MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN AffGAN DiscoGAN b-GAN LS-GAN AdaGAN iGAN LSGAN IAN CatGAN LAPGAN InfoGAN AMGAN MPM-GAN MIX+GAN Head First Generative Adversarial Networks McGAN C-RNN-GAN DR-GAN From Theoretic View MGAN BS-GAN GoGAN FF-GAN C-VAE-GAN DCGAN CCGAN AC-GAN 3D-GAN Yanran Li BiGAN GAWWN DualGAN CycleGAN GP-GAN The Hong Kong Polytechnic University Bayesian GAN AnoGAN EBGAN DTN MAGAN Context-RNN-GAN MAD-GAN ALI f-GAN AL-CGAN MARTA-GAN ArtGAN MalGAN BEGAN (https://github.com/kaonashi-tyc/zi2zi) (https://github.com/junyanz/iGAN) (Taigman et al., 2017) (https://junyanz.github.io/CycleGAN/) (genekogan@Twitter) Content Generative Adversarial Networks • Basics and Attractiveness • Difficulties • Solution 1: Partial and Fine-grained Guidance • Solution 2: Encoder-incorporated • Solution 3: Wasserstein Distance • Content Generative Adversarial Networks • Basics and Attractiveness • Difficulties • Solution 1: Partial and Fine-grained Guidance • Solution 2: Encoder-incorporated • Solution 3: Wasserstein Distance • Generative Adversarial Networks (Eric Jang’s blog)
Description: