ebook img

Heat generation due to spin transport in spin valves PDF

0.31 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Heat generation due to spin transport in spin valves

Heat generation due to spin transport in spin valves Xiao-XueZhang,Pei-SongHe,Bao-HeLi,Yao-HuiZhu∗ PhysicsDepartment,BeijingTechnologyandBusinessUniversity,Beijing100048,China Abstract Using a macroscopic approach, we studied theoretically the heat generation due to spin transport in a typical spin valve with 7 nonmagnetic spacer layer of finite thickness. Our analysis shows that the spin-dependent heat generation can also be caused by 1 another mechanism, the spin-conserving scattering in the presence of spin accumulation gradient, in addition to the well-known 0 2spin-flipscattering. Thetwomechanismshaveequalcontributionsinsemi-infinitelayers,suchastheferromagneticlayersofthe spinvalve. However,inthenonmagneticlayerofathicknessmuchsmallerthanitsspin-diffusionlength,thespin-dependentheat n generation is dominated by the spin-flip scattering in the antiparallel configuration, and by the spin-conserving scattering in the a Jparallel configuration. We also proved that the spin-dependent heat generation cannot be interpreted as the Joule heating of the 5 spin-coupled interface resistance in each individual layer. An effective resistance is proposed as an alternative so that the heat 1generationcanstillbedescribedsimplybyapplyingJoule’slawtoanequivalentcircuit. ]Keywords: spinvalve,heatgeneration,spin-flipscattering,spin-conservingscattering,spin-coupledinterfaceresistance i c s - l1. Introduction finitethickness,suchasthenonmagnetic(NM)spacerlayerin r t aspinvalve.Thevariationofheatproductionwiththethickness m Heat generation is a serious issue even for spintronic de- oftheNMlayerisalsoanimportantproblem. .vices.[1,2,3]Forexample,largecurrentisusuallyrequiredfor t atheoperationofaspin-transfer-torquemagneticrandom-access From a macroscopic viewpoint, Ref. [6] also showed that mmemory.[4]Thereductionoftheworkingcurrentandtheasso- Joule heating of the spin-coupled interface resistance (r ) is SI -ciatedheatingisstillachallengingproblem. Moreover,heating equaltotheadditionalheatgenerationduetospintransportin d inspintronicdevicesleadstotemperaturegradient,whichmay aspinvalvewithoutaNMspacerlayer. Itisnecessarytostudy n inversely have remarkable influence on the spin transport via o whether this conclusion holds generally for spin valves with cthespin-dependentSeebeckeffect.[5] NM spacer layers of finite thickness. This question is closely [ Recenttheoreticalinvestigationshaveshownthatthereisstill related to the nonlocal character of the heat generation, which dissipationevenifapurespincurrentispresent.[6,7,8,9,10] 1 issimilartothesituationofspinpumpingdiscussedinRef.[9]. vMeanwhile,experimentalstudieshavealsodemonstratedvari- Itiswell-knownthattheNMlayerinaspinvalvehasnocon- 4ous spin-dependent heating effects. [11, 12, 13, 14, 15, 16] It tributiontothespin-coupledinterfaceresistancebecauseofthe 8hasbeenwellestablishedthatheatgenerationinspintronicde- absenceoftheextrafield.[17,18]However,theNMlayercon- 9 vices is dependent on the spin accumulation and spin current tributestotheadditionalheatgenerationduetospintransport. 3 incomparisontothatinconventionalelectronicdevices. How- 0 ThustheheatgenerationdoesnotobeyJoule’slawineachin- .ever,previousworksdidnotpaymuchattentiontothedistinc- dividuallayer,althoughitdoesthroughoutthewholestructure. 1 tionsandcharacteristicsofthevariousmechanismscausingthe 0 Thischaracterneedstobeinterpretedproperly.Inviewofthese heat generation, especially the one due to the spin-conserving 7 openquestions,westudiedanalyticallytheheatgenerationdue 1scattering. This mechanism can also lead to spin-dependent tospintransportinaspinvalveusingamacroscopicapproach :heat generation when electrons flow to positions with lower v basedontheBoltzmannequation.[6] chemical potential without spin flip. We will show that this i X mechanismcanbeidentifiediftheequationoftheheatgener- Thispaperisorganizedasfollows. InSec.2, wederivethe rationiswritteninamoreappropriateform, inwhichallterms basicequationsfortheheatgenerationinmagneticmultilayers a are exactly the products of current-force pairs. Unfortunately, and find the general relation between the spin-dependent heat notallofthecurrent-forcepairsarecorrectlychoseninthepre- generationandthespin-coupledinterfaceresistance. Thenthe vious papers. Furthermore, it is worthwhile to investigate in basicequationsareappliedtoaspinvalveinSec. 3. Wealso depth the relative magnitude of heat generation due to spin- compare the contribution from the spin-conserving and spin- conserving and spin-flip scattering, especially in a layer with flip scattering. In Sec.4, we discuss in depth the validity of thespin-coupledinterfaceresistanceandintroducetheeffective ∗Correspondingauthor resistanceasanalternative. Finally, ourmainresultsaresum- Emailaddress:[email protected](Yao-HuiZhu) marizedinSec.5. PreprintsubmittedtoElsevier January17,2017 2. Basicequations exactly the current corresponding to the force ∂∆µ/∂z, which hasonlyexponentialterms. Onecanseethiseasilybysubtract- We are mainly concerned with the heat generation in a ingthe‘±’componentsofEq.(A.4) spin valve driven only by a constant current of density J, which flows in the z-direction and perpendicular to the layer 1 ∂∆µ J =∓βJ+ (4) plane.[17]Insteadystate,thetimerateofheatgenerationcan spin eρ∗ ∂z F be calculated by using a macroscopic equation like Eq. (6) in wheretheFMlayeralsohas‘up’(‘down’)magnetization. The Ref.[6] totalspincurrentinEq.(4), J , hasbeenwrittenasthesum spin σ = J+∂µ¯+ + J−∂µ¯− + 4(∆µ)2G (1) ofabulktermandanexponentialone heat e ∂z e ∂z e2 mix Jbulk =∓βJ (5) spin where we use σ to denote the heat-generation rate follow- heat 1 ∂∆µ ing Ref. [19]. This kind of equation can be derived by using Jexp = (6) spin eρ∗ ∂z theBoltzmannequation[6]aswellasnonequilibriumthermo- F dynamics[19]inthelinearregime. InEq.(1), J+ (J−)andµ¯+ Therefore, it is necessary to transform the first two terms of (µ¯ ) are the current density and the electro-chemical potential − σ inEq.(2)intoexactcurrent-forcepairs. Fortunately,this heat in spin-up (down) channel, respectively. The electron-number desired form can be achieved by simply substituting Eqs. (3) currentsaregivenby−J /e,where−eisthechargeofanelec- ± and(4)intoEq.(2) tron. Moreover,∆µ = (µ¯+−µ¯−)/2describesthespinaccumu- lation, and Gmix defined by Eq. (5) of Ref. [6] stands for the σbulk+σsc = JEF+ Jsepxipn∂∆µ (7) associatedspin-fliprate. heat heat 0 e ∂z ThefirsttwotermsofEq.(1)canberegardedasthedecrease wherewehaveintroduced in the (electrochemical) potential energy current or the heat generation,ineachspinchannel.[20]Theheat-generationrates Jexp ∂∆µ of the two channels are unequal in ferromagnetic (FM) layers σsc = spin (8) heat e ∂z andatspin-selectiveinterfaces. Ifthetwochannelscannotex- changeheateffectivelywitheachotherorotherheatreservoir, The first term, σbulk = JEF, in Eq. (7) has become the prod- theymayhavedifferenttemperatures[21]. However,thisisbe- uctofacurrent-foheractepaira0nditmeansthebulkJouleheating. yondthescopeofthepresentworkandweneglectthiseffectby Thesecondterm,σsc ,hasalsobeenwrittenastheproductof assumingthatthetwospinchannelscanexchangeenergyeffec- acurrentanditscorhreeastpondingforce,anditcanberegardedas tively(thethermalizedregime[21]). Thenitismoremeaning- the heat generation due to the spin-conserving (sc) scattering. fultowriteEq.(1)intermsof J = J++J− and Jspin = J+−J− The reason is that, the gradient of spin accumulation drives a likeEq.(12c)ofRef.[6] spinfromapositiontoanotheronewithlowerchemicalpoten- tialviathespin-conservingscattering,andtheexcesschemical J∂µ¯ J ∂∆µ ∂J ∆µ σ = + spin + spin (2) potentialofthespinleadstoheatgeneration. Thiscanalsobe heat e ∂z e ∂z ∂z e understoodbywritingthistermasthesumofthecontributions whereµ¯ =(µ¯++µ¯−)/2istheaverageelectrochemicalpotential. from the two spin channels (see Appendix B). The heat gen- Althougheachtermofσ hasbeenwrittenastheproductof eration due to spin-conserving scattering σsc did not attract heat heat generalized force and current, which is consistent with the re- muchattentioninthepreviousstudies,suchasRefs.[6,9].This quirementofnonequilibriumthermodynamics,[19]thecurrent- mechanismisespeciallyimportantfortheheatgenerationdue force pairs in the first two terms of Eq. (2) are not exact pairs totheinterfaceresistancebecausethespin-flipscatteringisusu- andneedtoberewritteninamoreappropriateform. ally neglected at interfaces. We will look into σsc in Sec. 3, heat InFMlayers,thetotalcurrentdensity J doesnotdependon andcompareitwithσsf (seebelow)intypicalspinvalves. heat position z and thus it is not exactly the current corresponding Nextwewillrewritethelasttermofσ ofEq.(2)inaform heat totheforce∂µ¯/∂z,whichhasexponentialtermsofz. Thisbe- withmoreobviousphysicalinterpretation. Subtractingthe‘±’ comesobviousifwesumthe‘±’componentsofEq.(A.4) componentsofEq.(A.3)intwodifferentways,onecanderive 1∂µ¯ β∂∆µ ∂J 4eN ∆µ ∆µ F = = EF± (3) spin = s = (9) e ∂z 0 e ∂z ∂z τF(N) er lF(N) sf F(N) sf inanFMlayerwith‘up’(‘down’)magnetizationandbulkspin asymmetry coefficient β. Here, β and the spin-dependent re- where rF = ρ∗FlsFf and rN = ρ∗NlsNf. In Eq. (9), Ns is the density sistivityρ↑(↓) [orconductivityσ↑(↓)]satisfytherelationρ↑(↓) = ofstatesforspin sandτFsf (τNsf)thespin-fliprelaxationtimeof 1/σ = 2ρ∗[1−(+)β].[17]Notethatthesubscript“↑”(“↓”) theFM(NM)layer. ThenusingEq.(9),wecanrewritethelast ↑(↓) F termofEq.(2)as denotes the majority (minority) spin direction. In Eq. (3), the effectivefieldF(z)oftheFMlayershasbeenseparatedintothe σshfeat =αspinµm (10) bulk term EF = J(1−β2)ρ∗ and the exponential term. Mean- where α = µ N /τ and µ = 2∆µ. Here α describes 0 F spin m s sf m spin while, the spin current J has a bulk term and thus it is not thedampingrateofthespinaccumulation,thatis,thenumber spin 2 ofelectronsflippingfromspin-uptospin-downstatesperunit where∆VCand∆VCaredefinedas 0 I timeperunitvolume,whichiscalledthespinfluxψ˙ inRef.[7]. ∆VC = J(1−γ2)r∗ (20) Thusαspinandµmcanalsoberegardedasageneralizedcurrent- 0 b force pair, and σsf stands for the heat generation due to the ∆µ(z+)−∆µ(z−) heat ∆VC = JrC =±γ C C (21) spin-flip(sf)scattering. I SI e Collecting all the terms, we can then write the rate of heat In Eq. (21), rC is defined as the spin-coupled interface resis- generationinFM(NM)layerintheformofJoule’slaw SI tance of the interface. The sign ‘+’ (‘−’) in Eq. (21) corre- σ =σbulk+σsc +σsf sponds to the configuration where the spin-up channel is the heat heat heat heat =(1−β2)ρ∗ J2+ρ∗ (cid:16)Jexp(cid:17)2+ρ∗ (cid:34) ∆µ (cid:35)2 (11) mhaivneority(majority)one. SubstitutingEq.(19)intoEq.(13),we F(N) F(N) spin F(N) erF(N) Σ = J(cid:16)∆VL+∆VC+∆VR(cid:17)+J(cid:16)∆VL+∆VC+∆VR(cid:17) heat 0 0 0 I I I wherewehaverewrittenσsc andσsf usingEqs.(6)and(9). (cid:104) (cid:105) (22) Thefirsttermσbulk isduethoeatthenomheiantalresistanceandexists + Jspin(zR)∆µ(zR)−Jspin(zL)∆µ(zL) /e heat nomatterwhetherthecurrentisspin-polarizedornot.However, wherethefirsttermontheright-handsideisthenominalJoule σsc and σsf rely on the gradients of the spin accumulation heat heat heatingandthesecondthe‘Jouleheating’ofthespin-coupled andspincurrentaccordingtoEqs.(6)and(9),respectively. interfaceresistance. ThelasttermofEq.(22)disappearsonce Finally,wewilldiscussthegeneralrelationbetweenthespin- J ∆µhasthesamevalueatz andz . spin L R dependent heat generation and the ‘Joule heating’ of the spin- On the other hand, by using Eqs. (3) and (4), one can also coupled interface resistance. [6, 17] To this purpose, we write rewriteEq.(2)as Eq.(2)as σheat = JF+ 1e∂∂z(cid:16)Jspin∆µ(cid:17) (12) σheat = JE0F(N)+ 1e∂∂z(cid:16)Jsepxipn∆µ(cid:17) (23) by using F = (1/e)∂µ¯/∂z. Without loss of generality, we will wherethelasttermisthesumofσsc andσsf . Thenthetotal heat heat considerasegmentofamultilayerfromzLtozR,whichincludes heat-generation rate in the segment zL < z < zR can also be aninterfaceatzC (zL < zC < zR). IntegratingEq.(12)fromzL writtenas tozR,wecanwritethetotalheatgenerationinthissegmentas Σ = J(cid:16)∆VL+∆VC+∆VR(cid:17)+Σspin (24) Σ =ΣL +ΣC +ΣR (13) heat 0 0 0 heat heat heat heat heat where where ΣLheat = J∆V0L+J∆VIL+ 1e (cid:16)Jspin∆µ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)z−C (14) Σshpeiant = 1e (cid:16)Jsepxipn∆µ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)zz−CL +Σshpeiant,C+ 1e (cid:16)Jsepxipn∆µ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)zzR+C (25) zL standsforthespin-dependentpartofthetotalheatgeneration. ΣCheat = eJ (cid:104)µ¯(z+C)−µ¯(z−C)(cid:105)+ 1e (cid:16)Jspin∆µ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)zz+C− (15) Thecontributionofthe1interface(cid:104)canbewrittenas(cid:105) ΣRheat = J∆V0R+J∆VIR+ 1e (cid:16)Jspin∆µ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)zzR+ C (16) whereJsa (zΣsh)peiianst,Cde=fineeJdsspabiny(zC) ∆µ(z+C)−∆µ(z−C) (26) C spin C aredefinedastheintegralheat-generationratefortheleftlayer, J (z )=∓γJ+Jsa (z ) (27) theinterface,andtherightlayer,respectively.InEqs.(14),∆VL spin C spin C 0 and∆VLaredefinedas OnecanseethatEq.(27)issimilartoEq.(4). Itisalsoeasyto I (cid:90) zC (cid:16) (cid:17) verifyΣCheat = J∆V0C+Σshpeiant,C. UsingEq.(A.24),wecanrewrite ∆V0L = E0Ldz= J 1−β2 ρ∗L(zC−zL) (17) Σshpeiant,CintheformofJoule’slaw zL ∆VL = JrL =(cid:90) zC(cid:16)F−EL(cid:17)dz=±β∆µ(z−C)−∆µ(zL) (18) Σshpeiant,C =rb∗(cid:104)Jsspain(zC)(cid:105)2 (28) I SI 0 e zL whichwillbediscussedfurtherinSec.3.2. where we have used Eq. (3). Similarly, ∆VR and ∆VR in (16) ComparingEqs.(22)and(24),onecanseethatΣspinisequal 0 I heat are defined in the regime z < z < z . In Eq. (18), we have tothe‘Jouleheating’ofthespin-coupledinterfaceresistance C R defined rL as the spin-coupled interface resistance of the left (cid:104) (cid:105) SI Σspin = J ∆VL+∆VC+∆VR (29) layerbyextendingthedefinitioninRef.[17]. heat I I I The interface has been treated as a layer with an infinites- ifthelasttermofEq.(22)vanishes,thatis, imal thickness in Eq. (15). This approach is equivalent to the J (z )∆µ(z )= J (z )∆µ(z ) (30) methodusedinRef.[6],whichisproveninAppendix C.Using spin L L spin R R Eqs.(A.21),(A.24),and(A.25),wecanrewriteEq.(15)as Infact,thisrequirementcanbesatisfiedeasilybecauseamag- ∆µ(z+)−∆µ(z−) neticmultilayerusuallyhasseveralpositions,where Jspin∆µis ΣCheat = J∆V0C+J∆VIC+Jspin(zC) C e C (19) zero. WewilldiscussrSIinmoredetailinSec.4. 3 3. Heatgenerationinspinvalves 1 .0 In this section, we will apply the basic equations derived in tion S Nh e,saft,A P o r S Nh e,sact,P Sec.2tospinvalveswithfiniteNMlayer. Theinsertionofthe ra 0 .8 e NinMhelaatyegreneenraabtlieosnubsettowesetundypamraollreelr(ePa)lisatnicdalalnytitphaeradlilffeler(eAnPce) t gen 0 .6 a alignmentsofthetwoFMsaswellastheinfluenceoftheNM- l he 0 .4 layerthicknessontheheatgeneration. Tobespecific,weplace ra theoriginofthez-axisatthecenteroftheNMlayer. Theleft teg 0 .2 S N ,s c ,A P o r S N ,s f,P and right FM/NM interfaces are located at z = −d and z = In h e a t h e a t 0 .0 d, respectively. The two semi-infinite FM layers are made of the same material with collinear magnetization. The various 0 .0 0 1 0 .0 1 0 .1 1 1 0 quantities in Eq. (11) can be derived according to Valet-Fert N M -la y e r th ic k n e s s 2x theory [17] and the detailed results are listed in Appendix A. SubstitutingtheseresultsintoEq.(11),onecangetthetimerate Figure1:Integralheatgenerationrate(inunitofΣNhe,aAtPandΣNhe,aPtforAPandP ofheatgenerationintheleft(‘+’)andright(‘−’)FMlayers alignments,respectively)inhalfoftheNMlayerasafunctionoftheNM-layer thickness(inunitoflN). Thered-solidcurvecorrespondstotheintegralheat sf   generationduetothespin-flip(spin-conserving)scatteringintheAP(P)config- σPhe(AatP) =(cid:16)1−β2(cid:17)ρ∗FJ2+ΣFhe,Pa(tAP)l2F exp±2(zlF±d) (31) u(srpaitnio-nfl,ipa)nsdcathtteerbinlagckin-dtahsehAedPc(uPr)vceosntfiangdusraftoiornt.hatduetothespin-conserving sf sf where where ΣFhe,Pa(tAP) =(cid:90)−∞−d(cid:104)σshce,aPt(AP)+σhsfe,aPt(AP)(cid:105)dz=rF(cid:104)αPF(AP)J(cid:105)2 (32) ΣNhe,aPt =(cid:90) 0(cid:16)σshce,aPt+σshfe,aPt(cid:17)dz=rNP (cid:16)αPNJ(cid:17)2 (38) −d isthespin-dependentpartoftheintegralheatgenerationinthe isthespin-dependentpartoftheintegralheatgenerationinthe left FM layer. The right FM layer has the same contribution becausebothσsc,P(AP)andσsf,P(AP)areevenfunctionsaboutthe lefthalfoftheNMlayer. Similarly,therighthalfhasthesame heat heat contribution due to symmetry. In Eq. (38), rP is defined as origin. ThedimensionlessparameterαP(AP) inEq.(32)willbe N F rP = r tanhξ and the dimensionless parameter αP(AP) will be determinedbyboundaryconditionsinSec.3.2. N N N determinedbyboundaryconditionsinSec.3.2. TheheatgenerationintheNMlayerismorecomplicatedand hastobetreatedtermbyterm.Thebulktermσbulkhasthesame heat 3.1. Comparisonofspin-conservingandspin-flipscattering valueσbulk =ρ∗J2foreitherAPorPalignment,anditsintegral over theheNatM laNyer (−d < z < d) can be regarded as the Joule Now we are ready to compare the magnitude of σshceat and heatingoftheNM-layernominalresistance2dρ∗. FortheAP σshfeat intwotypicalsituations: asemi-infinitelayerandafinite N layer. Thespinvalvecontainsbothtypesoflayers,namelythe alignment,thetwospin-dependenttermscanbewrittenas semi-infinite FM layers and the NM layer with a finite thick- σhsce,aAtP = lN2sΣinNhhe,aA(t2Pξ)sinh2lzN (33) ntieasllsy. IonnththeeFsMcallaeyoefrst,htehespsipni-ndaiffcucusimonulaletinognthdelscfaaysseshxopwonnenin- sf sf Eqs.(A.5)and(A.13). Withoutlossofgenerality,wewillcon- σshfe,aAtP = lN2sΣinNhhe,aA(t2Pξ)cosh2lzN (34) seiadseilryovnelyriftyheleftFMlayer(z < −d). UsingEq.(11),onecan sf sf   whereΣN,AP =(cid:90) 0(cid:16)σsc,AP+σsf,AP(cid:17)dz=rAP(cid:16)αAPJ(cid:17)2 (35) σshce,aPt(AP) =σshfe,aPt(AP) =ΣFhe,Pa(tAP)l1sFf exp2(zlsF+f d) (39) heat −d heat heat N N which shows that the spin-conserving scattering has the same contribution tothe heatgeneration atany positionas thespin- isthespin-dependentpartoftheintegralheatgenerationinthe flipscatteringinsemi-infinitelayers. Thustheirintegralsfrom lefthalfoftheNMlayer.Thecontributionfromtherighthalfis equaltothatfromthelefthalfsincebothσsc,AP andσsf,AP are −∞to−darealsoequaltoeachother[seeEq.(32)]. even functions. In Eq. (35), rAP is defined ahesatrAP = rhecatothξ, AsforthefiniteNMlayer,itismoremeaningfultocompare where we have ξ = d/lN. OnNthe other hand, fNor theNP align- theintegralheatgenerationduetothespin-conservingandspin- sf flip scattering, denoted by ΣN,sc and ΣN,sf, respectively. In the ment,wehave heat heat APconfiguration,wehave σshce,aPt = lN2siΣnNhhe,(aP2tξ)cosh2lzN (36) ΣN,sc,AP =(cid:90) 0σsc,APdz= 1−ηΣN,AP (40) sf sf heat heat 2 heat σshfe,aPt = lN2siΣnNhhe,(aP2tξ)sinh2lzN (37) ΣNhe,asft,AP =(cid:90)−d0σshfe,aAtPdz= 1+2ηΣNhe,aAtP (41) sf sf −d 4 wherethedimensionlessparameterη = 2ξ/sinh(2ξ)describes (a) the asymmetry between ΣN,sc,AP and ΣN,sf,AP. This becomes heat heat moreobviousifonelooksattheirrelativedifference(ΣN,sf,AP− heat ΣN,sc,AP)/ΣN,AP = η, which decreases from 1 to 0 as ξ varies heat heat from 0 to ∞. Figure 1 shows their variation with the NM layer thickness 2ξ (in unit of lN). In the regime of 2ξ = sf 2d/lN (cid:28) 1, which is practical for experiments, ΣN,sc,AP/ΣN,AP and sΣfN,sc,AP/ΣN,AP approach 0 and 1, respectivelyh.eaTtherefhoeraet, (b) heat heat the spin-dependent heat generation of the NM layer is domi- natedbythespin-flipscatteringintheAPalignment. Thisfea- turecanbeinterpretedasfollows.Wehavez/lN (cid:28)1intheNM sf layer(−d < z < d)if2d/lN (cid:28) 1. Thisallowsustoexpandthe sf spinaccumulation∆µ[seeEq.(A.9)]intermsofz/lN andkeep sf up to the first-order term. The result is a term independent of (c) position because the first-order term also vanishes. Then Jexp spin approacheszerobecauseitisproportionaltothegradientof∆µ accordingtoEq.(4). Therefore,σsc,AP approacheszerointhis heat regimeaccordingtoEq.(8). InthePconfiguration,theintegralheatgeneration,ΣNhe,asct and Figure 2: Effective circuits for the spin-dependent heat generation in a spin ΣN,sf,canbewrittensimilarlyas valvewithAPandPconfigurationneglectingtheinterfaceresistance. (a)In heat theAPconfiguration,theresistancerFsf andrFschavethesamevalue2rF. The ΣN,sc,P =(cid:90) 0σsc,Pdz= 1+ηΣN,P (42) vηa),riraebslpeercetisvisetlayn.cTesheryNsc,vAaPryanwditrhNsf,tAhPeathreicdkenfienssedofasth2erNANPM(1l−ayηe)r.an(db)2IrnNAPth(1e+P heat −d heat 2 heat configuration,rsf andrscarethesameasthosein(a),whilersc,Pandrsf,Pare (cid:90) 0 1−η definedas2rP(1F+η)anFd2rP(1−η),respectively.(c)TheequiNvalentcirNcuitof ΣN,sf,P = σsf,Pdz= ΣN,P (43) (a)and(b).TNhevariableeffeNctiveresistancesaredefinedbyEqs.(71)and(72). heat heat 2 heat −d However,theirrelativemagnitudeisswitchedincomparisonto whichsatisfytheidentityαP(AP)+αP(AP) =β. Theseparameters the AP alignment and the spin-conserving scattering becomes F N canbeinterpretedbytheeffectivecircuitsinFigs.2(a)and(b). dominantintheregime2d/lN (cid:28) 1(seeFig.1). Thisbehavior sf can be understood in a similar way to the AP configuration. In the AP configuration shown by Fig. 2(a), the current of Thelow-orderexpansionofspincurrent J [seeEq.(A.20)] density βJ/2 flows from the spin-down to the spin-up channel spin is independent of position. Then ∆µ approaches zero because ineitherhalfofthespinvalve. Itmodelstheelectron-number it is proportional to the gradient of J according to Eq. (9). current (spin flux) flowing inversely due to the spin-flip scat- spin Therefore, σsf,P approaches zero in this regime according to tering in the FM and NM layers. We have the current density heat JAP = JαAP/2and JAP = JαAP/2byusingsimplecircuitthe- Eq.(10). F F N N In the opposite regime, 2ξ = 2d/lN (cid:29) 1, the integral heat orem. Theheatgenerationduetothespin-flipscatteringinthe sf FM layer and either half of the NM layer is modeled by the generation ΣN,sc and ΣN,sf approach the same value for both P heat heat Joule heating of resistances rsf and rsf,AP, respectively. Sim- andAPalignmentsasshowninFig.1.Thismeansthatthespin- F N ilarly, the resistances rsc and rsc,AP model the heat generation conservingscatteringhasthesamecontributionasthespin-flip F N due to the spin-conserving scattering. One can easily recover onewhentheNM-layerthicknessbecomesmuchlargerthanthe spin-diffusionlength. Thesemi-infinitecasediscussedaboveis Eqs.(32),(40),and(41)byapplyingJoule’slawtothecircuit. In the P configuration as shown by Fig. 2(b), the current of recoveredinthelimitofthicklayer. density βJ/2 flows from the spin-down to the spin-up channel in the left half of the spin valve, which is similar to the AP 3.2. Boundaryconditionsandheatgenerationatinterfaces configuration. However, the current of density βJ/2 flows in- If the FM/NM interface is an Ohmic contact, the interface verselyintherighthalfofthespinvalvebecausethesignofthe resistanceisusuallynegligibleincomparisontothebulkterm. spinaccumulationandassociatedspinrelaxationisswitchedin Using the general solutions and boundary conditions without this half. One can find the current density JP = JαP/2 and F F interfaceresistancein Appendix A,wecandeterminethedi- JP = JαP/2fromthecircuit. ThenonecanrecoverEqs.(32), N N mensionlessparameters (42),and(43)byapplyingJoule’slawtothecircuit. Moreover, wealsoconstructedanequivalentcircuit,showninFig.2(c),for βrP(AP) thecircuitsinFigs.2(a)and(b). Theequivalentcircuithasthe αP(AP) = N (44) F r +rP(AP) sameheatgenerationastheoriginalone. However,thecurrent F N densitypassingtheequivalentcircuitisthetotalcurrentdensity βr αP(AP) = F (45) J insteadsothatitcanbeconnectedinserieswiththenominal N r +rP(AP) F N resistances(notshowninthefigure). 5 If the interface resistance has to be taken into account, the dimensionlessparameterscanbedeterminedsimilarly 50 25 (cid:104) (cid:105) β rP(AP)+r∗ −γr∗ αP(AP) = N b b (46) 40 FM1 N FM2 20 F r +r∗+rP(AP) F b N m) βr +γr∗ Ω αP(AP) = F b (47) n 30 15m) N r +r∗+rP(AP) 2 ( Ω F b N J n which still satisfy the identity αPF(AP) +αPN(AP) = β. Equations +sf,AP/at20 10F/J ( (44) and (45) can be recovered if rb∗ is neglected in Eqs. (46) scσhe and(47). 10 5 AccordingtoEq.(28),wecanwritethespin-dependentheat generationduetotheleftinterfaceresistanceas 0 0 ΣC,P(AP)(−d)=r∗(cid:104)Jsa,P(AP)(−d)(cid:105)2 (48) -60 -40 -20 0 20 40 60 heat b spin z (nm) wherethespin-upelectronsareintheminoritychannelforboth PandAPconfiguration,andJsa,P(AP)(−d)isdefinedbyEq.(27). Figure3: Thespin-dependentheatgeneration(blue-solidcurve)andtheextra spin field(red-dashedcurve)asfunctionsofpositionzinaspinvalvewithAPcon- Toshowthemeaningofthisresult,weconsiderthecurrentden- figuration. ThetwoFMlayersaremadeofCo(ρ∗ = 86nΩm,lF = 59nm, sitydrivenbytheelectricfield(ef)alone β=0.5)andtheNMlayerofCu(rN=7nΩm,lsNf =F 450nm).Thestfhicknessof theNMlayeris20nmandtheinterfaceresistanceisneglectedforsimplicity. 1∓γ Jef(−d)= J (49) ± 2 where J passesthroughr+ = 2rb∗(1+γ)andr− = 2rb∗(1−γ)in vscarlivbeisn.gWtheehweialltsgheonweratthieonv,aalinddittyheanndinltirmodituactieoenffoefctriSvIeirnesdies-- parallel. Onecaneasilyverifythatthenominalheatgeneration due to the interface resistance, [J+ef(−d)]2r+ +[J−ef(−d)]2r−, is tanceasanalternative. givenby J∆V [seeEq.(20)]. Thespincurrentresultingfrom 0 4.1. Validityofthespin-coupledinterfaceresistance theelectricfieldaloneis Jef,P(AP) = Jef(−d)− Jef(−d) = −γJ. spin + − The spin-coupled interface resistances can be calculated by The spin current due to the change of spin accumulation (sa) across the interface is the difference between JP(AP)(−d) and using Eqs. (18) and (21). Substituting Eqs. (A.8), (A.12), and spin (A.16)intoEq.(18),wehave Jef,P(AP)(−d), that is, Jsa,P(AP)(−d) = JP(AP)(−d) + γJ already spin spin spin usedinEq.(48). Thespin-dependentheatgenerationissolely rF,P(AP) =βr αP(AP) (53) SI F F causedbythespin-conservingscatteringinthepresenceofspin rN,P(AP) =0 (54) accumulationchangeacrosstheinterfacebecausethespin-flip SI scatteringisneglected. whererF,P(AP)isforeitherofthetwoFMlayersandrN,P(AP)for Similarly,thespin-dependentheatgenerationattherightin- SI SI theNMlayer. Substituting(A.24)intoEq.(21)andusingEq. terfacecanbewrittenas (52),wecanwriter duetotheinterfaceas SI ΣChe,Pat(AP)(d)=rb∗(cid:104)JsPp(iAnP)(d)+(−)γJ(cid:105)2 (50) rC,P(AP) =γr∗αP(AP) (55) SI b C where the spin-up channel is the minority (majority) one in P whichhasthesamevalueatthetwointerfacesofthespinvalve. (AP)alignment.SubstitutingJP(AP)(±d)intoEqs.(48)and(50), spin One may be tempted to interpret the spin-dependent heat we can also write the spin-dependent heat generation at each generationastheJouleheatingofthespin-coupledinterfacere- interfaceas ΣC,P(AP)(±d)=r∗(cid:104)αP(AP)J(cid:105)2 (51) sistance. AccordingtoEq.(30),thisispossibleonlyif Jspin∆µ heat b C has the same value at the two ends of the segment under con- where sideration. The spin valve has at least three points satisfying (cid:104) (cid:105) this requirement: z = ±∞ and z = 0. [17] Thus Joule’s law is γ r +rP(AP) −βr αP(AP) =γ−αP(AP) = F N F (52) valid (at least) in the following three segments: −∞ < z < 0, C N r +r∗+rP(AP) 0 < z < ∞, and of course −∞ < z < ∞. To be specific, we F b N willconsiderthelefthalf(−∞ < z < 0)ofthespinvalve. By isalsoadimensionlessparameter. using Eq. (29), we can write formally the spin-dependent heat generationastheJouleheatingofthecorrespondingr SI 4. Relationtothespin-coupledinterfaceresistance (cid:104) (cid:105) Σspin,P(AP) = J2 rF,P(AP)+rC,P(AP) (56) heat SI SI Thissectionwillgiveaspecificdiscussionontherelationbe- tween the spin-dependent heat generation and the ‘Joule heat- where we have used rN,P(AP) = 0. Note that this result does SI ing’ of the spin-coupled interface resistance r in the spin notholdforarbitrarysegmentandr J2 cannotberegardedas SI SI 6 theheatgenerationeitherbecauseitmaybenegativeincertain whereαP maybenegativeifthevariousparametersarechosen C situation. Itsrealmeaningwillbediscussedinthefollowing. properly. Then rC,P = ∆VC/J also becomes negative. There- SI I Wewillfocusonthelefthalfofthespinvalveandconsider fore, J(∆VF +∆VC) should be regarded as the work done by I I only the P alignment without loss of generality. Substituting the extra field instead of the Joule heating of the spin-coupled Jspin =−βJ+JsepxipnintoEq.(13),wehave interfaceresistancealthoughtheyareequalinsomespecialseg- (cid:16) (cid:17) ments, forexample, Σspin,P = J2rF,P + J2rC,P inthelefthalfof Σheat = J ∆V0F+∆V0C+∆V0N thespinvalve. heat SI SI +J(cid:16)∆VF+∆VC(cid:17)−∆E +Σspin,P (57) Toshowthemeaningof∆Ecp,werewriteitsfirsttermas I I cp heat wherewehaveintroduced βJ Jbulk (cid:104) (cid:105) Jbulk (cid:104) (cid:105) βJ γJ (cid:104) (cid:105) e ∆µ(z−C)= −+e µ+(z−C)−µ0 + −−e µ−(z−C)−µ0 (66) ∆E = ∆µ(z−)+ ∆µ(z+)−∆µ(z−) (58) cp e C e C C whereµ istheequilibriumchemicalpotentialandµ thechem- 0 ± and ical potential for spin s = ±, respectively. We have used the Jexp(z−) Jexp(z+) quasi-neutralityapproximation,µ+(z−C)+µ−(z−C)−2µ0 =0,[18] Σspin,P = spin C ∆µ(z−)− spin C ∆µ(z+) whenderivingEq.(66).Thetwotermsontheright-handsideof heat e C e C (59) Eq.(66)standforthechangeofenergystoredinthechemical- γJ+J (z )(cid:104) (cid:105) + spin C ∆µ(z+)−∆µ(z−) potentialimbalanceperunittimeinthetwospinchannels, re- e C C spectively, when the bulk electron-number current flows from Using Eqs. (A.21), (A.22), and (A.24), one can easily verify z−C to −∞. The reasonable source of the net energy change is that Eq. (59) is the spin-dependent heat generation defined in the work done by the extra field in the FM layer according to Eqs.(25)and(56). Notethat Jexp isdiscontinuousattheinter- Eq.(61). Similarly,thesecondtermof∆Ecpcanbewrittenas spin facelocatedatz = z although J iscontinuous. Comparing C spin Eqs.(24)and(57),on(cid:16)ehas (cid:17) γeJ (cid:104)∆µ(z+C)−∆µ(z−C)(cid:105)= J+e−f(ezC)δµ++ J−e−f(ezC)δµ− (67) J ∆VF+∆VC =∆E (60) I I cp wherewehaveintroducedδµ = µ (z+)−µ (z−)andusedthe ± ± C ± C which is valid in arbitrary segment of the spin valve. More quasi-neutrality approximation. The two terms on the right- specifically,wealsohave handsideofEq.(67)canberegardedasthechangeofenergy stored in chemical-potential imbalance of the two spin chan- βJ J∆VF = ∆µ(z−) (61) nels, respectively, whenthecurrentdrivenbytheelectricfield I e C alonetraversestheinterface. Thisenergychangeissuppliedby γJ (cid:104) (cid:105) J∆VC = ∆µ(z+)−∆µ(z−) (62) theextrafieldattheinterfaceaccordingtoEq.(62). I e C C The physical process can be summarized as follows. The where Eqs. (18) and (21) have been used. On the other hand, (cid:16) (cid:17) (cid:104) (cid:105) spin-dependentheatgenerationduetothespin-conservingand using Eq. (56) and J ∆VF+∆VC = J2 rF,P+rC,P , we also spin-flip scattering leads to the dissipation of energy stored in I I SI SI have thechemical-potentialsplittingineverylayerofthespinvalve Σshpeiant,P =∆Ecp (63) includingtheFMlayers,theinterface,andtheNMlayer. Then However,thisrelationisvalidonlyifJ ∆µhasthesamevalue thischangeofthechemical-potentialenergyiscompensatedby spin atthetwoterminalsofthesegment. Therefore, J(∆VF+∆VC) the work of the extra electric field in the FM layer and at the I I ismorecloselyrelatedto∆E thanΣspin,P.Itiscrucialtofigure interface. However,thecompensationprocessdoesnothappen outthemeaningofJ(∆VF+c∆pVC)andhea∆tE . intheNMlayersincethereisnoextrafieldinthislayer. I I cp According to the definition of ∆VF [see Eq. (18)], J∆VF I I should be regarded as the work done by the extra field, which 4.2. Effectiveresistance is dominated by the electrostatic field. [18] We stress that this workmaybenegativewhentheinterfaceresistanceisincluded. Thespin-dependentheatgenerationineachindividuallayer Toshowthisfeature,werewriteJ∆VFas cannotbeinterpretedasJouleheatingofr inthislayer.Thisis I SI easytoseeifweconsidertheNMlayer.Ithasaspin-dependent J∆VF =βr αPJ2 (64) I F F heatgenerationbutnocontributiontor accordingtoEq.(54). SI whereαP isgivenbyEq.(46). Bychoosingthevariousparam- Similaranalysisshowsthatthisresultisalsotrueinotherlay- F ersandatinterfaces. Moreover,rF,P(AP)andrC,P(AP)inEqs.(53) etersproperly, onecanmakeαP negative. ThenrF,P = ∆VF/J SI SI alsobecomesnegativeandsoitFisill-defined. SimSiIlarly, J∆IVC and(55)canbenegativewhenαPF(AP)andαPC(AP)arenegativeac- I cordingtoEqs.(46)and(52). Therefore,itisnecessarytofind standsfortheworkdonebytheextrafieldacrosstheinterface analternativetor ifonehopestodescribetheheatgeneration anditmayalsobenegative. UsingEq.(52),wehave SI ofasinglelayerwithJoule’slaw. UsingEqs.(32), (35), (38), J∆VC =γr∗αPJ2 (65) and (51), we can write the spin-dependent part of the integral I b C 7 3 .0 1 .0 S F ,A P S C ,A P h e a t 2 .5 h e a t tion 0 .8 tion ra ra 2 .0 e e n n e 0 .6 e t g t g 1 .5 a a e e l h 0 .4 S N ,P l h ra h e a t ra 1 .0 S N ,A P Integ 0 .2 S N ,A P Integ S Fh e,Aa Pt h e a t h e a t 0 .5 S F ,P 0 .0 h e a t 0 .0 0 .0 0 1 0 .0 1 0 .1 1 1 0 0 .0 0 1 0 .0 1 0 .1 1 1 0 x x N M -la y e r th ic k n e s s 2 N M -la y e r th ic k n e s s 2 Figure4: Thespin-dependentpartoftheintegralspin-dependentheatgenera- Figure5: Thevariationoftheintegralspin-dependentheatgeneration(inunit tion(inunitofΣF,AP)intheFMandNMlayersasfunctionsoftheNM-layer ofΣF,AP)withtheNM-layerthickness(inunitoflN)fortheAPalignment.The heat heat sf thickness(inunitoflN).WeusedthesameparametersasthoseofFig.3. solidanddash-dotlinesarefortheFM1layerandthelefthalfoftheNMlayer sf asinFig.4.Thecontributionoftheinterfaceresistance(rb∗=2rFandγ=0.6) isshownbythedash-dot-dotline. heatgenerationineachlayeras ΣF,P(AP) = J2r∗ (68) the limit of 2ξ → ∞, the difference between P and AP align- heat F,P(AP) mentsdisappears. ThelimitsoftheheatgenerationintheFM ΣN,P(AP) = J2r∗ (69) heat N,P(AP) and NM layers depend on rF and rN. If rF is equal to rN, all ΣC,P(AP) = J2r∗ (70) thecurvesapproachthesamelimit. Moreover,underthecondi- heat C,P(AP) tionr =r ,wealsohaveΣN,AP =ΣN,P forarbitraryNM-layer wherewehaveintroducedtheeffectiveresistances thicknFessaNccordingtoEqs.(h3ea5t)andh(e3a8t). r∗ =r (cid:104)αP(AP)(cid:105)2 (71) Whentheinterfaceresistanceistakenintoaccount,thespin- F,P(AP) F F dependent part of the integral heat generation exhibits several r∗ =rP(AP)(cid:104)αP(AP)(cid:105)2 (72) importantfeaturesasshowninFig.5. Thecontributionofthe N,P(AP) N N FM layer may decrease to zero if the NM-layer thickness in- r∗ =r∗(cid:104)αP(AP)(cid:105)2 (73) creasestoacertainvalue. ThenwehaveαAP = 0accordingto C,P(AP) b C F Eq.(32)andthespinaccumulationdisappearstogetherwiththe for one FM layer, half of the NM layer, and one FM/NM additionalfieldintheFMlayer.Inthiscase,thelossofpotential interface, respectively. The effective resistances r∗ and F,P(AP) energyduetoheatgenerationcanonlybecompensatedbythe r∗ canbeunderstoodbyconstructinganequivalentcircuit N,P(AP) additional field at the interface. Moreover, the contribution of as shown in Fig. 2(c). Comparing Eqs. (56) with the sum of theNMlayermayexceedthatfromtheFMlayerevenwhen2ξ Eqs.(68),(69),and(70),wehave issmallenoughthatthemagneto-heatingeffectisstillremark- able. Thisindicatesthepossibilityofallocatingheatgeneration rP(AP) =r∗ +r∗ +r∗ (74) SI F,P(AP) N,P(AP) C,P(AP) indifferentlayersbyengineeringtheinterfaceresistance. wherewealsohaverP(AP) =rF,P(AP)+rC,P(AP). Tworesistances SI SI SI have been introduced for each layer: the effective resistance 5. Conclusions and the spin-coupled interface resistance. In general, they are notequaltoeachotherinasinglelayerorataninterface. The Ouranalyticalresultsshowthatthespin-dependentheatgen- most obvious example is the NM layer, where r∗ has a N,P(AP) eration is due to two mechanisms: the spin-flip and spin- finitevaluewheneverd (cid:44)0whilerN isalwayszero. conserving scattering. In the presence of spin accumulation, SI Figure 4 shows the quantitative results for the integral heat heat is generated when electrons undergo transitions between generation without interface resistance. The curves can also thetwospinchannelswithdifferentchemicalpotentialviathe beregardedasthevariationoftheeffectiveresistancesdefined spin-flip scattering. On the other hand, with the existence of inEqs.(71)and(72)sincetheyareproportionaltotheintegral spinaccumulationgradient,spin-conservingscatteringcanalso heatgeneration.Intheregime2ξ (cid:28)1,ΣF,APapproachesaposi- lead to heat generation when electrons move to positions with heat tiveconstantJ2β2r ,whileΣF,P,ΣN,AP,andΣN,P approachzero. lower chemical potential in the same spin channel. The two F heat heat heat This behavior indicates the existence of the magneto-heating mechanisms have equal contributions in semi-infinite layers. effect: differentheatgenerationinPandAPconfigurations. In However, in the NM layer of a thickness much shorter than 8 itsspin-diffusionlength, thespin-dependentheatgenerationis IntheNMlayer(−d <z<d),wehave dominated by the spin-flip scattering in the AP configuration, ∆µ(z)=erAPαAPJcosh(z/lN)/coshξ (A.9) andbythespin-conservingscatteringinthePconfiguration. N N sf Weprovedingeneralthatthespin-dependentheatgeneration µ¯±(z)=eE0Nz+K1B±∆µ (A.10) isequaltothe‘Jouleheating’ofthespin-coupledinterfacere- J 1 ∂∆µ J (z)= ± (A.11) sistance(rSI)onlyinsomespecialsegment. TheconceptofrSI ± 2 2eρ∗ ∂z N hasanotherlimitation: itmaybenegativeinsomecaseswhen F(z)= EN (A.12) it is defined in an individual layer. Therefore, J2r should be 0 SI interpreted as the work done by the extra field in the FM lay- whereEN =ρ∗J. IntheFM2layer(z>d),wehave 0 N ers and at interfaces instead of Joule heating. It converts into (cid:104) (cid:105) the energy stored in the chemical-potential splitting, which in ∆µ(z)=erFαAFPJexp −(z−d)/lsFf (A.13) turn compensates the spin-dependent energy dissipation in all µ¯ (z)=eEFz+KC ±(1∓β)∆µ (A.14) thelayersincludingtheNMlayer. Effectiveresistancesandas- ± 0 1 J ∆µ sociatedcircuitsarealsointroducedtoovercomethelimitation J (z)=(1±β) ∓ (A.15) ± 2 2er ofr indescribingheatgeneration. F SI β∆µ F(z)= EF+ (A.16) 0 elF 6. Acknowledgments sf Usingtheseequations,onecaneasilyderive We thank Prof. Suzuki and Prof. Tulapurkar for fruitful discussions. This work was supported by National Natu- J =∓βJ± ∆µ (A.17) ral Science Foundation of China [grant numbers 11404013, spin er F 11605003, 61405003, 11174020, 11474012]; Beijing Natural fortheFM1(FM2)layer,and ScienceFoundation[grantnumber1112007];and2016Gradu- 1 ∂∆µ ateResearchProgramofBTBU. J = =αAPJsinh(z/lN)/sinhξ (A.18) spin eρ∗ ∂z N sf N Appendix A. GeneralExpression fortheNMlayer. InthePconfiguration,bothFM1andFM2layershave“up” The current density J and electrochemical potential µ¯ = s s magnetization. Theexpressionsofthevariousquantitiescanbe µ −eV ofthetwospinchannels, s = ±, satisfythefollowing s derivedsimilarlyandthusweonlylistsomeresultsthatwillbe equations referredtointheprevioussections. IntheNMlayer,wehave e ∂J µ¯ −µ¯ s = s −s (A.1) ∆µ(z)=−erPαPJsinh(z/lN)/sinhξ (A.19) σ ∂z l2 N N sf s s J =−αPJcosh(z/lN)/coshξ (A.20) σ ∂µ¯ spin N sf J = s s (A.2) s e ∂z Note that J has only exponential part in the NM layer. spin where σ and l denote the conductivity and spin-diffusion The dimensionless parameters αP(AP) and αP(AP) are given in s s F N length for spin s, respectively. [17] These two equations can Sec.3.2. betransformedinto Thecurrentdensityandelectrochemicalpotentialsatisfythe e ∂J ∆µ boundaryconditionsataninterfacelocatedatz=zC ± =±2 (A.3) (cid:16) (cid:17) (cid:16) (cid:17) σ± ∂z l±2 Js z+C −Js z−C =0 (A.21) J± =σ±(cid:32)F± 1∂∆µ(cid:33) (A.4) δµ¯s(zC)=µ¯s(cid:16)z+C(cid:17)−µ¯s(cid:16)z−C(cid:17)=ersJs(zC) (A.22) e ∂z wherethespin-dependentinterfaceresistancer canbewritten where ∆µ = (µ¯+ −µ¯−)/2 and F = (1/e)∂µ¯/∂z. Solving these as s equationsforthespinvalveconsideredinSec.3,wecanwrite r =2r∗(cid:2)1−(+)γ(cid:3) (A.23) µ¯ (z),J (z)andF(z)intermsof∆µ.FortheAPconfiguration, ↑(↓) b ± ± Here, γ is the interfacial asymmetry coefficient and ↑ (↓) de- themagnetizationdirectionis“up”intheleftFMlayer(FM1) notesthemajority(minority)spinchannel. Subtractingthe‘±’ and “down” in the right FM layer (FM2). In the FM1 layer (z<−d),wehave componentsofEq.(A.22),wehave ∆µ(z)=erFαAFPJexp(cid:104)(z+d)/lsFf(cid:105) (A.5) ∆µ(z+C)−∆µ(z−C)=eJsapcin(zC)rb∗ =e(cid:104)Jspin(zC)±γJ(cid:105)rb∗ (A.24) µ¯ (z)=eEFz+KA±(1±β)∆µ (A.6) wherewehaveusedEq.(27).Thesign‘+’(‘−’)correspondsto ± 0 1 J ∆µ the configuration in which the spin-up channel is the minority J±(z)=(1∓β) ± (A.7) (majority) one. On the other hand, summing the ‘±’ compo- 2 2er F nentsofEq.(A.22),wehave β∆µ F(z)= EF+ (A.8) (cid:104) (cid:105) 0 elsFf µ¯(z+C)−µ¯(z−C)=eJ(1−γ2)rb∗±eγ Jspin(zC)±γJ rb∗ (A.25) 9 Appendix B. Heatgenerationduetospin-conservingscat- References tering References The first two terms of Eq. (1) can also be rewritten in the [1] A.Fert,Nobellecture: Origin,development,andfutureofspintronics, followingway. ThecurrentdensityJsandtheelectro-chemical Rev.Mod.Phys.80(2008)1517–1530. doi:10.1103/RevModPhys. potentialµ¯ canbeseparatedintobulkandexponentialterms 80.1517. s [2] G.E.W.Bauer,E.Saitoh,B.J.vanWees,Spincaloritronics,Nat.Mater. J = Jbulk+Jexp (B.1) 11(2012)391–399.doi:10.1038/nmat3301. ± ± ± [3] H.Adachi,K.Uchida,E.Saitoh,S.Maekawa,TheoryofthespinSeebeck ∂µ¯ ∂µ¯bulk ∂µ¯exp effect,Rep.Prog.Phys.76(2013)036501.doi:10.1088/0034-4885/ ± = ± + ± (B.2) 76/3/036501. ∂z ∂z ∂z [4] D.C.Ralph,M.D.Stiles,Spintransfertorques,J.Magn.Magn.Mater. 320(2008)1190–1216.doi:10.1016/j.jmmm.2007.12.019. Moreover,thebulkandexponentialcomponentssatisfythefol- [5] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, lowingrelations S.Maekawa, E.Saitoh, Observationofthespinseebeckeffect, Nature 455(2008)778–781.doi:10.1038/nature07321. Jexp+Jexp =0 (B.3) [6] A.A.Tulapurkar,Y.Suzuki,Boltzmannapproachtodissipationproduced + − byaspin-polarizedcurrent,Phys.Rev.B83(2011)012401. doi:10. ∂µ¯bulk ∂µ¯bulk 1103/PhysRevB.83.012401. + = − (B.4) [7] J.-E.Wegrowe,H.-J.Drouhin,Spin-currentsandspin-pumpingforcesfor ∂z ∂z spintronics,Entropy13(2011)316–331.doi:10.3390/e13020316. [8] A.Slachter,F.L.Bakker,B.J.vanWees,Modelingofthermalspintrans- ThesumofthefirsttwotermsinEq. (1)canbewrittenas portandspin-orbiteffectsinferromagnetic/nonmagneticmesoscopicde- vices,Phys.Rev.B84(2011)174408. doi:10.1103/PhysRevB.84. Je+∂∂µ¯z+ + Je−∂∂µ¯z− = σ+J+2σ− + J+eexp∂µ∂¯e+zxp + J−eexp∂µ∂¯e−zxp (B.5) [9] Ta1t7.e4Td4abn0yi8g.supcihni,pWum.pMin.gS,aPslhoyws,.DReisvs.ipBat9i0on(2d0u1e4t)o2p1u4r4e0s7p.ind-ociu:rr1e0n.t1g1e0ne3r/- PhysRevB.90.214407. Thenusingµ¯ (z)=µ (z)−eV(z),wehave s s [10] I.Juarez-Acosta,M.A.Olivares-Robles,S.Bosu,Y.Sakuraba,T.Kubota, S. Takahashi, K. Takanashi, G. E. W. Bauer, Modelling of the Peltier ∂µ¯exp ∂µexp effectinmagneticmultilayers,J.Appl.Phys.119(2016)073906. doi: ± = ± +eFexp (B.6) 10.1063/1.4942163. ∂z ∂z [11] A. Slachter, F. L. Bakker, B. J. van Wees, Anomalous Nernst and anisotropicmagnetoresistiveheatinginalateralspinvalve, Phys.Rev. Finally, the last two terms of Eq. (B.5) can expressed by the B84(2011)020412.doi:10.1103/PhysRevB.84.020412. chemicalpotential [12] S.Krause,G.Herzog,A.Schlenhoff,A.Sonntag,R.Wiesendanger,Joule heatingandspin-transfertorqueinvestigatedontheatomicscaleusing Jexp∂µ¯exp Jexp∂µ¯exp Jexp∂µexp Jexp∂µexp a spin-polarized scanning tunneling microscope, Phys. Rev. Lett. 107 + + + − − = + + + − − (B.7) (2011)186601.doi:10.1103/PhysRevLett.107.186601. e ∂z e ∂z e ∂z e ∂z [13] M.Erekhinsky,F.Casanova,I.K.Schuller,A.Sharoni,Spin-dependent seebeck effect in non-local spin valve devices, Appl. Phys. Lett. 100 whichisthetwo-channelformofEq.(8). (2012)212401.doi:10.1063/1.4717752. [14] F.L.Bakker,A.Slachter,J.-P.Adam,B.J.vanWees,Interplayofpeltier andseebeckeffectsinnanoscalenonlocalspinvalves, Phys.Rev.Lett. Appendix C. Heatgenerationduetointerfaceresistance 105(2010)136601.doi:10.1103/PhysRevLett.105.136601. [15] F. K. Dejene, J. Flipse, B. J. van Wees, Verification of the thomson- onsagerreciprocityrelationforspincaloritronics,Phys.Rev.B90(2014) Theheatgenerationduetointerfaceresistanceisonlycaused 180402.doi:10.1103/PhysRevB.90.180402. thespin-conservingscatteringandcanbecalculatedbysimply [16] J.Flipse, F.L.Bakker, A.Slachter, F.K.Dejene, B.J.vanWees, Di- rectobservationofthespin-dependentpeltiereffect,Nat.Nanotechnol.7 summingthetwospinchannels[6] (2012)166–168.doi:10.1038/nnano.2012.2. ΣCheat =(cid:2)J+(zC)δµ¯++J−(zC)δµ¯−(cid:3)/e, (C.1) [17] Tne.tVicalmetu,lAti.laFyeerrts,,TPhheyosr.yRoefvt.heBp4e8rp(e1n9d9ic3u)l7ar09m9a–g7n1e1to3r.esdisotia:n1ce0.in11m0a3g/- PhysRevB.48.7099. where δµ¯ = µ¯ (z+)−µ¯ (z−) is the change in electrochemical [18] Y.-H. Zhu, D.-H. Xu, A.-C. Geng, Charge accumulation due to spin s s C s C transportinmagneticmultilayers, PhysicaB446(2014)43–48. doi: potentialacrossthe(infinitesimallythin)interface.Substituting 10.1016/j.physb.2014.04.036. theboundaryconditions,Eq.(A.22),intoEq.(C.1),wehave [19] D.Kondepudi,I.Prigogine,ModernThermodynamics: FromHeatEn- ginetoDissipativeStructures,Wiley,NewYork,1998. doi:10.1002/ ΣCheat = J+2(zC)r++J−2(zC)r− (C.2) [20] H97.8B1.1C1a8l6le9n8,7T2h3e.rmodynamicsandanIntroductiontoThermostatistics, 2ndEdition,Wiley,NewYork,1985. whichisjustJoule’slawinthetwo-channelmanner. Itismore [21] M.Hatami,G.E.W.Bauer,Q.Zhang,P.J.Kelly,Thermalspin-transfer meaningfultowriteitintermsofJandJspin torqueinmagnetoelectroicdevices,Phys.Rev.Lett.99(2007)066603. doi:10.1103/PhysRevLett.99.066603. ΣC = J∆VC+Σspin,C (C.3) heat 0 heat where∆VCandΣspin,CaredefinedinEqs.(20)and(28),respec- 0 heat tively. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.