650 ORIGINAL RESEARCH ARTICLE JJoouurrnnaall ooff CCeelllluullaarr PPhhyyssiioollooggyy Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro WAKAKO TSUCHIDA,1,2 MASAHIRO IWATA,1,2 TAKAYUKI AKIMOTO,3 SHINGO MATSUO,1,2 YUJI ASAI,1 AND SHIGEYUKI SUZUKI2* 1Department of Rehabilitation,Facultyof Health Sciences,Nihon FukushiUniversity,Handa, Aichi, Japan 2Program in PhysicalandOccupational Therapy,GraduateSchool of Medicine,NagoyaUniversity, Nagoya,Aichi, Japan 3Faculty ofSport Sciences, WasedaUniversity,Tokorozawa, Saitama,Japan Itisgenerallyrecognizedthatsyntheticglucocorticoidsinduceskeletalmuscleweakness,andendogenousglucocorticoidlevelsincreasein patientswithmuscleatrophy.Itisreportedthatheatstressattenuatesglucocorticoid-inducedmuscleatrophy;however,themechanisms involvedareunknown.Therefore,weexaminedthemechanismsunderlyingtheeffectsofheatstressagainstglucocorticoid-induced muscleatrophyusingC2C12myotubesinvitro,focusingonexpressionofkeymoleculesandsignalingpathwaysinvolvedinregulating proteinsynthesisanddegradation.Thesyntheticglucocorticoiddexamethasonedecreasedmyotubediameterandproteincontent,and heatstresspreventedthemorphologicalandbiochemicalglucocorticoideffects.HeatstressalsoattenuatedincreasesinmRNAsof regulatedindevelopmentandDNAdamageresponses1(REDD1)andKruppel-likefactor15(KLF15).Heatstressrecoveredthe dexamethasone-inducedinhibitionofPI3K/Aktsignaling.Thesedatasuggestthatchangesinanabolicandcatabolicsignalsareinvolvedin heatstress-inducedprotectionagainstglucocorticoid-inducedmuscleatrophy.Theseresultshaveapotentiallybroadclinicalimpact becauseelevatedglucocorticoidlevelsareimplicatedinawiderangeofdiseasesassociatedwithmusclewasting. J.Cell.Physiol.232:650–664,2017.(cid:1)2016TheAuthors.JournalofCellularPhysiologypublishedbyWileyPeriodicals,Inc. Skeletalmusclehasacrucialroleinmovement,breathing,and involvedintheanti-anaboliceffectofGCbecause glucosehomeostasis,aswellasenergyhomeostasisand dephosphorylationofGSK3bsuppressesproteinsynthesis thermogenesis.Variouschronicdiseasesresultinreduced (ProudandDenton,1997).GC-inducedmuscleatrophyalso skeletalmusclemass(muscleatrophy),whichcompromises involvesincreasedmuscleproteolysissignaling,especially patientqualityoflife.Therefore,preventingandattenuating muscleRINGfinger1(MuRF1)andAtrogin-1/muscleatrophy skeletalmuscleatrophyisanimportantclinicalgoal. F-box(MAFbx),bothmuscle-specificE3ubiquitinligases Glucocorticoids(GC)aresteroidhormoneswithwide- (Bodineetal.,2001;Sachecketal.,2004;Wadaetal.,2011)that rangingregulatoryeffectsondevelopmentandmetabolism targetseveralmuscleregulatoryandmyofibrillarproteinsfor (RevolloandCidlowski,2009)aswellaspotentanti- degradationviatheubiquitin-proteasomesystem(UPS).In inflammatoryandimmunosuppressiveactivities,andnewGC havebeensynthesizedfortherapeuticuse.However,GC induceadverseeffectsincludinghyperglycemia,weightgain, hypertension,osteoporosis,depression,decreased immunologicalfunction,andskeletalmuscleweakness ThisisanopenaccessarticleunderthetermsoftheCreative (RamamoorthyandCidlowski,2013).Manypathological CommonsAttribution-NonCommercial-NoDerivsLicense,which permitsuseanddistributioninanymedium,providedtheoriginal conditionscharacterizedbymuscleweakness,includingsepsis, workisproperlycited,theuseisnon-commercialandno cachexia,starvation,metabolicacidosis,andsevere modificationsoradaptationsaremade. insulinopenia,areassociatedwithincreasedcirculatingGC levels(WingandGoldberg,1993;Tiaoetal.,1996;Huetal., Conflictsofinterest:Theauthorsdeclarethattheyhaveno competinginterests. 2009;Braunetal.,2011,2013),suggestingtheymightbe involvedinmuscleatrophy. Contractgrantsponsor:JapanSocietyforthePromotionofScience GC-inducedmuscleatrophyresultsfromdecreasedtherate (JSPS); ofproteinsynthesisandincreasedtherateofprotein Contractgrantnumbers:26870691,26350639. breakdown(Tomasetal.,1979;Goldbergetal.,1980;Lofberg *Correspondenceto:ShigeyukiSuzuki,PrograminPhysicaland etal.,2002).GCdecreasetherateofproteinsynthesisin OccupationalTherapy,GraduateSchoolofMedicine,Nagoya skeletalmusclebyenhancingthetranscriptionof“regulatedin University,1-1-20Daikominami,Higashi-ku,Nagoya,Aichi461- developmentandDNAdamageresponses1”(REDD1)and 8673,Japan.E-mail:[email protected] “Kruppel-likefactor15”(KLF15)thatrepressesmammalian ManuscriptReceived:21February2016 targetofrapamycincomplex1(mTORC1)(Shimizuetal., ManuscriptAccepted:19September2016 2011).Inaddition,GCmediateanti-anabolicactionsby AcceptedmanuscriptonlineinWileyOnlineLibrary inhibitingphosphatidylinositol3-kinase(PI3K)/Akt-dependent (wileyonlinelibrary.com):20September2016. mTORC1signaling(Kuoetal.,2012).Phosphorylationof DOI:10.1002/jcp.25609 glycogensynthasekinase3b(GSK3b)byAktmayalsobe © 2016 THE AUTHORS. JOURNAL OF CELLULAR PHYSIOLOGY PUBLISHED BY WILEY PERIODICALS, INC. 651 H E A T S T R E S S A N D A N A B O L I C / C A T A B O L I C S I G N A L I N G skeletalmuscle,MuRF1andAtrogin-1aretranscriptionally 0.1%(v/v).ControlcellsweretreatedwithDMSOalone.After activatedbydephosphorylationofforkheadboxO1and3a treatments,cellswereharvestedinappropriatebuffersforvarious (FoxO1andFoxO3a)(Kameietal.,2004;Sandrietal.,2004; analysesorwerefixedformorphologicalanalysis. Senfetal.,2008;Waddelletal.,2008).ActivationofPI3K/Akt signalingrescuedGC-mediatedatrophythroughthe Heattreatment phosphorylationandinactivationofFoxO1/FoxO3a(Sandri etal.,2004;Stittetal.,2004;Latresetal.,2005).KLF15alsohas Heatstresswasperformedaspreviouslydescribedwith catabolicactivitybytrans-activationsofMuRF1andAtrogin-1 modifications(Welcetal.,2012).C2C12myotubeswere (Shimizuetal.,2011). maintainedat37°Corweretreatedinawater-jacketedhumidified Heatstressiswidelyusedasanadjuvanttophysical incubator(MCO-18AIC,Sanyo)presettoanelevated rehabilitationforcontrollingpainandrelievingmusclespasms temperature(41°Cor,onlywhereindicated,othertemperatures) (Lehmannetal.,1974).Recently,thebenefitsofheatstressfor andthen,after60minexposuretothehighertemperature,were muscleatrophyundervariousconditionsweredescribed returnedtotheoriginal37°Cincubator.Oncecellswereplacedin (Naitoetal.,2000;Luoetal.,2001;SelsbyandDodd,2005; anincubatorat41°C,itrequiredabout42.5minforthe Ichinoseki-Sekineetal.,2014;Morimotoetal.,2015;Tamura temperatureofmediuminthedishestoreachthedesired etal.,2015;Yoshiharaetal.,2015).HeatstressattenuatedGC- experimentaltemperature(SupplementalFig.S1A).Controlcells inducedmuscleatrophyinrats(Morimotoetal.,2015)and weremaintainedat37°Cfortheentireexperiment.Afterheat preventedGC-induceddegradationofproteinsinculturedL6 treatment,mediuminthecellsreturnedto37°Cafter37.5min. myotubes(Luoetal.,2001).However,themechanismsofheat Wepreviouslyreportedthat72-kDaheatshockprotein(Hsp72) stress-inducedsuppressionofGC-inducedmuscleatrophy proteinexpressioninC2C12myotubeswassignificantlyincreased remainunclear. after4–24hofheattreatment,peakingat6h(Tsuchidaetal., Inthisstudy,weexaminedthemechanismsinvolvedinthe 2012).Thus,inthecurrentstudy,a1-hheattreatmentperiodwas preventiveeffectofheatstressforGC-inducedmuscleatrophy, used,beginningat7hpriortoDextreatment. focusingonanabolicandcatabolicsignalingpathways.Weuseda well-establishedinvitrosystemofculturedC2C12myotubesto Myotubemorphologicalanalysis modelskeletalmuscleatrophy.Heatstresspreventedthe deleteriouseffectsofGCbymodifyingREDD1andKLF15 AftertreatingC2C12myotubesfor12or24hwithDex,the expressionandrecoveringGC-affectedPI3K/Aktsignaling. myotubeswerefixedinmethanolandstainedinGiemsa(109204, Therefore,heatstressmodulatesbothanabolicandcatabolic MerckMillipore)accordingtothemanufacturer’sinstructions. signalingpathwaysinskeletalmuscle. Imageswerecapturedat100(cid:1)magnificationunderaphase contrastmicroscope(AxioObserverA1,CarlZeiss,Oberkochen, Germany)withamicroscopiccamerasystem(AxioCamHRm, MaterialsandMethods CarlZeiss).Averagediametersofatleast50myotubeswere Cellculture measuredforeachconditionatthreelocations50mmapartalong ThemurineskeletalmusclecelllineC2C12wasobtainedfromthe thelengthofthemyotubesusingimageeditingsoftware(Adobe EuropeanCollectionofCellCultures(Salisbury,UK),and PhotoshopCS5,AdobeSystems,CA)aspreviouslydescribed maintainedasdescribedpreviously(Iwataetal.,2009).C2C12 (Stittetal.,2004).Measurementswereconductedinablinded myoblastswereculturedat5(cid:1)103cells/cm2ontypeIcollagen fashiononcodedimages(control,Dex-,orheatstressþDex- coated60-mmdishes(JapanBD,Tokyo,Japan)with4mlgrowth treatedmyotubes)ofmyotubesfromeachgroup. mediumconsistingofhighglucose(4.5g/l)Dulbecco’sModified Eagle’sMedium(DMEM,Sigma–Aldrich,St.Louis,MO)containing Proteinisolation 15%(v/v)heat-inactivatedfetalbovineserum(Gibco,Carlsbad, CA)andantibiotics(100U/mlpenicillinand100mg/ml Aftertheindicatedtreatments,C2C12myotubeswerewashed streptomycin,Gibco)forapproximately48hinawater-jacketed twicewithice-coldphosphatebufferedsaline(PBS,Sigma–Aldrich) humidifiedincubator(MCO-18AIC,Sanyo,Osaka,Japan) andwereharvestedwithcellscrapersinwhole-celllysatebuffer equilibratedwith5%CO and95%air,at37°C,untilthemyoblasts composedof200mlice-coldRIPAbuffer(R0278,Sigma–Aldrich) 2 reachedabout90%confluence.Toinducespontaneous containing10%(v/v)proteaseinhibitorcocktail(P8340, differentiationbygrowthfactorwithdrawal(YaffeandSaxel, Sigma–Aldrich)and1%(v/v)phosphataseinhibitorcocktail(524625, 1977),growthmediumwasreplacedwithdifferentiationmedium Calbiochem,Darmstadt,Germany).Celllysatesweretreatedwith consistingoflowglucose(1g/l)DMEMcontaining2%(v/v)heat- anultrasonicdisintegrator(BioruptorUCD-200T,CosmoBio, inactivatedhorseserum(Gibco).Inthismedium,themyoblasts Tokyo,Japan)andthencentrifugedat8,000gfor10minat4°C.The fusedtoformelongated,multi-nucleatedmyotubes.After5days, supernatantswerecollectedascellextracts.Thetotalprotein whenapproximately90%ofthecellshadfusedintomyotubes, contentineachcellextractwasmeasuredusingtheBCAprotein culturesweretreatedwith10mMcytosineb-D-arabinofuranoside assaykit(23225,ThermoFisherScientific,Waltham,MA)according hydrochloride(Ara-C;C6645,Sigma–Aldrich)for48htoremove tothemanufacturer’sinstructions. dividingmyoblasts.Myotubesreachedawell-differentiatedstate showingcross-striation,withafewmyotubesdisplaying Westernblotanalysis spontaneouscontractions.Mediumwasreplenishedevery48h duringthe5-daydifferentiation,thenonceevery24hafterthe Eachextractwasadjustedtoaconcentrationof2mgproteinper additionofAra-Candagain2hbeforeheattreatment.Toinduce ml with an appropriate volume of RIPA buffer for SDS–PAGE. muscleatrophyinvitro,cellsweretreatedwiththesyntheticGC, ThesesampleswereeachaddedtoanequalvolumeofEzApply dexamethasone(Dex;D2915,Sigma–Aldrich)indifferentiation (Atto, Tokyo, Japan) containing 100mM Tris–HCl buffer (pH mediumfortheindicatedtimesandconcentrations.Insome 8.8), 2% SDS, 20% sucrose, 0.06% bromophenol blue and experiments,cellsweretreatedwiththePI3Kinhibitor 100mM DTT, and heated at 95°C for 5min. For SDS–PAGE, wortmannin(681675;MerckMillipore,Billerica,MA)2hbefore samples containing 10–30ml protein were loaded per lane and heattreatment.Wortmanninwasmaintainedthroughoutthe separatedonprecastpolyacrylamidegradient(7.5–12%,Bio-Rad, experiment.Wortmanninwaspreparedindimethylsulfoxide Hercules, CA) gels at 200V for 30min. Proteins were then (DMSO)anddilutedindifferentiationmediumtotheindicated transferred from the gel to 0.2-mm polyvinylidene difluoride concentrations.ThefinalconcentrationofDMSOneverexceeded membranes (Bio-Rad) by electro-blotting at a constant current JOURNALOFCELLULARPHYSIOLOGY 652 T S U C H I D A E T A L. of 1.3A for 7min using a rapid transfer system (Trans-Blot deviation(SD).ThedatawereanalyzedusingtheMann–Whitney Turbo, Bio-Rad). After transfer, western blot analysis was U-testforcomparisonsbetweentwoconditions,theKruskal– performed with a protein detection system (SNAP i.d. 2.0, WallistestfollowedbySteel’stestforcomparisonswithcontrols, MerckMillipore).Theblotswereblockedwith0.5%(w/v)nonfat andtheSteel–Dwasstestformultiplecomparisons.Differences dried milk or 1% (w/v) bovine serum albumin diluted in Tris- betweenconditionswereconsideredstatisticallysignificantat bufferedsalinecontaining0.1%(v/v)Tween20(TBS-T),toblock P<0.05. nonspecificreactions,andthenincubatedovernightat4°Cwith the indicated primary antibodies. These antibodies were Results directed against Hsp72 (ADI-SPA-812, Enzo Life Sciences, DextreatmentinducesC2C12myotubeatrophy Farmingdale, NY), phosphorylated Akt (Thr308; #2965, Cell Signaling Technology, Danvers, MA), Akt (#4691, Cell Signaling Weexaminedthedose-dependenteffectsofDexbyassessing Technology),phosphorylatedp70ribosomalproteinS6kinase1 myotubediameter.Comparedwithuntreatedcontrols (p70S6K1)(Thr389;#9206,CellSignalingTechnology),p70S6K1 (n¼55,myotubediameter18.7(cid:3)4.5mm),fullydifferentiated (#2708, Cell Signaling Technology), phosphorylated GSK3b C2C12myotubestreatedwithDexfor24hshowedadistinct (Ser9; #5558, Cell Signaling Technology), GSK3b (#9832, Cell atrophicphenotype(Fig.1A),withadose-dependentdecrease Signaling Technology), phosphorylated mitogen-activated inmyotubediameter(Fig.1B).InmyotubestreatedwithDex protein kinase kinase 1/2 (MEK1/2) (Ser217/221; #9154, Cell 0.01mM,therewerenosignificanteffects,althoughatrend Signaling Technology), MEK1/2 (#9122, Cell Signaling towarda2%decreaseindiameter(n¼54,18.3(cid:3)4.9mm),with Technology), phosphorylated extracellular signal-regulated asimilartrendofa10%decreasewith0.1mMDex(n¼53, kinase 1/2 (ERK1/2) (Thr202/Tyr204; #4370, Cell Signaling 16.8(cid:3)4.2mm)wasobserved.Myotubediameterswere Technology), ERK1/2 (#4696, Cell Signaling Technology), significantlydecreasedby18%with1mM(n¼51, phosphorylated FoxO1 (Thr256; #9461, Cell Signaling 15.4(cid:3)3.1mm)andby23%with10mM(n¼54,14.4(cid:3)3.5mm) Technology), FoxO1 (#2880, Cell Signaling Technology), or100mM(n¼54,14.5(cid:3)3.5mm)Dex(P<0.05)(Fig.1B). phosphorylated FoxO3a (Ser253; ab47285, Abcam, Cambridge, Basedonthis,10mMDexwasusedinsubsequentexperiments MA), FoxO3a (#2497, Cell Signaling Technology), total myosin toinduceatrophyinC2C12myotubes. heavy chain (MyHC) (MF20, Developmental Studies Hybridoma Next,weexaminedthetimedependenceoftheeffectofDex Bank, Iowa, IA), MyHC fast (MyHC-f) (M4276, Sigma–Aldrich), (10mM)treatmentonC2C12myotubediameter.Compared and b-actin (#5125, Cell Signaling Technology). The blots were withcontrols,thediametersofmyotubestreatedwithDex washed,incubatedwiththerespectivesecondaryantibodies,and wereunchangedat12hbutshowedasignificantdecreaseof24% washed again. The immunostained bands were visualized using at24h(Fig.1C).Similartoitseffectondiameter,Dextreatment the ECL Prime Western Blotting Detection System (RPN2232, significantlydecreasedthetotalproteincontentby16% GE Healthcare Japan, Tokyo, Japan) according to the (Fig.1D),MyHC-fcontentby21%(Fig.1EandF),andtotal manufacturer’s instructions. Illumination patterns were MyHCcontentby24%at24h,comparedwithcontrols measured using a high sensitivity cooled CCD camera (Light (Fig.1EandG),buthadnoeffectat12h.Thus,theinvitro CaptureII,Atto)toobtainanimageofthetargetproteinbands. responseofC2C12myotubestoDexrecapitulatedtheinvivo Subsequent quantification of band images was performed using responseofskeletalmuscle(HicksonandDavis,1981;Maetal., image analysis software (CS analyzer 3.0, Atto). 2003;Clarkeetal.,2007;Yamamotoetal.,2010).Inaddition, thesedatawereconsistentwithpreviousstudiesreportingDex decreasedmyotubediameter(ChromiakandVandenburgh, RNAisolationandassessmentofmRNAexpressionby 1992;Sandrietal.,2004;Stittetal.,2004;Latresetal.,2005; real-timequantitativeRT-PCR Menconietal.,2008;Kukretietal.,2013),totalprotein (ChromiakandVandenburgh,1992;Sachecketal.,2004;Stitt C2C12myotubeswerewashedtwicewithPBSandtotalRNAwas 1 etal.,2004;Polgeetal.,2011;Wadaetal.,2011),and/or isolatedusingthePureLink RNAMiniKit(LifeTechnologies, myofibrillarproteincontent(ChromiakandVandenburgh,1992; GrandIsland,NY)accordingtothemanufacturer’sinstructions. Clarkeetal.,2007;Verheesetal.,2011)invitro. RNAconcentrationsweremeasuredusingaNanodropND-1000 UV-Visspectrophotometer(ThermoScientific,Wilmington,DE). Next,totalRNAwasreversetranscribedintocDNAusingtheHigh- DextreatmentincreasesREDD1,KLF15,FoxO1, CapacityRNA-to-cDNATMKit(LifeTechnologies)anda2,720 FoxO3a,MuRF1,andAtrogin-1mRNAexpressionin thermocycler(LifeTechnologies),accordingtothemanufacturer’s C2C12myotubes instructions.Quantitationofgeneexpressionwasdeterminedby It was previously shown that REDD1, REDD2, and KLF15, real-timequantitativereversetranscriptionPCR(qRT-PCR).qRT- upstream negative effectors of mTORC1 signaling, induced PCRreactionscontained2mlcDNA(50mg/ml),10mlTaqManFast muscleatrophyviatheinhibitionofproteinsynthesis(Wang AdvancedMasterMix(LifeTechnologies),and1mlprimers.PCR et al.,2006;Shimizuet al.,2011;Kelleher et al.,2013;Britto reactionanalysiswasperformedbyaStepOnePlusReal-timePCR et al., 2014). Furthermore, the key muscle proteolysis system(LifeTechnologies)usingtheDDCtmethod.Theprimers factors, MuRF1 and Atrogin-1, were transcriptionally wereasfollows:Hsp72(Mm01159846_s1),REDD1 activatedbyKLF15,FoxO1,andFoxO3ainresponsetoDex (Mm00512504_g1),REDD2(Mm00513313_m1),KLF15 (Kamei et al., 2004; Sandri et al., 2004; Waddell et al., 2008; (Mm00517792_m1),FoxO1(Mm00490672_m1),FoxO3a Shimizu et al., 2011). Therefore, we assessed the mRNA (Mm01185722_m1),Atrogin-1(Mm00499523_m1),MuRF1 expression of these regulatory factors in fully differentiated (Mm01185221_m1),andglyceraldehyde-3-phosphate C2C12 myotubes undergoing Dex-induced skeletal muscle dehydrogenase(GAPDH;Mm99999915_g1)byTaqManGene atrophy.REDD1mRNAexpressionrapidlyincreasedby3.1- ExpressionAssays(LifeTechnologies).GAPDHwasusedasan fold at 1h, reached a peak of 3.6-fold increase at 3h and endogenouscontroltonormalizethesamples. gradually decreased at 6–24h of Dex (10mM) treatment (Fig. 2A). In contrast, REDD2 mRNA expression was unchanged throughout the entire Dex treatment period Statisticalanalysis (Fig.2B).KLF15mRNAexpressionincreasedby3.2-and5.2- StatisticalanalyseswereperformedusingSPSSversion15.0(SPSS foldat1and3h,respectively,andreacheda6.3-foldpeakat Inc.,Chicago,IL).Allvaluesarepresentedasmeans(cid:3)standard 6h of Dex treatment (Fig. 2C). FoxO1 mRNA expression JOURNALOFCELLULARPHYSIOLOGY 653 H E A T S T R E S S A N D A N A B O L I C / C A T A B O L I C S I G N A L I N G Fig.1. DextreatmentinducesatrophicresponsesinC2C12myotubes.FullydifferentiatedC2C12myotubesweretreatedwiththesynthetic GCDex.A:RepresentativeimagesofC2C12myotubeswereacquiredafter24htreatmentwith10mMDex.Thescalebarsrepresent100or 200mm.B:Thegraphshowsmyotubediametersafter24hDextreatmentattheindicatedconcentrations.Dataaremeans(cid:3)SD(n(cid:4)51 myotubespercondition).C:Thegraphshowsmyotubediametersinresponseto10mMDextreatmentfor12or24h.Dataaremeans(cid:3)SD (n(cid:4)118myotubespercondition),relativetothemeanvalueofthecontrolcondition,whichwassetas1.D:Thegraphshowstotalprotein contentinresponseto10mMDex.Dataaremeans(cid:3)SD(n¼3dishespercondition).E–G:Effectsoftreatmentwith10mMDexonMyHC-f andtotalMyHCcontentweremeasuredbywesternblot.b-Actinwasusedasaproteinloadingcontrol.MyHC-fandtotalMyHCcontentare expressedasmeans(cid:3)SD(n¼4dishespercondition).aandbindicatesignificantdifferencesamongthedesignatedgroups(P<0.05),where a>b. was increased by 1.2-fold, although this increase was increased at 1h, but rapidly increased to 1.7-fold at 3h of observed only at 1h of Dex treatment (Fig. 2D). FoxO3a Dextreatment,remainingstableat1.7–1.8-foldatlatertime mRNAexpressionincreasedby1.3-foldat1handreacheda points(Fig.2G).Thus,thepeakexpressionofREDD1wasat 2.0-foldpeakat3hofDextreatment(Fig.2E).MuRF1mRNA 3h of Dex treatment and this time point was used to expression gradually increased by 1.2- and 1.6-fold at 1 and investigate changes in the anabolic markers, REDD1, KLF15, 3h, respectively and reached a 2.0-fold peak at 6h of Dex Akt,p70S6K1,andGSK3b,duringDex-inducedatrophy.We treatment (Fig. 2F). Atrogin-1 mRNA expression was not investigated gene expression at 3–12h, and myotube JOURNALOFCELLULARPHYSIOLOGY 654 T S U C H I D A E T A L. Fig.2. TimecourseofDexeffectsonREDD1,REDD2,KLF15,FoxO1,FoxO3a,MuRF1,andAtrogin-1mRNAexpressioninC2C12myotubes. A–G:FullydifferentiatedC2C12myotubesweretreatedwithDex(10mM)fortheindicatedtimes.REDD1,REDD2,KLF15,FoxO1,FoxO3a, MuRF1,andAtrogin-1mRNAexpressionsweremeasuredbyreal-timequantitativeRT-PCR(opencircles,control;filledcircles,Dextreated). Horizontalbarsindicatemeanvalues(n¼3dishespercondition),relativetothemeanvalueofthecontrolconditionthatwassetas1. diameter/proteinupto24h,becausethereisatemporalpeak proteinbreakdown,wasat6hofDextreatment.Therefore, ofgeneexpressionbeforethephysiologicalresponseoccurs. we analyzed C2C12 myotubes at 6h of Dex treatment to The peak of changes in MuRF1 and Atrogin-1, both investigate changes in the catabolic markers, KLF15, Akt, considered rate-limiting enzymes of UPS-mediated muscle FoxO, MuRF1, and Atrogin-1, during Dex-induced atrophy. JOURNALOFCELLULARPHYSIOLOGY 655 H E A T S T R E S S A N D A N A B O L I C / C A T A B O L I C S I G N A L I N G WenextinvestigatedhowREDD1andKLF15expression etal.,2001).TheseeffectswereattributedtoHsp72inducedby wasregulatedduringthisprocessinmoredetail.Dexsignalsby heatstress.ToinvestigatewhetherheatstressinducedHsp72 bindingtoGCreceptor(GR),whichthentranslocatesintothe mRNAandproteinexpressionunderourexperimental nucleustoregulatetheexpressionoftargetgenes(Kadmieland conditions,weexposedfullydifferentiatedC2C12myotubes Cidlowski,2013).WeinvestigatedwhetherGRwasinvolvedin toheatstress.TreatingC2C12myotubesat39,40,or theDex-mediatedupregulationofREDD1andKLF15mRNA 41°CincreasedHsp72mRNAexpressionby1.5-,3.5-,and6.0- expression.WhenfullydifferentiatedC2C12myotubeswere fold,respectively,whenmeasuredimmediatelyafterheat treatedwithaGR-specificantagonistRU486,Dex-induced treatment.Hsp72mRNAexpressiongraduallydecreasedover increasesinREDD1andKLF15mRNAexpressionwere timereachingcontrollevelsat5hafterheattreatment inhibited(SupplementalFig.S2AandB),indicatingREDD1and (SupplementalFig.S1B).Hsp72proteinexpressionwas KLF15expressionwasmediatedbytheGRinDex-induced significantlyincreasedby2.2-and4.7-foldat39and41°C, atrophy. respectively,at6hofheattreatment,comparedwithcontrol myotubesmaintainedat37°C(SupplementalFig.S1CandD). Thus,heatstress-inducedincreasesinHsp72mRNAand HeatstresssuppressesDex-inducedmuscleatrophy proteinexpressionweretemperature-dependent. Inpreviousstudies,heatstressattenuatedtheDex-induced Accordingly,heatstressat41°C,whichinducedsufficientlevels decreaseinmusclefiberdiameterofextensordigitorumlongus ofHsp72expression,wasusedforsubsequentexperimentsto muscleinvivoinrats(Morimotoetal.,2015)andsuppressed investigatehowheatstressinfluencesDex-inducedatrophyin Dex-inducedmuscleproteolysisinL6myotubesinvitro(Luo C2C12myotubes.FullydifferentiatedC2C12myotubes Fig.3. HeatstresssuppressesDex-induceddecreasesinmyotubediameterandMyHC-fcontent.FullydifferentiatedC2C12myotubeswere exposedtoheating(at41°Cfor60min)6hpriortoadding10mMDexandtreatingfor24h.Theexperimentwasconductedusingthree conditionsinwhichC2C12myotubeswereuntreated(control),treatedwith10mMDex(Dex),orexposedtoheatingandthentreatedwith 10mMDex(HeatþDex).A:Thegraphshowsaveragemyotubediametersunderthethreeconditions.Dataaremeans(cid:3)SD(n(cid:4)69myotubes percondition),relativetothemeanvalueofthecontrolconditionwhichwassetto1.aandbindicatesignificantdifferencesamongthe designatedgroups(P<0.01).B:Frequencyhistogramshowingdistributionofmyotubediameters.C–D:MyHC-fcontentmeasuredby westernblottingwithb-actinasaproteinloadingcontrol.MyHC-fcontentisexpressedasmean(cid:3)SD(n¼7dishespercondition).aandb indicatesignificantdifferencesamongthedesignatedgroups(P<0.01),wherea>b. JOURNALOFCELLULARPHYSIOLOGY 656 T S U C H I D A E T A L. Fig.4. HeatstressincreasesHsp72proteinexpressioninC2C12myotubesduringDextreatment.AandB:FullydifferentiatedC2C12 myotubeswereexposedtoheating(at41°Cfor60min)6hpriorto10mMDextreatmentfor3,6,12,and24h,asindicated.The experimentwasconductedusingthreeconditions,control,Dex,andHeatþDexconditions,asdescribedforFigure3.Hsp72proteinlevels weremeasuredbywesternblottingandareexpressedasmeans(cid:3)SD(n¼4–6dishespercondition),relativetothemeanvalueofthe controlconditionthatwassetas1.aandbindicatesignificantdifferencesamongthedesignatedgroups(P<0.05),wherea>b. exposedtoheatstress(at41°Cfor60min)ending6hpriorto Thiseffectwasinhibitedbyheatstress(Fig.5C–E).Wealso treatmentwithDex(10mM)for24hhada25%decreasein examined mTORC1 activity by evaluating phosphorylation diameterwhenmaintainedatnormaltemperature,butthiswas ofp70S6K1atthemTOR-specificsiteThr389(Brownetal., abolishedwhensubjectedtoheatstress(Fig.3A).Compared 1995; Brunn et al., 1997). Similar to the observations with withuntreatedcontrols,C2C12myotubestreatedwithDex Akt, Dex treatment resulted in a 29% decrease in hadalowerpercentageoflargemyotubes(>20mm)anda phosphorylatedp70S6K1atThr389,withnochangeintotal higherpercentageofsmallmyotubes(>10mm)(Fig.3B).Both p70S6K1 protein, and heat stress prevented this effect Dex-inducedeffectsweresuppressedinmyotubessubjectedto (Fig. 5C, F, and G). Because Akt reduces GSK3b kinase heatstress.Furthermore,a28%lossofMyHC-fcontentin activity through the phosphorylation of Ser9 (Manning and C2C12myotubesinducedbyDextreatmentwasalsoabolished Cantley,2007)andincreasesmRNAtranslationandprotein byheatstress(Fig.3CandD).Therefore,heatstresssuppressed synthesis (Proud and Denton, 1997), we analyzed Dex-induceddecreasesinbothmyotubediameterand phosphorylated GSK3b levels in Dex-treated C2C12 myofibrillarproteincontent.Inaddition,C2C12myotubes myotubes, with/without heat stress. We observed a 34% exposedtoheatstress(at41°Cfor60min)6hpriortoDex decrease in phosphorylated GSK3b on Ser9 after Dex treatment showed Hsp72 protein expression was increased treatment,withnochangein totalGSK3b protein(Fig. 5C, 3.0-,2.9-,3.4-,and2.1-foldat3,6,12,and24h,respectively,of H,andI).Thiseffectwasinhibitedbyheatstress(Fig.5C,H, Dextreatment(Fig.4AandB)indicatingthatheatingat41°Cfor and I). 60mininducedasustainedincreaseinHsp72proteinexpression throughouttheperiodofDextreatmentinC2C12myotubes. DextreatmentandheatstressdonotalterMEK1/2and ERK1/2signalsinC2C12myotubes HeatstresssuppressesDex-inducedincreasesinREDD1 The MEK/ERK signaling pathway enhanced protein synthesis andKLF15mRNAexpressionanddecreasesin phosphorylatedAkt,p70S6K1,andGSK3bproteinlevels by regulating ribosomal RNA gene expression (Stefanovsky et al., 2006) and might contribute to the maintenance of inC2C12myotubes skeletal muscle mass by modulating Akt signaling (Shi et al., To elucidate the effects of heat stress on Dex-mediated 2009).Therefore,weexaminedthephosphorylationstatesof inhibition of anabolic pathways, we measured mRNA MEK1/2 at Ser217/221 sites and the downstream effector expression of REDD1 and KLF15 (Shimizu et al., 2011; ERK1/2 at Thr202/Tyr204 sites in our atrophy model. Britto et al., 2014), in C2C12 myotubes treated with Dex Treatment of C2C12 myotubes with Dex for 3h did not (10mM) for 3h. Dex-treated C2C12 myotubes showed a affect the levels of phosphorylated and total MEK1/2 and 3.6-foldincreaseinREDD1mRNAanda4.8-foldincreasein ERK1/2(Fig.6A–E)consistentwithapreviousstudyshowing KLF15 mRNA expression, both of which were blunted by Dex had no effect on the signaling pathway (Gwag et al., heat stress (Fig. 5A and B). We next examined Akt 2013). Similarly, heat stress did not alter the levels of phosphorylated on Thr308, because REDD1-mediated phosphorylatedandtotalMEK1/2andERK1/2inDex-treated inhibition of mTORC1 involves Akt dephosphorylation at C2C12 myotubes (Fig. 6A–E), suggesting the MEK/ERK this site (Britto et al., 2014). Dex treatment resulted in a signaling pathway is not involved in the Dex-induced 30% decrease in phosphorylated Akt on Thr308 in inhibition of protein synthesis and heat stress-induced anti- myotubes with no change in total Akt protein (Fig. 5C–E). atrophic effects under the present experimental conditions. JOURNALOFCELLULARPHYSIOLOGY 657 H E A T S T R E S S A N D A N A B O L I C / C A T A B O L I C S I G N A L I N G Fig.5. HeatstressnormalizesDex-inducedincreasesinREDD1andKLF15mRNAexpressionanddecreasesinphosphorylatedAkt,p70S6K1,and GSK3b.FullydifferentiatedC2C12myotubeswereexposedtoheating(at41°Cfor60min)6hpriorto10mMDextreatmentfor3h.Theexperiment wasconductedusingthreeconditions,control,Dex,andHeatþDex,asdescribedforFigure3.AandB:REDD1andKLF15mRNAexpressionswere measuredbyreal-timequantitativeRT-PCR.Horizontalbarsindicatemeanvalues(n¼6dishespercondition),relativetothemeanvalueofthe controlconditionthatwassetas1.C–I:LevelsofphosphorylatedandtotalAkt,p70S6K1,andGSK3bweremeasuredbywesternblottingandare expressedasmeans(cid:3)SD(n¼6dishespercondition).a–cindicatesignificantdifferencesamongthedesignatedgroups(P<0.05),wherea>b>c. JOURNALOFCELLULARPHYSIOLOGY 658 T S U C H I D A E T A L. Fig.6. DextreatmentandheatstressdonotalterthelevelsofphosphorylatedandtotalMEK1/2andERK1/2.FullydifferentiatedC2C12 myotubeswereexposedtoheating(at41°Cfor60min)6hpriorto10mMDextreatmentfor3h.Theexperimentwasconductedusingthree conditions,control,Dex,andHeatþDex,asdescribedforFigure3.A–E:LevelsofphosphorylatedandtotalMEK1/2andERK1/2were measuredbywesternblottingandareexpressedasmeans(cid:3)SD(n¼6dishespercondition). HeatstressnormalizesdecreasesinphosphorylatedAkt, phosphorylated Akt, p70S6K1, and GSK3b with no change p70S6K1,andGSK3bbyDexthroughPI3K-dependent in each total protein level (Fig. 7A and C–H). Therefore, mechanisms heat stress may normalize the Dex-induced inhibition of anabolic pathways through PI3K-dependent mechanisms. Recent studies have shown that Dex exerted anti-anabolic Wealsoconfirmedthatwortmannindidnotinhibittheheat actions by inhibiting PI3K/Akt-dependent mTORC1 stress-induced increase in Hsp72 protein expression in signaling (Kuo et al., 2012). To determine whether heat Dex-treated C2C12 (Fig. 7A and B). stress suppressed the Dex-induced inhibition of PI3K/Akt signaling, we determined basal phosphorylation status of Akt (Thr308), p70S6K1 (Thr389), and GSK3b (Ser9) in HeatstresspartiallyattenuatesDex-induceddecreasesin non-Dex treated myotubes with/without a PI3K inhibitor, myotubediameterthroughPI3K-dependentmechanisms wortmannin. Lower concentrations of wortmannin (10–100nM) had no effect, whereas higher concentrations Becausewortmanninblockedtheinhibitoryeffectofheat (0.5–10mM) decreased phosphorylated Akt, p70S6K1, and stressonDex-induceddecreasesofphosphorylatedAkt, GSK3b (Supplemental Fig. S3A–G). Therefore, 100nM p70S6K1,andGSK3b,weexaminedwhetherPI3Kwas wortmannin was used for all further experiments to requiredfortheanti-atrophiceffectsofheatstress.Fully investigate whether PI3K is required for the heat stress differentiatedC2C12myotubesweretreatedwith100nM suppression of Dex-induced decreases in phosphorylated wortmannin2hbeforeheattreatment,andwereexposedto Akt, p70S6K1, and GSK3b. Fully differentiated C2C12 heatstress(at41°Cfor60min)ending6hpriortotreatment myotubesweretreatedwith100nMwortmannin2hbefore withDexfor24h.Wortmannindidnotaffectthediameterof heat treatment, and then exposed to heat stress (at C2C12myotubeswith/withoutDextreatment(Fig.8AandB). 41°C for 60min) ending 6h prior to treatment with Dex However,wortmanninattenuated,butdidnotabolish,the for 3h. Wortmannin completely abolished the inhibitory inhibitoryeffectofheatstressonDex-induceddecreasesin effect of heat stress on Dex-induced decreases in myotubediameter(Fig.8AandB).Therefore,heatstressmay JOURNALOFCELLULARPHYSIOLOGY 659 H E A T S T R E S S A N D A N A B O L I C / C A T A B O L I C S I G N A L I N G Fig.7. HeatstressnormalizesDex-induceddecreasesinphosphorylatedAkt,p70S6K1,andGSK3bthroughPI3K-dependentmechanisms.Fully differentiatedC2C12myotubesweretreatedwithwortmannin(100nM)attheindicatedconcentrations2hbeforeheattreatment,andwere exposedtoheating(at41°Cfor60min)6hpriorto10mMDextreatmentfor3h.Wortmanninwasmaintainedthroughouttheexperiment.The experimentwasconductedusingfourconditions,control,Dex,HeatþDex,andwortmanninþHeatþDex(WþHeatþDex).A–H:Hsp72 proteinexpressionandlevelsofphosphorylatedandtotalAkt,p70S6K1,andGSK3bweremeasuredbywesternblottingandareexpressedas means(cid:3)SD(n¼8dishespercondition),relativetothemeanvalueofthecontrolconditionthatwassetas1.aandbindicatesignificantdifferences amongthedesignatedgroups(P<0.05),wherea>b. partiallyattenuateDex-induceddecreasesinmyotube etal.,2011).Overexpressionofconstitutivelyactiveformsof diameterthroughPI3K-dependentmechanisms. KLF15increasedFoxO1andFoxO3aexpressions(Shimizu etal.,2011).OurresultsshowedthatKLF15wasincreased6.2- foldinC2C12myotubesat6hDextreatment(Fig.9A), HeatstresssuppressesDex-inducedincreasesinKLF15and correspondingwithincreasedtotalFoxO1(1.2-fold, MuRF1mRNAexpression,decreasesinphosphorylated P¼0.0644)andFoxO3a(1.5-fold,P<0.05)proteinlevels Akt,FoxO1,andFoxO3aproteinlevels,andincreasesin (Fig.9B,F,andH).Theseincreaseswerepreventedbyheat totalFoxO1andFoxO3ainC2C12myotubes stress. DephosphorylationandtheactivationofFoxO1and DexinducesKLF15,whichinteractswiththepromoterregions FoxO3abydephosphorylatingandinactivatingAkt,resultedin ofMuRF1andAtrogin-1toinducetheirexpression(Shimizu MuRF1andAtrogin-1mRNAexpression,inducingatrophy JOURNALOFCELLULARPHYSIOLOGY
Description: