HansDieterBaehr·KarlStephan HeatandMassTransfer Hans Dieter Baehr · Karl Stephan Heat and Mass Transfer Second,revisedEdition With327Figures 123 Dr.-Ing.E.h.Dr.-Ing.HansDieterBaehr Professorem.ofThermodynamics,UniversityofHannover,Germany Dr.-Ing.E.h.mult.Dr.-Ing.KarlStephan Professor(em.)InstituteofThermodynamicsandThermalProcessEngineering UniversityofStuttgart 70550Stuttgart Germany e-mail:[email protected] LibraryofCongressControlNumber:2006922796 ISBN-10 3-540-29526-7 SecondEdition SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-29526-6 SecondEdition SpringerBerlinHeidelbergNewYork ISBN3-540-63695-1 FirstEdition Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyright LawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com ©Springer-VerlagBerlinHeidelberg1998,2006 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, thatsuch names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:Digitaldatasuppliedbyauthors CoverDesign:medionet,Berlin Production:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Printedonacid-freepaper 7/3100/YL 543210 Preface to the second edition In this revised edition of our book we retained its concept: The main empha- sis is placed on the fundamental principles of heat and mass transfer and their application to practical problems of process modelling and the apparatus design. Like the first edition, the second edition contains five chapters and several appendices, particularly a compilation of thermophysical property data needed for the solution of problems. Changes are made in those chapters presenting heat and mass transfer correlations based on theoretical results or experimental findings. They were adapted to the most recent state of our knowledge. Some of theworkedexamples, whichshouldhelptodeepenthecomprehensionofthetext, were revised or updated as well. The compilation of the thermophysical property data was revised and adapted to the present knowledge. Solving problems is essential for a sound understanding and for relating prin- ciples to real engineering situations. Numerical answers and hints to the solution of problems are given in the final appendix. The new edition also enabled us to correct printing errors and mistakes. In preparing the new edition we were assisted by Jens K¨orber, who helped us to submit a printable version of the manuscript to the publisher. We owe him sincere thanks. We also appreciate the efforts of friends and colleagues who provided their good advice with constructive suggestions. Bochum and Stuttgart, H.D. Baehr March 2006 K. Stephan Preface to the first edition ThisbookistheEnglishtranslationofourGermanpublication,whichappearedin 1994 with the title “W¨arme und Stoffu¨bertragung” (2nd edition Berlin: Springer Verlag 1996). The German version originated from lecture courses in heat and mass transfer which we have held for many years at the Universities of Hannover and Stuttgart, respectively. Our book is intended for students of mechanical and chemical engineering at universities and engineering schools, but will also be of use to students of other subjects such as electrical engineering, physics and chemistry. Firstly our book should be used as a textbook alongside the lecture course. Its intention is to make the student familiar with the fundamentals of heatandmasstransfer, andenablehimto solvepractical problems. Ontheother hand we placed special emphasis on a systematic development of the theory of heat and mass transfer and gave extensive discussions of the essential solution methods for heat and mass transfer problems. Therefore the book will also serve in the advanced training of practising engineers and scientists and as a reference work for thesolution of their tasks. Thematerial is explained with theassistance of a large number of calculated examples, and at the end of each chapter a series of exercises is given. This should also make self study easier. Many heat and mass transfer problems can be solved using the balance equa- tions and the heat and mass transfer coefficients, without requiring too deep a knowledge of the theory of heat and mass transfer. Suchproblems are dealt with in the first chapter, which contains the basic concepts and fundamental laws of heat and mass transfer. The student obtains an overview of the different modes of heat and mass transfer, and learns at an early stage how to solve practical problems andtodesign heatandmass transfer apparatus. This increases themo- tivation to study the theory more closely, which is the object of the subsequent chapters. In the second chapter we consider steady-state and transient heat conduction andmassdiffusioninquiescentmedia. Thefundamentaldifferentialequations for the calculation of temperature fields are derived here. We show how analytical and numerical methods are used in the solution of practical cases. Alongside the Laplace transformation and the classical method of separating the variables, we havealso presentedan extensive discussion of finite difference methods which are very important in practice. Many of the results foundfor heat conduction can be transferredtotheanalogous processofmassdiffusion. Themathematical solution formulations are the same for both fields. viii Preface The third chapter covers convective heat and mass transfer. The derivation of the mass, momentum and energy balance equations for pure fluids and multi- componentmixtures aretreated first,beforethematerial lawsareintroducedand the partial differential equations for the velocity, temperature and concentration fields are derived. As typical applications we consider heat and mass transfer in flow over bodies and through channels, in packed and fluidised beds as well as free convection and the superposition of free and forced convection. Finally an introduction to heat transfer in compressible fluids is presented. In the fourth chapter the heat and mass transfer in condensation and boil- ing with free and forced flows is dealt with. The presentation follows the book, “Heat Transfer in Condensation and Boiling” (Berlin: Springer-Verlag 1992) by K.Stephan. Here,weconsidernotonlypuresubstances;condensationandboiling in mixtures of substances are also explained to an adequate extent. Thermal radiation is the subject of the fifth chapter. It differs from many other presentations in so far as the physical quantities needed for the quantita- tive description of the directional and wavelength dependency of radiation are extensively presented first. Only after a strict formulation of Kirchhoff’s law, the idealradiator, theblackbody, isintroduced. Afterthisfollows adiscussion ofthe material laws of real radiators. Solar radiation and heat transfer by radiation are considered as the main applications. Anintroduction to gas radiation, important technicallyforcombustionchambersandfurnaces,isthefinalpartofthischapter. As heat and mass transfer is a subject taught at a level where students have alreadyhadcoursesincalculus,wehavepresumedaknowledgeofthisfield. Those readers who only wish to understand the basic concepts and become familiar with simple technical applications of heat and mass transfer need only study the first chapter. More extensive knowledge of the subject is expected of graduate mechanical and chemical engineers. The mechanical engineer should be familiar with the fundamentals of heat conduction, convective heat transfer and radiative transfer, aswellashavingabasicknowledgeofmasstransfer. Chemicalengineers alsorequire,inadditiontoasoundknowledgeoftheseareas,agoodunderstanding of heat and mass transfer in multiphase flows. The time set aside for lectures is generallyinsufficientforthetreatmentofallthematerialinthisbook. However,it isimportantthatthestudentacquiresabroadunderstandingofthefundamentals andmethods. Thenitissufficienttodeepenthisknowledgewithselectedexamples and thereby improve problem solving skills. In the preparation of the manuscript we were assisted by a number of our colleagues, aboveall byNicola JanePark,MEng., University ofLondon,Imperial College of Science, Technology and Medicine. We owe her sincere thanks for the translation of our German publication into English, and for the excellent cooperation. Hannover and Stuttgart, H.D. Baehr Spring 1998 K. Stephan Contents Nomenclature xvi 1 Introduction. Technical Applications 1 1.1 The differenttypesofheattransfer. . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Heatconduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Steady,one-dimensionalconductionofheat . . . . . . . . . . . . . 5 1.1.3 Convectiveheattransfer. Heattransfercoefficient . . . . . . . . . 10 1.1.4 Determiningheattransfercoefficients. Dimensionlessnumbers . . 15 1.1.5 Thermalradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.1.6 Radiativeexchange . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2 Overallheattransfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2.1 The overallheattransfercoefficient . . . . . . . . . . . . . . . . . 30 1.2.2 Multi-layerwalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.3 Overallheattransferthroughwalls with extendedsurfaces . . . . 33 1.2.4 Heatingandcoolingofthin walled vessels . . . . . . . . . . . . . . 37 1.3 Heatexchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.3.1 Types ofheatexchangerand flowconfigurations . . . . . . . . . . 40 1.3.2 Generaldesignequations. Dimensionlessgroups . . . . . . . . . . 44 1.3.3 Countercurrentandcocurrentheatexchangers . . . . . . . . . . . 49 1.3.4 Crossflowheatexchangers. . . . . . . . . . . . . . . . . . . . . . . 56 1.3.5 Operatingcharacteristicsoffurtherflowconfigurations. Diagrams 63 1.4 The differenttypesofmasstransfer . . . . . . . . . . . . . . . . . . . . . 64 1.4.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 1.4.1.1 Compositionofmixtures . . . . . . . . . . . . . . . . . . . 66 1.4.1.2 Diffusivefluxes . . . . . . . . . . . . . . . . . . . . . . . . 67 1.4.1.3 Fick’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1.4.2 Diffusionthrougha semipermeableplane. Equimolardiffusion . . 72 1.4.3 Convectivemass transfer . . . . . . . . . . . . . . . . . . . . . . . 76 1.5 Masstransfertheories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 1.5.1 Film theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 1.5.2 Boundarylayertheory . . . . . . . . . . . . . . . . . . . . . . . . . 84 1.5.3 Penetrationandsurfacerenewaltheories . . . . . . . . . . . . . . 86 1.5.4 Applicationoffilm theoryto evaporativecooling . . . . . . . . . . 87 x Contents 1.6 Overallmasstransfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 1.7 Masstransferapparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 1.7.1 Materialbalances . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 1.7.2 Concentrationprofilesandheightsofmass transfercolumns. . . . 97 1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2 Heat conduction and mass diffusion 105 2.1 The heatconductionequation . . . . . . . . . . . . . . . . . . . . . . . . 105 2.1.1 Derivationofthe differentialequationforthe temperaturefield . . 106 2.1.2 The heatconductionequationforbodieswith constant materialproperties. . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.1.3 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.1.4 Temperaturedependentmaterialproperties . . . . . . . . . . . . . 114 2.1.5 Similartemperaturefields . . . . . . . . . . . . . . . . . . . . . . . 115 2.2 Steady-stateheatconduction . . . . . . . . . . . . . . . . . . . . . . . . . 119 2.2.1 Geometricone-dimensionalheatconductionwith heatsources . . 119 2.2.2 Longitudinalheatconductionina rod . . . . . . . . . . . . . . . . 122 2.2.3 The temperaturedistributionin fins andpins . . . . . . . . . . . . 127 2.2.4 Finefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 2.2.5 Geometricmulti-dimensionalheatflow. . . . . . . . . . . . . . . . 134 2.2.5.1 Superpositionofheatsourcesandheatsinks. . . . . . . . 135 2.2.5.2 Shape factors . . . . . . . . . . . . . . . . . . . . . . . . . 139 2.3 Transientheatconduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 2.3.1 Solutionmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 2.3.2 The Laplacetransformation. . . . . . . . . . . . . . . . . . . . . . 142 2.3.3 The semi-infinitesolid . . . . . . . . . . . . . . . . . . . . . . . . . 149 2.3.3.1 Heatingandcoolingwith differentboundaryconditions . 149 2.3.3.2 Two semi-infinitebodiesin contactwith eachother . . . . 154 2.3.3.3 Periodictemperaturevariations . . . . . . . . . . . . . . . 156 2.3.4 Cooling orheatingofsimplebodiesin one-dimensionalheatflow . 159 2.3.4.1 Formulationofthe problem . . . . . . . . . . . . . . . . . 159 2.3.4.2 Separatingthe variables . . . . . . . . . . . . . . . . . . . 161 2.3.4.3 Resultsfor theplate . . . . . . . . . . . . . . . . . . . . . 163 2.3.4.4 Resultsfor thecylinderandthe sphere . . . . . . . . . . . 167 2.3.4.5 Approximationfor largetimes: Restrictionto the first term inthe series . . . . . . . . . . . . . . . . . . . . . . . 169 2.3.4.6 A solutionfor smalltimes . . . . . . . . . . . . . . . . . . 171 2.3.5 Cooling andheatinginmulti-dimensionalheatflow . . . . . . . . 172 2.3.5.1 Productsolutions . . . . . . . . . . . . . . . . . . . . . . . 172 2.3.5.2 Approximationfor smallBiotnumbers . . . . . . . . . . . 175 2.3.6 Solidificationofgeometricallysimplebodies . . . . . . . . . . . . . 177 2.3.6.1 The solidificationofflatlayers(Stefanproblem). . . . . . 178 2.3.6.2 The quasi-steadyapproximation . . . . . . . . . . . . . . 181 2.3.6.3 Improvedapproximations . . . . . . . . . . . . . . . . . . 184 2.3.7 Heatsources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Contents xi 2.3.7.1 Homogeneousheatsources . . . . . . . . . . . . . . . . . . 186 2.3.7.2 Point andlinearheatsources . . . . . . . . . . . . . . . . 187 2.4 Numericalsolutionsto heatconductionproblems . . . . . . . . . . . . . . 192 2.4.1 Thesimple,explicitdifferencemethodfortransientheatconduction problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 2.4.1.1 The finite differenceequation . . . . . . . . . . . . . . . . 193 2.4.1.2 The stability condition . . . . . . . . . . . . . . . . . . . . 195 2.4.1.3 Heatsources. . . . . . . . . . . . . . . . . . . . . . . . . . 196 2.4.2 Discretisationoftheboundaryconditions . . . . . . . . . . . . . . 197 2.4.3 The implicitdifferencemethodfrom J.CrankandP. Nicolson . . 203 2.4.4 Noncartesiancoordinates. Temperaturedependentmaterial properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 2.4.4.1 The discretisationofthe self-adjointdifferentialoperator . 207 2.4.4.2 Constantmaterialproperties. Cylindricalcoordinates . . 208 2.4.4.3 Temperaturedependentmaterialproperties . . . . . . . . 209 2.4.5 Transienttwo-andthree-dimensionaltemperaturefields . . . . . . 211 2.4.6 Steady-statetemperaturefields . . . . . . . . . . . . . . . . . . . . 214 2.4.6.1 A simple finite difference method for plane, steady-state temperaturefields . . . . . . . . . . . . . . . . . . . . . . 214 2.4.6.2 Considerationofthe boundaryconditions . . . . . . . . . 217 2.5 Massdiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 2.5.1 Remarksonquiescentsystems . . . . . . . . . . . . . . . . . . . . 222 2.5.2 Derivationofthe differentialequationforthe concentrationfield . 225 2.5.3 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 2.5.4 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . 231 2.5.5 Steady-statemassdiffusionwith catalyticsurfacereaction. . . . . 234 2.5.6 Steady-statemassdiffusionwith homogeneouschemicalreaction . 238 2.5.7 Transientmassdiffusion . . . . . . . . . . . . . . . . . . . . . . . . 242 2.5.7.1 Transientmassdiffusionina semi-infinitesolid . . . . . . 243 2.5.7.2 Transientmassdiffusioninbodiesofsimplegeometry with one-dimensionalmassflow . . . . . . . . . . . . . . . 244 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 3 Convective heat and mass transfer. Single phase flow 253 3.1 Preliminaryremarks: Longitudinal,frictionlessflowovera flatplate . . . 253 3.2 The balanceequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 3.2.1 Reynolds’transporttheorem . . . . . . . . . . . . . . . . . . . . . 258 3.2.2 The massbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 3.2.2.1 Pure substances. . . . . . . . . . . . . . . . . . . . . . . . 260 3.2.2.2 Multicomponentmixtures . . . . . . . . . . . . . . . . . . 261 3.2.3 The momentumbalance . . . . . . . . . . . . . . . . . . . . . . . . 264 3.2.3.1 The stresstensor . . . . . . . . . . . . . . . . . . . . . . . 266 3.2.3.2 Cauchy’sequationofmotion. . . . . . . . . . . . . . . . . 269 3.2.3.3 The straintensor . . . . . . . . . . . . . . . . . . . . . . . 270 xii Contents 3.2.3.4 Constitutive equationsforthe solution ofthe momentumequation . . . . . . . . . . . . . . . . . . . . . 272 3.2.3.5 The Navier-Stokesequations. . . . . . . . . . . . . . . . . 273 3.2.4 The energybalance . . . . . . . . . . . . . . . . . . . . . . . . . . 274 3.2.4.1 Dissipatedenergyandentropy . . . . . . . . . . . . . . . 279 3.2.4.2 Constitutive equationsforthe solution ofthe energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 3.2.4.3 Someother formulationsofthe energyequation . . . . . . 282 3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 3.3 Influenceofthe Reynoldsnumberon the flow . . . . . . . . . . . . . . . . 287 3.4 Simplificationsto the Navier-Stokesequations . . . . . . . . . . . . . . . 290 3.4.1 Creepingflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 3.4.2 Frictionlessflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 3.4.3 Boundarylayerflows . . . . . . . . . . . . . . . . . . . . . . . . . 291 3.5 The boundarylayerequations . . . . . . . . . . . . . . . . . . . . . . . . 293 3.5.1 The velocityboundarylayer . . . . . . . . . . . . . . . . . . . . . 293 3.5.2 The thermalboundarylayer . . . . . . . . . . . . . . . . . . . . . 296 3.5.3 The concentrationboundarylayer . . . . . . . . . . . . . . . . . . 300 3.5.4 Generalcommentsonthe solutionofboundarylayerequations . . 300 3.6 Influenceofturbulenceonheatandmasstransfer . . . . . . . . . . . . . 304 3.6.1 Turbulentflows nearsolidwalls. . . . . . . . . . . . . . . . . . . . 308 3.7 Externalforcedflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 3.7.1 Parallelflowalonga flatplate . . . . . . . . . . . . . . . . . . . . 313 3.7.1.1 Laminarboundarylayer . . . . . . . . . . . . . . . . . . . 313 3.7.1.2 Turbulentflow . . . . . . . . . . . . . . . . . . . . . . . . 325 3.7.2 The cylinderin crossflow . . . . . . . . . . . . . . . . . . . . . . . 330 3.7.3 Tube bundlesin crossflow . . . . . . . . . . . . . . . . . . . . . . . 334 3.7.4 Someempiricalequationsforheatandmass transferin externalforcedflow . . . . . . . . . . . . . . . . . . . . . . . . . . 338 3.8 Internalforcedflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 3.8.1 Laminarflowincirculartubes . . . . . . . . . . . . . . . . . . . . 341 3.8.1.1 Hydrodynamic,fullydeveloped,laminarflow . . . . . . . 342 3.8.1.2 Thermal,fully developed,laminarflow . . . . . . . . . . . 344 3.8.1.3 Heattransfercoefficientsinthermallyfully developed, laminarflow . . . . . . . . . . . . . . . . . . . . . . . . . . 346 3.8.1.4 The thermalentryflow withfully developedvelocity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 3.8.1.5 Thermallyandhydrodynamicallydevelopingflow . . . . . 354 3.8.2 Turbulentflowincirculartubes . . . . . . . . . . . . . . . . . . . 355 3.8.3 Packedbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 3.8.4 Fluidisedbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 3.8.5 Someempiricalequationsforheatandmass transferinflow throughchannels,packedandfluidisedbeds. . . . . . . . . . . . . 370 3.9 Freeflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373