactorizedintotwo cialized in beauty and charm physics studies, exhibiting stepsaccordingtoquantumchromodynamics(QCD).First, outstandingtracking,vertexingandparticleidentification the creation of a qq¯ pair via small-distance interactions capabilities.In2010and2011,thedetectorrecordedabout (perturbative), followed by the evolution into a quarko- 1.1fb 1 of integrated luminosity in proton-proton colli- − nium state via the exchange of soft gluons (non pertur- sionsat √s =7TeV,morethanthe90%oftheluminosity bative).Thenon-relativisticQCD(NRQCD),predictsthe deliveredbytheLargeHadronCollider(LHC). probabilityofaheavyqq¯pairtoevolveintoheavyquarko- nium, as a function of color-singlet (CS) [1] and color- octet(CO) [2]matrix elements. The CS model,provides 3 Heavy flavourproduction a leading-order (LO) description of quarkonium forma- tion,butitunderestimatesthemeasuredcross-sectionfor Inageneralform,theproductioncross-sectionatproton- J/ψproductionatTevatron[3],particularlyathightrans- protoncollisionsofagivenstateAcanbewrittenas versemomentump .Thisdiscrepancycanbereducedin- T cludingprocessessuchasquarkandgluonfragmentation, N(A f) but still it fails to reproduce the measured cross-section. σ(pp A)= → , (1) → ǫ (A f) TheintroductionofCO model,with the matrix elements L· ·B → tuned to data, improves the description of the measured whereN(A f)isthenumberofobservedsignalevents shapeandmagnitudeoftheJ/ψcross-section.Recentthe- ofAdecayin→gintothefinalstate f, istheintegratedlu- oreticalstudies[4]incorporatehigherordercorrectionsto minosityofthesample,ǫ istheefficLiencywhichaccounts the CS models, reducing significantly the observed dis- fortriggerandreconstructioneffects,and (A f)isthe crepancyinquarkoniumproductionwithoutincludingCO branchingfractionofthedecay. B → matrixelements.However,the agreementisstill notper- Usingthe2010datasampleof40pb 1,theLHCbcol- − fect,leavingopenthequestionofa completedescription laborationhasmeasuredseveralproductioncross-sections ofquarkoniaformation[5]. suchusopencharm[9],J/ψ[10],doubleJ/ψ[11],ψ(2S) Thespectrumofheavyhadronshasbeenpredictedus- [12], χ /χ ratio [13], B [14] and Υ(1S) [15]. Due to c2 c1 ± ingQCD potentialsandchiralmodels[6].Discrepancies limited space we do not discuss all the analyses in this betweenpredictionsandobservations,mainlyforhighmass document. states[7],makesspectroscopyanactiveandoftencontro- versialfield. 3.1 Double J/ψproduction ⋆ Presented at Hadron Collider Physics Symposium 2011, November14-18,Paris,France Theoretical calculations based on LO production of CS- a e-mail:[email protected] states predict a total cross-section of 24nb for J/ψJ/ψ EPJWebofConferences production in the current LHC running conditions [16]. This calculation accounts for additional feed-down from J/ψψ(2S)andψ(2S)ψ(2S)production,butnotfordouble parton scattering. The extrapolated prediction to the an- gularLHCb coveragegivesa cross-sectionofabout4nb witha30%ofuncertainty. For this analysis, we use an integrated luminosity of 37.5pb 1, collected by the LHCb detector between July − andNovemberof2010. J/ψmesoncandidatesarerecon- structed from a pair of oppositely-charged tracks identi- fiedasmuons.Therefore,weselecteventswith4ofthese tracks,originatedfromacommonvertex,withgoodtrack qualityandwith p < 650MeV/c.Muonidentificationis T achieved by comparinga globallikelihood functionpro- videdbytheparticleidentification,trackingandcalorime- tersubdetectors,withthecorrespondinglikelihoodforlight Fig.1. Raw signal yield of J/ψ (µ+µ ) in binsof (µ+µ ) hadrons.Selectedµ+µ−candidates,withaninvariantmass invariantmass,asobservedindata→. − 1 − 2 of3.0-3.2GeV/c2,arepairedtoform(µ+µ ) (µ+µ ) com- − 1 − 2 binations. Backgroundcoming from J/ψ mesons associ- ated to different productionvertex and from B decays is Thelargestsystematiccontributionisduetotheknowl- removed by applying quality requirements to the vertex edgeofthetrack-findingefficiency.A4%uncertaintyper fit,constrainingthe4muonstocomefromthesamever- track is assigned, based on studies comparingthe recon- texandrequiringthevertextobecompatiblewithoneof struction efficiency in data and simulation, using a tag- theprimaryverticesproducedaftertheproton-protoncol- and-probe approach. Additional systematic uncertainties lision. inthemethodtoextracttheefficiencyhavebeenaccounted The number of events with two J/ψ mesons is ex- for, as well as data-simulation discrepancies. The lumi- tracted from the single J/ψ mass spectrum. The invari- nositywasdeterminedinspecificperiodsduringdatatak- antmassdistributionsofthe first muonpairare obtained ing,usingbothVanderMeerscansandbeamgasimaging in bins of the invariant mass of the second pair, where method [17]. The systematic uncertainty associated with the first µ+µ− pair is chosen to be the one with smaller these methods is of 10%. The total systematic contribu- pT. The signalis describedusinga Crystal-Ballfunction tion to the cross-section uncertainty was found to be of plus an exponential to describe the background compo- 21%. nent. The position of the J/ψ peak is extracted from an Usingthevalueof (J/ψ µ+µ ) = (5.93 0.06)% − inclusive J/ψsample.Thefitresultprojectedonthedata [18],thecross-sectionBresulti→sσ(J/ψJ/ψ) = 5.1± 1.0 sample is shown in Fig. 1, where the extracted yield is 1.1nb,wherethefirstuncertaintyisstatisticalandt±hesec±- N(J/ψJ/ψ) = 141 19 events. The yield of events with ond systematic. The differentialproductioncross-section ± both J/ψ mesons in the detector fiducial range and ex- of J/ψ pairs as a function of the invariant mass of the plicitlytriggeredbyone J/ψthroughthededicatedmuon J/ψJ/ψ system is shown in Fig. 2, where we observe a trigger lines is found to be 116 16. This is the sample reasonable agreement, within uncertainties, between the ± usedtoextractthecross-section. measurementperformedandtheprediction. Theefficiencyevaluationaccountsforreconstruction, muonmisidentificationandtriggereffects.Theefficiency isfactorizedastheproductoftheefficiencyforeach J/ψ 4 Heavy flavourspectroscopy meson.Thereconstructionefficiencyǫ =ǫ ǫ ,isthe R R1 R2 × productoftheefficiencyofthetwo J/ψmesons,anditis afunctionofthegeometricalacceptancevariablesp and SpectroscopyisoneofthemanyfrontsinwhichtheLHCb T η and cosθ , where θ is the angle betweenthe µ+ mo- collaborationisactivelyworking.Toimproveourknowl- ∗ ∗ mentum| inth|e J/ψrestframeandthe J/ψmomentumin edge and understanding on how quarks interact among the laboratoryframe.Theangulardependenceduetothe them andrecombinethem with othersto form intriguing unknown polarization of the J/ψ candidate is computed states, itis necessaryto studythespectra ofthe different from a sample of J/ψ µ+µ simulated events. Muon familiesofmesonsandbaryons,lookingforunknownob- − identification efficiency→is extracted from the analysis of jectsanddeterminingtheirproperties. the inclusive J/ψ sample. The trigger efficiency is deter- We will discuss studies on production of D(s)J and mined with a sample of independently triggered events. B(s)J [19] states, as well as searches of these states de- The effect of the global event cuts applied in the trigger caying into Ah final states, with h = π±, K± or KS0, and has been studied in detail for inclusive J/ψ events, and A=D0,D+,D +,B0orB+,aimedtoconfirmthepresence ∗ appliedhereassumingfactorization. ofhighmassstructuresobservedinotherexperiments[20, HadronColliderPhysicsSymposium2011,November14-18,Paris,France Fig.3.Q(B0π+)distribution.LHCbdata(points)andthetotalfit (blue)aresuperimposed.ThecomponentsofthePDFare,com- binatorial background and associated production (red), combi- natorialbackground(dashedgreen), B+ B0π+ (solidblack), Fig. 2. Differential production cross-section for J/ψ pairs as a B+ B0π+ (dot-dashed black) an1d→B+ ∗ B0π+ (dotted functionoftheinvariantmassoftheJ/ψJ/ψsystem.Thepoints ∗2 → ∗ ∗2 → black). correspondtothedata.Onlystatisticaluncertaintiesareincluded intheerrorbars.Theshadedareacorrespondstopredictionby themodeldescribedin[16]. 1GeV/c and p > 10GeV/c. For convenience, we study theinvariantmassrelativetothethreshold,whichhasthe 21],andexplorethehighermasspartofthespectra.Inad- formQ(B0π+)= M(B0π+) M(B0) M(π+),whereM(B0) dition, mass measurementsof the exotic X(3872)meson and M(π+)arethenomina−lmasses−ofthemesonsquoted [22]and heavy baryonssuch as Ω and Ξ [23],will be −b b− byRef.[18]. performed. Combinatorialbackgroundshapeisextractedfromdata, usingasampleofreconstructedB+π+combinations,since thewrong-signdecayB0π hasstructurescreatedbycon- − 4.1 OrbitallyexcitedB mesons tributionsfrom B0 B¯0 mixing.Asignificantexcess,not ∗∗ attributedtoanyres−onantstate,isobservedintheQ(B0π+) ThepropertiesoftheexcitedBmesonscontainingalight with respect to the Q(B+π+) distribution, interpreted as quark (B+, B0, B0 ) are predicted by Heavy Quark Ef- anassociatedproductionduetob-jethadronization.This s fective Theory (HQET) in the limit of infinite b-quark component is described using a kernel-like distribution. mass[6,24].Undertheheavyquarkapproximationthe B SignalresonancesintheQ-distributionaremodeledusing mesonsarecharacterizedbythreequantumnumbers:the relativistic Breit-Wignerlineshapes. The detector resolu- orbitalangularmomentumL (S, P, D forL= 0,1,2 re- tion is about 3MeV/c2 and can safely be neglected. The spectively),theangularmomentumofthelightquark j = fitresultsareshowninFig.3.Hereweobservethefeed- q L 1/2 ,andthetotalangularmomentumJ = j 1/2. down from the B+/B + B 0π+ and the B + B0π+ | ± | | q± | 1 ∗2 → ∗ ∗2 → For L = 1therearefourdifferentpossible(J; j ) combi- states. To improvefit convergence,the relativewidthbe- q nations,allparity-even.Theseare knownasthe orbitally tween the B+ and the B + is fixed to 0.9 and the relative 1 ∗2 ethxeciBte1d(5s7t2at1e)s0oanrdBB∗∗∗2(s5ta7t4e7s.),AombsoenrvgetdhienseBs∗+taπt−esanwdeBh+aπv−e 0y.i9el3d,fbreotmwetehneothreetiBca∗2+lp→redBic∗0tiπo+nasn[d6,B24∗2+].→ B0π+ fixedto decays[21].AtLHCb,wereconstructthesedecaymodes, but also the B0π+ and B 0π+ where we must observethe ThelargestsystematicuncertaintyinthemeanQval- ∗ ues for the observed states, arise from variations in the isospinpartnersofthementionedstates. selectionrequirements(0.95%),andfromtheuncertainty In this analysis, we use an integrated luminosity of 336.5pb 1,collectedbytheLHCbdetectorbetweenMay on the B0 mass. The mean values are corrected for pos- − and July of 2011. The soft photons from the B 0 decay sible biases, calculated from simulated toy samples gen- ∗ erated from the experimental PDF. The final results are are not reconstructed,therefore objects decaying to both B∗0π+ and B0π+ are expected to show two peaks in the M(B+1)=(5726.3±1.9±3.0±0.5)MeV/c2andM(B∗2+)= B0π+ invariantmass distribution,separatedbya quantity (5739.0 3.3 1.6 0.3)MeV/c2,wherethefirstuncer- ± ± ± corresponding to the M(B 0) M(B0) mass difference. tainty is statistical, the second systematical and the third ∗ The B0 meson is reconstructe−d into the following final one from the uncertainty on the B0 meson mass. These states: J/ψ(µ+µ )K (892)0(K+π ), D π+ and D π+π+π , masses are compatiblewith the masses ofcorresponding − ∗ − − − − with D− K+π−π−. We combinethe B0 candidatewith isospinpartnersB01andB∗20.Inaddition,weobserveasig- tracks,wh→icharerequiredtooriginatefromthesameproton- nal significance of 9.9σ and 4.0σ for B+1 → B∗0π+ and protoninteraction.Thecompaniontrackisrequiredtobe B + B0π+, respectively,correspondingto the first ob- ∗2 → identified as a pion, to have good quality track fit, p > servationofthesetwodecays. T EPJWebofConferences 5 Conclusions Wesummarizedafewselectedresultsonheavyflavorpro- ductionandspectroscopyattheLHCbdetector.Weexpect many new results with the analysis of the 2011 dataset. TheLHCbexperimenthasshownoutstandingcapabilities andisinagoodpositiontoexploretheproductionmecha- nismsandspectraofstates,aswellastoproducecompet- itiveresultsintheheavyflavorssector. Fig.4.TheinvariantmassdistributionsfortheselectedΞ (left) b− andΩ (right)candidates.Thefitprojectionisoverlaid. −b References 1. E.L. Berger and D.L. Jones, Phys. Rev. D23 (1981) 4.2 MeasurementoftheΩ andΞ masses −b b− 1521. R. Baier and R. Ruckl, Phys. Lett. B102 (1981) 364. 2. E.BraatenandS.Fleming,Phys.Rev.Lett.74(1995) Using a 620pb 1 integratedluminositysample, we mea- 3327. − surethemassesofthestrangeb-baryonsΩ andΞ ,which 3. CDFCollaboration,Phys.Rev.Lett.69(1992)3704. −b b− are constructed via the decay chains J/ψΩ (Λ0K ) and 4. J.M. Campbell, F. Maltoni and F. Tramontano, Phys. − − J/ψΞ (Λ0π ),respectively,with J/ψ µ+µ andΛ0 Rev. Lett. 98 (2007) 252002. P. Artoisenet, AIP Conf. − − − pπ .ThemassmeasurementoftheΩ→isofparticulari→n- Proc.1038(2008)55. − −b terest,sincethemassesreportedforthisstatebytheCDF 5. N. Nambrilla, et al., Eur. Phys. J. C71, (2011) 1534. andD collaborationsareinconsistentatthe6σlevel[25]. J.P.Lansberg,Eur.Phys.J.C61,(2009)693. Bothd∅ecaysshareasimilartopologyandthepresenceof 6. S.GodfreyandN.Isgur,Phys.Rev.D32(1985)189.S. long-livedparticlesinthe decaychainis exploitedinthe GodfreyandR. Kokoski,Phys.Rev. D43(1991)1679. selection process. High background levels are observed N. Isgur and M.B. Wise, Phys. Rev. Lett. 66 (1991) neartheinteractionpoint,mainlyfrominclusiveJ/ψpro- 1130. M. Di Pierro and E. Eichten, Phys. Rev. D64 duction,thuswereconstructonlycandidateswithlifetime (2001) 114004. T. Matsuki, T. Morii and K. Sudoh, above0.3ps.Themassresolutionofthestrangeb-hadrons Prog.Theor.Phys.117(2007)1077. is improved by applying a constraint to the mass of the 7. BaBar Collaboration, Phys. Rev. Lett. 90 (2003) daughters in the vertex fit. The final selection places re- 242001. CLEO Collaboration, Phys. Rev. D68 (2003) strictions on the particle identification and quality of the 032002.BelleCollaboration,Phys.Rev.Lett.92(2004) final state tracks. In addition,a momentumcalibrationis 012002. BaBar Collaboration, Phys. Rev. D69 (2004) applied based on a large sample of J/ψ µ+µ candi- 031101. − dates,thatcorrectsforthedescriptionofth→emagneticfield 8. LHCbCollaboration,JINST3(2008)S08005. andtrackingsystem. 9. LHCbCollaboration,LHCB-CONF-2010-013. 10. LHCbCollaboration,Eur.Phys.J.C71,(2011)1645. The invariant mass distributions for the selected Ω −b 11. LHCbCollaboration,Phys.Lett.B707(2012)52. and Ξ candidates is shown in Fig. 4. Signal candidates b− 12. LHCbCollaboration,LHCB-CONF-2011-026. are describedbyGaussian distributions,where the width 13. LHCbCollaboration,LHCB-CONF-2011-020. fortheΞ isextractedfromsimulateddataandfortheΩ b− −b 14. LHCbCollaboration,LHCB-CONF-2011-033. itisestimatedbyscalingtheΞ resolutionbytheratioof b− 15. LHCbCollaboration,LHCB-CONF-2011-016. theΩ andΞ masses. −b b− 16. C.F. Qiao, L.P. Sun and P. Sun, J. Phys. G37 (2010) The systematic uncertainties in the measurement of 075019.A.V.Berezhnoy,A.K.Likhoded,A.V.Luchin- themassesaredominatedbythemomentumscalecalibra- skyandA.A.Novoselov,arXiv:1101.5881[hep-ph]. tion.Adetaileddescriptionoftheevaluationofthiseffect, 17. S. van der Meer, ISR-PO/68-31 (1968). M. Ferro- canbefoundinRef.[26].Thefinalresultforthemasses Luzzi,Nucl.Inst.Meth.553(2005)338. are M(Ξb−) = 5796.5±1.2±1.2MeV/c2 and M(Ω−b) = 18. K.Nakamura,etal.,J.Phys.G37(2010)075021. 6050.3 4.5 2.2MeV/c2,wherethefirstuncertaintyis 19. LHCbCollaboration,LHCB-CONF-2011-053. ± ± statistical and the second one due to systematic effects. 20. BaBarCollaboration,Phys.Rev.D82(2010)111101. These results correspond are the best measurements of BaBarCollaboration,Phys.Rev.D80(2009)092003. thesemassestodate.ThemeasuredΩbmassiscompatible 21. CDF Collaboration, Phys. Rev. Lett. 102 (2009) wbuitthenthlaerCgeDtFhemdeiasscurreepmanecnytMof(tΩh−be)g=lob6a0l5a4v.4e±ra6g.e9wMiethVt/hce2, 110722000031.. D∅ Collaboration, Phys. Rev. Lett. 99 (2007) measurementperformedbytheD∅collaboration,M(Ω−b)= 22. LHCbCollaboration,LHCB-CONF-2011-021. 6165 16MeV/c2. 23. LHCbCollaboration,LHCB-CONF-2011-060. ± HadronColliderPhysicsSymposium2011,November14-18,Paris,France 24. E. Eichten, C.T. Hill and C. Quigg, Phys. Rev. Lett. 71(1993)4116.A.F.FalkandT.Mehen,Phys.Rev.D53 (1996)231. 25. D Collaboration, Phys. Rev. Lett. 101 (2008) ∅ 232002. CDF Collaboration, Phys. Rev. D80 (2009) 072003. 26. LHCbCollaboration,LHCB-CONF-2011-027.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.