ebook img

Heat kernels on metric graphs and a trace formula PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heat kernels on metric graphs and a trace formula

HEAT KERNELS ON METRIC GRAPHS AND A TRACE FORMULA VADIMKOSTRYKIN,JU¨RGENPOTTHOFF,ANDROBERTSCHRADER DedicatedtoJean-MichelCombesontheoccasionofhis65-thbirthday 7 0 0 ABSTRACT. Westudyheat semigroups generated byself-adjoint Laplace operators on 2 metricgraphscharacterized bythepropertythatthelocalscattering matrices associated witheachvertexofthegraphareindependentfromthespectralparameter. Forsuchop- n eratorsweprovearepresentation fortheheatkernelasasumoverallwalkswithgiven a J initialandterminaledges.Usingthisrepresentationatraceformulaforheatsemigroupsis proven. Applicationsofthetraceformulatoinversespectralandscatteringproblemsare 4 alsodiscussed. 1 v 9 0 1. INTRODUCTION 0 1 Metricgraphsornetworksareone-dimensionalpiecewiselinearspaceswithsingular- 0 ities atthe vertices. Alternatively,a metric graphis a metric space which can be written 7 asaunionoffinitelymanyintervals,whichareeithercompactor[0, );anytwoofthese 0 ∞ intervalsareeitherdisjointorintersectonlyinoneorbothoftheirendpoints. Itisnatural / h tocallthemetricgraphcompactifallitsedgeshavefinitelength. p Theincreasinginterestinthetheoryofdifferentialoperatorsonmetricgraphsismoti- - h vatedmainly by two reasons. The first reasonis thatsuch operatorsarise in a varietyof t applications. We refer the reader to the review [34], where a number of models arising a m in physics, chemistry, and engineeringis discussed. The secondreason is purelymathe- matical: It is intriguing to study the interrelation between the spectra of these operators : v andtopologicalorcombinatorialpropertiesoftheunderlyinggraph.Similarinterrelations i X arestudiedinspectralgeometryfordifferentialoperatorsonRiemannianmanifolds(see, e.g.[7],[15])andinspectralgraphtheoryfordifferenceoperatorsoncombinatorialgraphs r a (see,e.g.[9]). Metricgraphstakeanintermediatepositionbetweenmanifoldsandcombi- natorialgraphs. Inthepresentworkwecontinuethestudyofheatsemigroupsonmetricgraphsinitiated in [28]. There we provided sufficient conditions for a self-adjoint Laplace operator to generateacontractivesemigroup. Moreover,weprovedacriterionguaranteeingthatthis semigroup is positivity preserving. For earlier work on heat semigroups generated by Laplace operatorson metric graphsand their application to spectral analysis we refer to [3],[13],[14],[40],[41],[46],[47]. In this article we study heat semigroups generated by self-adjoint Laplace operators whicharecharacterizedbythepropertythatthelocalscatteringmatricesassociatedwith eachvertexofthegraphareindependentofthespectralparameter.Allboundaryconditions leadingtosuchoperatorsaredescribedinProposition2.4below. Inparticular,Neumann, Dirichlet,andthesocalledstandardboundaryconditionsareinthisclass. 2000MathematicsSubjectClassification. Primary34B45,81U40;Secondary47D06. Keywordsandphrases. Metricgraphs,heatsemigroups,traceformulas,inverseproblems. 1 2 V.KOSTRYKIN,J.POTTHOFF,ANDR.SCHRADER Ourmaintechnicaltooltostudyheatsemigroupsonmetricgraphsarewalksonedges ofthegraph,a conceptdevelopedin [28], [29]. We willrevisitthisconceptin Section3 below. Furthermore,wewillprovidearepresentationfortheheatkernelasasumoverall walkswithgiveninitialandterminaledges. Thisrepresentationrelatesthetopologyofthe graphtoanalyticpropertiesoftheheatsemigroup. InSection4weproveatraceformulaforheatsemigroupsonarbitrary(compactaswell asnoncompact)metricgraphs,ananalogofthecelebratedSelbergformulafordifferential operatorsonRiemannianmanifolds(see[38],[48]forthecaseofcompactmanifoldsand [22], [37] for the noncompactcase). A discrete analog of the Selberg trace formula on k-regulartreesisdiscussedin[49]. The trace formulaexpressesthe trace of the semigroupdifferenceas the sum overall cycles on the graph, that is, equivalence classes of closed walks. In the particular case of compactgraphsandstandard boundaryconditionsour result recoversthe well-known traceformulaobtainedbyRoth[46],[47]. Relatedresultscanbefoundin[35],[40],[41], [50]. InthephysicalliteraturetraceformulasforLaplaceoperatorsonmetricgraphshave beendiscussed in [2], [31], [32], [33]. Their applicationsto quantumchaosandspectral statisticsarereviewedintherecentarticle[16]. Asanapplicationofthetraceformula,inSection5wediscussinversespectralandscat- teringproblems. The inverseproblemsconsideredhere consistof determiningthe graph anditsmetricstructure(i.e.thelengthsofitsedges)fromthespectrumoftheLaplaceop- eratorandthescatteringphase(thatis,halfthephaseofthedeterminantofthescattering matrix), underthe condition that the boundaryconditionsat all vertices of the graph are supposed to be known. Another kind of the inverse scattering problem, the reconstruc- tionofthegraphandtheboundaryconditionsfromthescatteringmatrix,hasbeensolved recentlyin[29]. TheresultsofSection5provideamathematicallyrigoroussolutionoftheinversescat- tering problem as proposed by Gutkin and Smilansky in [19]. Also these result extend the solution of the inverse spectral problem on compact graphs given by Kurasov and Nowaszykin[35]tomoregeneralboundaryconditions. Acknowledgments. Itisapleasuretothanktheorganizersoftheconference“Transport andSpectralProblemsin QuantumMechanics”heldatthe UniversityofCergy-Pontoise in September 2006 for a very interesting and enjoyable meeting, both scientifically and socially.TheauthorswouldliketothankM.Karowskiforhelpfuldiscussions. 2. BACKGROUND A finite graphis a 4-tuple = (V, , ,∂), where V is a finite set of vertices, is a G I E I finitesetofinternaledges, isafinitesetofexternaledges. Elementsin arecalled E I∪E edges. Themap∂ assignstoeachinternaledgei anorderedpairof(possiblyequal) ∈ I vertices∂(i) := v ,v andtoeachexternaledgee asinglevertexv. Thevertices 1 2 { } ∈ E v =: ∂−(i) and v =: ∂+(i) are called the initial and terminal vertex of the internal 1 2 edge i, respectively. The vertex v = ∂(e) is the initial vertex of the externaledge e. If ∂(i)= v,v ,thatis,∂−(i)=∂+(i)theniiscalledatadpole.Agraphiscalledcompact if =˘{,oth}erwiseitisnoncompact. E Two vertices v and v′ are called adjacent if there is an internaledge i such that ∈ I v ∂(i) and v′ ∂(i). A vertex v and the (internal or external) edge j are ∈ ∈ ∈ I ∪E incidentifv ∂(j). ∈ Wedonotrequirethemap∂ tobeinjective. Inparticular,anytwoverticesareallowed to be adjacent to more than one internal edge and two different external edges may be HEATKERNELSONMETRICGRAPHS 3 incidentwiththesamevertex. If∂ isinjectiveand∂−(i)=∂+(i)foralli ,thegraph 6 ∈I iscalledsimple. G Thedegreedeg(v)ofthevertexvisdefinedas deg(v)= e ∂(e)=v + i ∂−(i)=v + i ∂+(i)=v , |{ ∈E | }| |{ ∈I | }| |{ ∈I | }| thatis,itisthenumberof(internalorexternal)edgesincidentwiththegivenvertexv by whicheverytadpoleiscountedtwice. Itis easy to extendthe First TheoremofGraphTheory(see, e.g. [11]) to the case of noncompactgraphs: (2.1) deg(v)= +2 . |E| |I| v∈V X Avertexiscalledaboundaryvertexifitisincidentwithsomeexternaledge.Thesetof allboundaryverticeswillbedenotedby∂V. Theverticesnotin∂V,thatisinV ∂V are \ calledinternalvertices. Thecompactgraph = (V, ,˘ ,∂ )willbecalledtheinterior ofthegraph = int I G I | G (V, , ,∂). Itisobtainedfrom byeliminatingtheexternaledges. I E G Thestar (v) ofthevertexv V isthesetoftheedgesadjacenttov. S ⊆E ∪I ∈ Throughoutthewholeworkwe willassumethatthegraph isconnected,thatis, for G anyv,v′ V thereis an orderedsequenceof vertices v = v,v ,...,v ,v = v′ 1 2 n−1 n ∈ { } such that any two successive vertices in this sequence are adjacent. In particular, this assumptionimpliesthatanyvertexofthegraph hasnonzerodegree,i.e.,foranyvertex G thereisatleastoneedgewithwhichitisincident. Wewillendowthegraphwiththefollowingmetricstructure. Anyinternaledgei ∈ I will be associated with an interval [0,a ] with a > 0 such that the initial vertex of i i i corresponds to x = 0 and the terminal one to x = a . Any external edge e will i ∈ E be associated with a semiline [0,+ ). We call the numbera the length of the internal i edgei. Thesetoflengths a ,∞whichwillalsobetreatedasanelementofR|I|,will i i∈I { } be denotedby a. A compactor noncompactgraph endowedwith a metric structureis G calledametricgraphandiswrittenas( ,a). G Givenafinitegraph = (V, , ,∂)withametricstructurea = a considerthe i i∈I G I E { } Hilbertspace (2.2) ( , ,a)= , = , = , E I E e I i H≡H E I H ⊕H H H H H e∈E i∈I M M where =L2(I )with j j H [0,a ] if j , j I = ∈I j ([0, ) if j . ∞ ∈E o o o LetI betheinteriorofI ,thatis,I =(0,a )ifj andI =(0, )ifj . j j j j j ∈I ∞ ∈E In the sequel the letters x and y will denote arbitrary elements of the product set · I . j j∈E∪I By withj denotethesetofallψ suchthatψ (x)anditsderivative j j j j D ∈ E ∪I ∈ H ψ′(x)areabsolutelycontinuousandψ′′(x)issquareintegrable. Let 0 denotethesetof j j Dj thoseelementsψ whichsatisfy j j ∈D ψ (0)=0 ψ (0)=ψ (a )=0 j for j and j j j for j . ψj′(0)=0 ∈E ψj′(0)=ψj′(aj)=0 ∈I 4 V.KOSTRYKIN,J.POTTHOFF,ANDR.SCHRADER Let∆0bethedifferentialoperator d2 (2.3) ∆0ψ (x)= ψ (x), j j dx2 j ∈I∪E withdomain (cid:0) (cid:1) 0 = 0 . D Dj ⊂H j∈E∪I M Itisstraightforwardtoverifythat∆0isaclosedsymmetricoperatorwithdeficiencyindices equalto +2 . |E| |I| Weintroduceanauxiliaryfinite-dimensionalHilbertspace (2.4) ( , )= (−) (+) K≡K E I KE ⊕KI ⊕KI with =C|E|and (±) =C|I|. Letd denotethe“double”of ,thatis,d = . KE ∼ KI ∼ K K K K⊕K Foranyψ := weset j ∈D D j∈E∪I M (2.5) [ψ]:=ψ ψ′ d , ⊕ ∈ K withψandψ′ definedby ψ (0) ψ′(0) (2.6) ψ = {ψe(0)}e∈E , ψ′ = {ψe′(0)}e∈E . { i }i∈I  { i }i∈I  ψ (a ) ψ′(a ) { i i }i∈I {− i i }i∈I     LetJ bethecanonicalsymplecticmatrixond , K 0 I (2.7) J = I 0 (cid:18)− (cid:19) withIbeingtheidentityoperatoron . Considerthenon-degenerateHermitiansymplectic K form (2.8) ω([φ],[ψ]):= [φ],J[ψ] , h i where , denotesthescalarproductind =C2(|E|+2|I|). h· ·i K∼ Alinearsubspace ofd iscalledisotropiciftheformωvanishesidenticallyon . M K M Anisotropicsubspaceiscalledmaximalifitisnotapropersubspaceofalargerisotropic subspace.Everymaximalisotropicsubspacehascomplexdimensionequalto +2 . |E| |I| LetAandBbelinearmapsof ontoitself. By(A,B)wedenotethelinearmapfrom K d = to definedbytherelation K K⊕K K (A,B)(χ χ ):=Aχ +Bχ , 1 2 1 2 ⊕ whereχ ,χ . Set 1 2 ∈K (2.9) (A,B):=Ker(A,B). M Theorem2.1([24]). Asubspace d ismaximalisotropicifandonlyifthereexist M ⊂ K linearmapsA, B : suchthat = (A,B)and K→K M M (i) themap(A,B): d hasmaximalrankequalto +2 , (2.10) K→K |E| |I| (ii) AB†isself-adjoint,AB† =BA†. Undertheconditions(2.10)bothA ikBareinvertibleforallk>0. ± HEATKERNELSONMETRICGRAPHS 5 Definition2.2. Twoboundaryconditions(A,B)and(A′,B′)satisfying(2.10)areequiv- alent if the corresponding maximal isotropic subspaces coincide, that is, (A,B) = M (A′,B′). M The boundary conditions (A,B) and (A′,B′) satisfying (2.10) are equivalent if and only if there is an invertible map C : such that A′ = CA and B′ = CB (see K → K Proposition3.6in[29]). ByLemma3.3in[29],asubspace (A,B) d ismaximalisotropicifandonlyif M ⊂ K (2.11) (A,B)⊥ = (B, A). M M − Wementionalsotheequalities (A,B)⊥ = Ker(A,B) ⊥ =Ran(A,B)†, M (A,B)=(cid:2)Ran( B,A)(cid:3)†. M − Thereisanalternativeparametrizationofmaximalisotropicsubspacesofd byunitary K transformationsin (see[28]andProposition3.6in[29]). Asubspace (A,B) d is maximalisotropiKcif andonly if foran arbitraryk R 0 the operMatorA+i⊂kBKis ∈ \{ } invertibleand (2.12) S(k;A,B):= (A+ikB)−1(A ikB) − − isunitary.Moreover,givenanyk R 0 thecorrespondencebetweenmaximalisotropic subspaces d andunitaryo∈pera\to{rs}S(k;A,B) U( +2 )on isone-to-one, M⊂ K ∈ |E| |I| K aresultdatingbacktoBott[6]andrediscoveredin[4],[21],and[25]. Therefore,wewill usethenotationS(k; )forS(k;A,B)with (A,B)= . M M M Under the duality transformation ⊥, as a direct consequence of (2.11) and M 7→ M (2.12),theoperators(2.12)transformasfollows(seeCorollary2.2in[24]): (2.13) S(k; ⊥)= S(k−1; ). M − M There is a one-to-one correspondence between all self-adjoint extensions of ∆0 and maximal isotropic subspaces of d (see [24], [29]). In explicit terms, any self-adjoint K extensionof∆0isthedifferentialoperatordefinedby(2.3)withdomain (2.14) Dom(∆)= ψ [ψ] , { ∈D| ∈M} where is a maximal isotropic subspace of d . Conversely, any maximal isotropic subspacMe of d defines through (2.14) a selfK-adjoint operator ∆( ,a). If = ˘ , M K M I we willsimplywrite ∆( ). Inthe sequelwe will calltheoperator∆( ,a) a Laplace M M operator on the metric graph ( ,a). From the discussion above it follows immediately G thatanyself-adjointLaplaceoperatoron equals∆( ,a)forsomemaximalisotropic H M subspace . Moreover,∆( ,a)=∆( ′,a)ifandonlyif = ′. M M M M M FromTheorem2.1itfollowsthatthedomainoftheLaplaceoperator∆( ,a)consists M offunctionsψ satisfyingtheboundaryconditions ∈D (2.15) Aψ+Bψ′ =0, with(A,B)subjectto(2.9)and(2.10). Hereψandψ′aredefinedby(2.6). Withrespecttotheorthogonaldecomposition = (−) (+) anyelementχ K KE ⊕KI ⊕KI of canberepresentedasavector K χ e e∈E { } (2.16) χ= χ(−) . { i }i∈I χ(+) { i }i∈I   6 V.KOSTRYKIN,J.POTTHOFF,ANDR.SCHRADER Considertheorthogonaldecomposition (2.17) = v K L v∈V M with the linearsubspaceofdimensiondeg(v)spannedbythoseelements(2.16)of v L K whichsatisfy χ =0 if e isnotincidentwiththevertex v, e ∈E (2.18) χ(−) =0 if v isnotaninitialvertexof i , i ∈I χ(+) =0 if v isnotaterminalvertexof i . i ∈I Obviously,thesubspaces and areorthogonalifv =v . Setd := =LvC12deg(Lv)v.2Obviously,eachd 1 6inhe2ritsasymplecticstructure Lv Lv ⊕Lv ∼ Lv fromd inacanonicalway,suchthattheorthogonaldecomposition K d =d v L K v∈V M holds. Definition2.3. Giventhegraph = (V, , ,∂),boundaryconditions(A,B)satisfying G G I E (2.10) are called local on if the maximal isotropic subspace (A,B) of d has an G M K orthogonalsymplecticdecomposition (2.19) (A,B)= , v M M v∈V M with maximal isotropic subspaces of d . Otherwise the boundary conditions are v v M L callednon-local. ByProposition4.2in[29],giventhegraph = (V, , ,∂),theboundaryconditions G G I E (A,B)satisfying(2.10)arelocalon ifandonlyifthereisaninvertiblemapC : G K→K and linear transformations A(v) and B(v) in such that the simultaneous orthogonal v L decompositions (2.20) CA= A(v) and CB = B(v) v∈V v∈V M M arevalid. Fromtheequality (A,B) = (CA,CB)itfollowsthatthesubspaces v M M M in(2.19)areequalto (A(v),B(v)). M Boundary conditions (A(v),B(v)) induce local boundary conditions (A,B) on the graph with G (2.21) A= A(v) and B = B(v). v∈V v∈V M M From(2.20)wegetthat (2.22) S(k;A,B)=S(k;CA,CB)= S(k;A(v),B(v)) v∈V M holdswithrespecttotheorthogonaldecomposition(2.17). Thefollowingpropositionistakenfrom[29]. Proposition 2.4. Let = (A,B) be a maximal isotropic subspace. The following M M conditionsareequivalent: (i) S(k; )isk-independent, M HEATKERNELSONMETRICGRAPHS 7 (ii) S(k; )isself-adjointforsomek>0, (iii) forsoMmek>0thereisanorthogonalprojectionP suchthatS(k; )=I 2P, M − (iv) AB† =0. Sincethispropositionwillbecrucialinwhatfollows,werecallthe Proof. (i) (ii). AssumethatS(k; )isk-independent.Then,by(2.12),foranyeigen- ⇔ M vectorχ witheigenvalueλtheequality ∈K (λ+1)Aχ+ik(λ 1)Bχ=0 − holdsforallk>0. Undertheconditions(2.10)wehaveKerA KerB(seeLemma3.4 in[29]).Hence,λ 1,1 .Thus,S(k; )isself-adjointfor⊥allk>0. Conversely,assu∈m{e−thatS} (k; )isseMlf-adjointforsomek > 0. Duetotheobvious 0 M equality (2.23) S(k; )= (k k )S(k ; )+(k+k ) −1 (k+k )S(k ; )+(k k ) , 0 0 0 0 0 0 M − M M − it is self-adjoint for(cid:0)all k > 0. Let χ be a(cid:1)n a(cid:0)rbitrary eigenvector of S(k ; (cid:1) ) 0 ∈ K M correspondingtotheeigenvalueλ 1,1 .Observingthat ∈{− } (k+k )λ+k k 0 0 − =λ, (k k )λ+k+k 0 0 − again by (2.23), we conclude that χ is an eigenvectorof S(k; ) correspondingto the sameeigenvalueλforallk>0. Thus,S(k; )doesnotdepenMdonk>0. M Theequivalence(ii) (iii)isobvious. ⇔ Theequivalence(iv) (ii)followsdirectlyfromtheidentity ⇔ S(k; ) S(k; )† M − M =2ik(A+ikB)−1 B(A† ikB†)+(A+ikB)B† (A† ikB†)−1 − − =4ik(A+ikB)−1(cid:2)AB†(A† ikB†)−1. (cid:3) − (cid:3) WewillwriteS( )insteadofS(k; ),wheneveranyoftheequivalentconditionsof Proposition2.4ismMet. AnalogouslyweMwilldropthek-dependencein(2.22): S( )= S(A(v),B(v))= S( ). v M M v∈V v∈V M M From Proposition 3.5 in [28] it follows that for any maximal isotropic subspace M satisfying any of the conditions of Proposition 2.4, the Laplace operator ∆( ,a) is − M nonnegative. Remark 2.5. Assume that the maximal isotropic subspace d satisfies any of M ⊂ K the conditions of Proposition 2.4. By (2.11) the orthogonalmaximal isotropic subspace ⊥ d thenalsosatisfiestheconditionsofProposition2.4. From(2.13)itfollowsthat MS( ⊂⊥)K= S( ). M − M Obviously,DirichletA = I,B = 0andNeumannA = 0,B = Iboundaryconditions satisfytheconditionsofProposition2.4withS(I,0)= IandS(0,I)= I,respectively. − Wenowprovidetwoimportantexamplesofboundaryconditionssatisfyingtheconditions referredtoinProposition2.4. 8 V.KOSTRYKIN,J.POTTHOFF,ANDR.SCHRADER Example2.6(Standardboundaryconditions). Givenagraph = (V, , ,∂)foreach G G I E vertexv V withdeg(v) 2definetheboundaryconditions(A(v),B(v))thedeg(v) ∈ ≥ × deg(v)matrices 1 1 0 ... 0 0 0 0 0 ... 0 0 − 0 1 1 ... 0 0 0 0 0 ... 0 0  −    0 0 1 ... 0 0 0 0 0 ... 0 0 A(v)=.. .. .. .. .. , B(v)=.. .. .. .. ... . . . . .  . . . . .     0 0 0 ... 1 1 0 0 0 ... 0 0  −    0 0 0 ... 0 0  1 1 1 ... 1 1         Clearly,A(v)B(v)† =0and(A(v),B(v))hasmaximalrank. Thecorrespondingunitary matrices(2.12)aregivenby 2 (2.24) [S(A(v),B(v))] = δ e,e′ e,e′ deg(v) − with δ Kronecker symbol. If deg(v) = 1, we set A(v) = 0, B(v) = 1 (Neumann e,e′ boundaryconditions)suchthat(2.24)remainsvalid. Thelocalboundaryconditions(A,B)onthegraph definedby(2.21)will becalled G standard boundaryconditions. We use the notation for the correspondingmaximal st M isotropicsubspace. Remark2.7. Consideragraphwithnointernallines =( v ,˘ , ,∂)and 2. By G { } E |E|≥ Proposition2.1in [12], thesetofallisotropicsubspacessatisfyinganyofthe equivalent conditions of Proposition 2.4, contains precisely four spaces, which correspond to the boundaryconditionsinvariantwithrespecttopermutationsofedges: (I,0)(Dirichlet), (0,I)(Neumann),standard ,andco-standard ⊥. M M Mst Mst Furthermore, byaresultin[30], inthesetofallisotropicsubspacessatisfyinganyof the equivalentconditionsof Proposition 2.4, is the only one with the property that st M everyfunctioninthedomainof∆( )iscontinuousatthevertexv. M Example 2.8 (Magnetic perturbationsof standard boundaryconditions). If the maximal isotropicsubspace (A,B)satisfiesanyoftheequivalentconditionsofProposition2.4, M thenforanyunitaryU wehave AU(BU)† =AB† =0. Thus,themaximalisotropicsubspace U := (AU,BU)alsosatisfiestheconditions M M ofProposition2.4. Inparticular,since S( U)=U†S( )U, M M wehavetherelation (2.25) tr S( U)=tr S( ). K K M M A special choice of unitary matrices U corresponds to magnetic perturbations of the Laplaceoperator∆( ,a). Byaresultin[27]anymagneticperturbationoftheLaplace M operator ∆( ,a) is unitarily equivalent to ∆( U,a) with some U = U , where v M M v∈V M everyU isunitaryanddiagonalwithrespecttothecanonicalbasisin , v v L U =diag eiϕj(v) . v j∈S(v) { } In particular, any magnetic perturbation(cid:16)of standard bou(cid:17)ndary conditions (see Example 2.6)satisfiestheconditionsofProposition2.4. HEATKERNELSONMETRICGRAPHS 9 3. HEATKERNELAND WALKS ON THEGRAPH 3.1. TheResolvent. ThestructureoftheunderlyingHilbertspace (2.2)givesnaturally H risetothefollowingdefinitionofintegraloperators. Definition3.1. TheoperatorKontheHilbertspace iscalledintegraloperatorifforall j,j′ therearemeasurablefunctionsK (,H) : I I Cwiththefollowing j,j′ j j′ ∈E ∪I · · × → properties (i) K (x , )ϕ () L1(I )foralmostallx I , j,j′ j j′ j′ j j · · ∈ ∈ (ii) ψ =Kϕwith (3.1) ψ (x )= K (x ,y )ϕ (y )dy . j j j,j′ j j′ j′ j′ j′ j′∈E∪IZIj′ X The( + ) ( + )matrix-valuedfunction(x,y) K(x,y)with |I| |E| × |I| |E| 7→ [K(x,y)] =K (x ,y ) j,j′ j,j′ j j′ iscalledtheintegralkerneloftheoperatorK. Belowwewillusethefollowingshorthandnotationfor(3.1): G ψ(x)= K(x,y)ϕ(y)dy. Z Wedenote I 0 0 (3.2) R(k;a):= 0 I 0 , 0 0 e−ika and   0 0 0 (3.3) T(k;a):= 0 0 eika 0 eika 0  withrespecttotheorthogonaldecomposition(2.4). Thediagonal matricese±ika |I|×|I| aregivenby (3.4) [e±ika] =δ e±ikaj for j,k . jk jk ∈ I Lemma3.2. Foranymaximalisotropicsubspace d theresolvent M⊂ K ( ∆( ;a) k2)−1 for k2 C spec( ∆( ;a)) with det(A+ikB)=0 − M − ∈ \ − M 6 is the integral operator with the ( + ) ( + ) matrix-valued integral kernel r (x,y;k,a),Imk>0,admitting|Ith|ere|Epr|es×enta|Iti|on |E| M r (x,y;k,a)=r(0)(x,y,k) M (3.5) i + Φ(x,k)R(k;a)−1[I S(k; )T(k;a)]−1S(k; )R(k;a)−1Φ(y,k)T, 2k − M M whereR(k;a)isdefinedin(3.2),thematrixΦ(x,k)isgivenby φ(x,k) 0 0 Φ(x,k):= 0 φ (x,k) φ (x,k) + − (cid:18) (cid:19) withdiagonalmatricesφ(x,k)=diag eikxj j∈E,φ±(x,k)=diag e±ikxj j∈I,and { } { } eik|xj−yj| [r(0)(x,y,k)] =iδ , x ,y I . j,j′ j,j′ 2k j j ∈ j 10 V.KOSTRYKIN,J.POTTHOFF,ANDR.SCHRADER If =˘ ,thisrepresentationsimplifiesto I i r (x,y,k)=r(0)(x,y,k)+ φ(x,k)S(k; )φ(y,k). M 2k M Theintegralkernelr (x,y;k,a)iscalledGreen’sfunctionorGreen’smatrix. M TheproofofLemma3.2isgivenin[28]. 3.2. Walks on Graphs and Cycles. We recall the following definitions from [28]. A nontrivialwalkw onthe graph fromj to j′ is anorderedsequence G ∈ E ∪I ∈ E ∪I formedoutofedgesandvertices (3.6) j,v ,j ,v ,...,j ,v ,j′ 0 1 1 n n { } suchthat (i) j ,...,j ; 1 n ∈I (ii) theverticesv V andv V satisfyv ∂(j),v ∂(j ), v ∂(j′), and 0 n 0 0 1 n ∈ ∈ ∈ ∈ ∈ v ∂(j ); n n ∈ (iii) for any k 1,...,n 1 the vertex v V satisfies v ∂(j ) and v k k k k ∈ { − } ∈ ∈ ∈ ∂(j ); k+1 (iv) v =v forsomek 0,...,n 1 ifandonlyifj isatadpole. k k+1 k ∈{ − } Ifj,j′ thisdefinitionisequivalenttothatgivenin[29]. The∈nuEmbernisthecombinatoriallength w andthenumber comb | | n w = a >0 | | jk k=1 X isthemetriclengthofthewalkw. Atrivialwalkonthegraph fromj toj′ isatriple j,v,j′ such G ∈ E ∪I ∈ E ∪I { } that v ∂(j) and v ∂(j′). Otherwise the walk is called nontrivial. In particular, if ∈ ∈ ∂(j) = v ,v , then j,v ,j and j,v ,j are trivial walks, whereas j,v ,j,v ,j 0 1 0 1 0 1 { } { } { } { } and j,v ,j,v ,j arenontrivialwalksofcombinatoriallength1andofmetriclengtha . 1 0 j { } Boththecombinatorialandmetriclengthofatrivialwalkarezero. We will say thatthe walk (3.6) leavesthe edgej throughthe vertexv andentersthe 0 edgej′ throughthevertexv . Atrivialwalk j,v,j′ leavesj andentersj′ throughthe n { } samevertexv. Foranygivenwalkw fromj toj′ we denotebyv (w)thevertex − throughwhichthewalkleavesthe∈edEge∪jIandby∈v E(w∪)Ithevertexthroughwhichthewalk + enterstheedgej′. Fortrivialwalksonehasv (w)=v (w). − + Assumethattheedgesj,j′ arenottadpoles.Forawalkwfromj toj′weset ∈E ∪I x if v (w)=∂−(j), dist(x ,v (w)):= j − j − (aj xj if v−(w)=∂+(j), − and x if v (w)=∂−(j), dist(x ,v (w)):= j′ + j′ + (aj xj if v+(w)=∂+(j). − Awalkw = j,v ,j ,v ,...,j ,v ,j′ traversesaninternaledgei ifj =ifor 0 1 1 n n k some1 k n{. Itvisitsthevertexv ifv} = v forsome0 k n.∈ThIescoren(w) k ≤ ≤ ≤ ≤

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.