ebook img

HE 0141-3932: a bright QSO with an unusual emission line spectrum and associated absorption PDF

0.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview HE 0141-3932: a bright QSO with an unusual emission line spectrum and associated absorption

Astronomy&Astrophysicsmanuscriptno.lev February2,2008 (DOI:willbeinsertedbyhandlater) HE 0141–3932: a bright QSO with an unusual emission line ⋆ spectrum and associated absorption 1 1 1 2 2 3 D.Reimers ,E.Janknecht ,C.Fechner ,I.I.Agafonova ,S.A.Levshakov ,andS.Lopez 1 HamburgerSternwarte,Universita¨tHamburg,Gojenbergsweg112,D-21029Hamburg,Germany 5 2 DepartmentofTheoreticalAstrophysics,IoffePhysico-TechnicalInstitute,194021St.Petersburg,Russia 0 3 DepartamentodeAstronomia,UniversidaddeChile,Casilla36-D,Santiago,Chile 0 2 receiveddate;accepteddate n a J Abstract.HE0141–3932(zem=1.80)isabrightblueradio-quitequasarwithanunusuallyweakLyαemissionline.Large redshiftdifferences(∆z =0.05)areobservedbetweenhighionizationandlowionizationemissionlines.Absorptionsystems 8 2 identifiedatzabs=1.78,1.71,and1.68showmildoversolarmetallicities(Z ≈1−2Z⊙)andcanbeattributedtotheassociated gascloudsejectedfromthecircumnuclearregion.Thejointanalysisoftheemissionandabsorptionlinesleadstotheconclusion 1 thatthisquasarisseenalmostpole-on.ItsapparentluminositymaybeDopplerboostedby∼10times.Theabsorbinggasshows v ahighabundanceofFe,MgandAl ([Fe,Mg,Al/C]≃ 0.15±0.10)alongwithunderabundanceofN ([N/C]≤ −0.5).This 9 abundance patternisatvariancewithcurrentchemicalevolutionmodelsofQSOspredicting[N/C] > 0and[Fe/C]< 0at ∼ 2 Z ∼Z⊙. 6 1 Keywords.Cosmology:observations–Line:formation–Line:profiles–Galaxies:abundances–Quasars:absorptionlines 0 –Quasars:individual:HE0141–3932 5 0 / h 1. Introduction 3932isaradio-quietquasar,i.e.notablazar.Afewotherblue p radio-quietquasarsareknownwithapparentlymissingorweak - In the course of a high-resolution study of the Lyα forest at o Lyα emission but clearly present metal lines: PG 1407+265 r intermediate redshifts (1.5 ≤ z ≤ 2) in bright quasars from [z = 0.94, McDowell et al. (1995)], Tol 1037–2703 [z = t em em s theHamburg/ESOSurveywiththeUV-visualechellespectro- 2.20, Srianand & Petitjean, (2001)], PHL 1811 [z = 0.192, a graph(UVES)attheVLT,thediscoveryspectrumoftheQSO em Leighly, Halpern, & Jenkins (2004)], and several cases from : v HE 0141–3932(z ≃1.8,B = 16.2,Wisotzkietal.2000)at- SDSS(Fanetal.1999,2003).Thenatureoftheirpeculiaremis- i tractedourattentionbytwofacts:itappearedtohavenooronly X sionlinespectraisnotclear. veryweakLyαemissionalongwithclearlyrecognizableMgII, r a and it showed several absorption line systems at zabsranging In particular, Leighly et al. (2004) suggest a high accre- from1.78to1.68withverycomplexandstrongmetalprofiles tion rate which powers the UV emission from an optically whichallowustosuggestthatthesesystemsmayoriginatein thick accretiondisk, while suppressingthe formationof a hot theejectedgas. corona. However, recent radio observations of PG 1407+265 SincetheidentificationspectrumofHE0141–3932wasof on the milliarcsecond scale revealed a relativistic jet of mod- only moderate quality, we took furtherlow-resolution spectra erate powerbeamed toward us (Blundell, Beasley & Bicknell with EFOSC 2 with the ESO 3.6 m telescope to improve the 2003).Thismeansthatthequasarisseenalmostpole-onandits redshiftmeasurementandwefoundathirdpeculiarity,namely emissionlinespectrummaybedilutedbycontinuumradiation largeredshiftdifferences(∆z ∼0.05)betweenhighionization bothfromthejetandtheaccretiondisk. andlowionizationemissionlines. EmissionlinespectrasimilartothatofHE0141–3932are Inthepresentpaperweanalyzeboththeemissionandab- observedinsome highredshiftBL Lacertae(BL Lac)objects sorption line spectra of HE 0141–3932. We expect that this (Urry&Padovani1995,hereafterUP95).However,HE0141– jointconsiderationmayshedsomelightontheunusualproper- tiesofthisquasar. Sendoffprintrequeststo:S.A.Levshakov, The paper is organized as follows: observations are de- [email protected] ⋆ BasedonobservationsobtainedattheVLTKueyentelescopeand scribed in Sect. 2, the emission lines are studied in Sect. 3, 3.6mESOtelescope,Chile,theESOprogramsNo.67.A-0280(A)and theanalysisofthezabs≈zemabsorbersisgiveninSect.4,the 72.D-0174A,respectively. resultsarediscussedandsummarizedinSect.5. 2 D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption Fig.1.EFOSC2spectraofHE0141–3932.Thespectralresolutionsareindicatedinthepanels.Allidentifiedemissionfeatures arelabeled.TheparametersoftheprominentemissionlinesarelistedinTable2 2. Observations 3. Theemissionline spectrum HE 0141–3932wasobservedwith theUVESat the8 m ESO The combinationof EFOSC 2 spectra with roughly flux cali- VLTonParanalover7nightsinJuly/August2001.Elevenin- bratedUVESspectraallowsustoestimateredshiftsandequiv- dividualexposureswithintegrationtimesof60minweremade alentwidthsofallemissionlinesbetweenLyαandMgIIλ2800 usingthedichroicmodeinstandardsettings(Table1).Witha A˚. Equivalent widths (EW) and redshifts were measured by slitwidthof1′′,aresolutionof41000(7.3kms−1)intheblue fitting Gaussian profiles to the data. Table 2 presents the re- and38000(7.9kms−1)intheredisachieved. sults. The Lyα EW is relatively uncertain since in the cali- The data reduction was performed at the Quality Control bratedUVESdatathe continuumis difficultto determineand Group in Garching using the UVES pipeline Data Reduction thebluewingofthelineisincomplete(seeFig.1and2). Software (Ballester et al. 2000), the vacuum-barycentric cor- Theidentificationoftheemissionlineat∼3400A˚ isam- rectedspectrawereco-added.Theresultingsignal-to-noisera- biguous:itcouldbeeitherLyαatz =1.80orNVatz =1.75 tio,S/N,istypically75. orblendofbothlines.Therearetwoargumentsinfavorofthe Since both the Lyα and the MgII emission line ranges NVidentification:ithasawidthcomparabletoCIVanditsred- are covered only by UVES spectra, we performed an ab- shift–ifidentifiedasNV–isequaltothatoftheCIV,whilein solute flux calibration using an appropriate master response QSOs with significant redshift differences between high ion- curve and the respective airmasses during the observa- ization lines (CIV) and low ionization lines (MgII, Hα), the tions. The procedure is described on the ESO web page Lyαlinetypicallyisfoundattheredshiftofthehighionization www.eso.org/observing/dfo/quality/UVES/qc/response.html. BLRemissionlines(Gaskell,1982;Espeyetal.,1989).Onthe FurtherspectraweretakenwithEFOSC2attheESO3.6m otherhand,theemissionlineat3400A˚ isquitestrongforNV, telescopeonOctober2,2003,toimproveourknowledgeabout althoughtherearequasarsknownwithNV strengthcompara- the redshifts of the emission lines. Details are given in Table bletothatofCIV(Halletal.2004;Baldwinetal.2003b).Even 1.Wavelengthandfluxcalibrationwasperformedaccordingto ifthislinewouldbeentirelyduetoemissionofneutralhydro- standardprocedures.TheresultingspectraareshowninFig.1. gen,wecanconcludethatLyαinHE0141–3932isunusually Noticethatduetotherapidlydecreasingsensitivitybelow3500 weak. A˚, the EFOSC 2 spectra only partially cover the wavelength The second anomaly of this quasar is the large velocity rangeexpectedfortheLyαemissionline. difference between low ionization lines (MgII, CIII], AlIII D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption 3 Table1.LogofspectroscopicobservationsofHE0141–3932 Instrument λλ Exposure Date Resolution (A˚) time(h) (kms−1) UVES 3053–3872 7 7.3 4700–5800 7 July+ 7.3 5800–6800 7 August 7.8 UVES 3761–4982 4 2001 7.3 6650–8550 4 7.8 8600–10400 4 7.8 EFOSC2 3270–5240 0.25 Oct.2 420 (6A˚) 3380–7520 0.25 2003 700 (13A˚) etc.) and high ionization lines (CIV, SiIV) of roughly 5000 kms−1;itisamongthemostextremecaseslikePG1407+265 (McDowelletal.1995,∆vMgII−CIV ≃ 5000kms−1)andQ 1309–056(Espeyetal.1989,∆vMgII−CIV ≃4000kms−1). InFig.2wedisplaytheemissionlineprofilesonavelocity scale relative to z = 1.80. The redshift of the low ionization linesofz = 1.80appearstoberoughlythesystemicredshift, since the UVES spectrum shows that the Lyα forest starts at z =1.8086. While the velocityshift in the emission lines is extremely large,howunusualaretheemissionlineintensities?Thiscan bebestseenbyacomparisonwiththehistogramofequivalent widths of the LBQS-quasars, a well selected sample of QSO givenbyFrancis(1993).TheLyα,CIV,CIII]andMgIIequiv- alent widths are among the bottom 2%, 1%, 13% and 1.5%, respectively, of the Francis (1993) distribution. At the same time,theAlIII1856/64andFeIII2075linesappearunusually strong. In order to investigate the physical properties of gas which could producesuch an unusualemission line spectrum wecomparedtheobservedequivalentwidthsofHE0141–3932 withthecompilationofquasarBLRrest-wavelengthemission lineequivalentwidthsgivenasfunctionsofcolumndensity,in- cidentionizingspectrum,andmetalabundanceoftheemitting gas clouds (Korista et al. 1997). While Lyα, MgII and CIII] haveroughlythesamevelocity(redshift)andcouldoriginatein thesamevolume,wewereunabletofindaparametercombina- tionwhichmettheconstraintsonLyαandMgIIlinestrengths simultaneously–thetheoreticalLyαisalwaysmuchtoostrong Fig.2. Emission lines of HE 0141–3932(spectra fromUVES foraparametercombinationthatmatchestheMgIIequivalent andEFOSC 2).v = 0 kms−1 correspondsto z = 1.80.For width.TheCIV/LyαEW ratiocanbemetassuminghighgas orientation,atv =0kms−1 andv =−5000kms−1 dashed densities[logn(H)≥12],butthediscrepantredshiftsexclude linesareplotted formationinthesamelocation.AmeanBLRparametersetap- pearstobeunabletoreproducethemeasuredEWsofemission linesinHE0141–3932. TheMCIisbasedontheassumptionthatalllinesobserved intheabsorptionsystemareformedinacontinuousabsorbing 4. Theabsorptionsystems gasslabofthicknessL wherethegasdensity,n (x), andve- H locity,v(x),fluctuatefrompointtopointgivingrisetocomplex 4.1. Calculationprocedure profiles(herexisthespacecoordinatealongthelineofsight). In orderto estimate the physicalparametersof the absorption We also assume that within the absorber the metal abun- systems we used the Monte Carlo Inversion (MCI) method. dances are constant, the gas is optically thin for the ionizing Detailed description of the MCI is given in Levshakov et al. UVradiation,andthegasisinthermalandionizationequilib- (2000,2002,2003a).Hereweoutlinebrieflyitsbasicsneeded rium. The intensity and the spectral shape of the background tounderstandtheresultspresented. ionizingradiationaretreatedasexternalparameters. 4 D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption Table2.Estimatedequivalentwidths,redshifsandrelativevelocitiesforemissionlinesofHE0141–3932 Ion Instrument EWrest,A˚ zobs v,kms−1 Comment HI1215 UVES 16±7 1.80+−00..0012 0+−12017400 asymmetric and/orNV1239 1.75±0.01 −5350±1070 SiIV1398+OIV]1402 EFOSC2 11±1 1.76±0.01 −4280±1070 — CIV1549 EFOSC2 14±1 1.75±0.01 −5350±1070 asymmetric AlIII1858+ EFOSC2 13±1 1.79±0.01 −1070±1070 — CIII]1909+SiIII]1892 1.79±0.01 −1070±1070 blend,fractionsofcomponentsunknown FeIII2075 EFOSC2 5±1 1.80±0.01 0±1070 — MgII2800 UVES 16±1 1.795±0.005 −535±535 blendedwithFeIIemission Zerovelocitycorrespondstoz =1.80.Onlystatisticalerrorsareindicated. The radial velocity v(x) and gas density n (x) are con- (Fig. 3) separatedby 2000 km/sfromthe centralsource.The H sidered as two continuousrandom functionswhich are repre- bluewingofLyαispartiallyblendedbytheadjacenthydrogen sentedbytheirsampledvaluesatequallyspacedintervals∆x. line[N(HI)∼1014cm−2]fromaninterveningabsorber(only The computational procedure is based on adaptive simulated a weak CIV doubletis detected in this system). CIII λ977 is annealing. The fractional ionizations of different elements at beyond the wavelength coverage and SiIII λ1206 is blended, each space coordinate x, Υ [U(x)], are computed with the probablywithLyαabsorptionfromthez =1.7606. ion abs photoionizationcodeCLOUDY(Ferland1997). We started the analysis assuming standard ionizing back- The following physical parameters are directly estimated groundssuchasapowerlawf ∝ν−α(withdifferentindexes ν bytheMCIprocedure:themeanionizationparameterU ,the 0 α = 1.0−1.8),themeanintergalacticspectrum(atz = 1.8) total hydrogen column density N , the line-of-sight velocity H of Haardt & Madau (1996), and the AGN-type spectrum of dispersion,σ ,anddensitydispersion,σ ,ofthebulkmaterial v y Mathews&Ferland(1987,hereafterMF). [y ≡ n (x)/n ], and the chemicalabundancesZ of all ele- H 0 a mentsinvolvedin the analysis. With these parameterswe can Noneofthesespectrawasconsistentwiththeobservedin- furthercalculatethecolumndensitiesfordifferentspeciesN , tensitiesoftheCII, CIV,SiII andSiIV lines:alltrialsunder- a andthemeankinetictemperatureT . produced CII/CIV and overproduced SiII/SiIV, but the MF kin spectrum provided the lowest χ2. All spectra gave the mean In general, the uncertainties on the fitting parameters U , 0 ionizationparameterintherangeof−2.75< logU < −2.5. N , σ , σ , and Z are about 15%–20% (for data with S/N ∼ 0 ∼ H v y a Inspiteofthesaturation,theneutralhydrogencolumndensity > 30)andtheerrorsoftheestimatedcolumndensitiesareless ∼ can be estimated with a sufficiently high accuracy (∼ 20%) than10%.However,inindividualabsorptionsystemstheaccu- sincethevelocitydispersionofgasisdeterminedbynumerous racyoftherecoveredvaluescanbelowerfordifferentreasons metal lines detected in this system (the procedure to restore likepartialblendingofthelineprofiles,saturation,orabsence partly blended profiles is described in Sect. 3 in Levshakov oflinesofsubsequentionictransitions. et al. 2003a). All runs with differentmodel spectra showed a The MCI can be supplemented with an additional proce- rather high metallicity – slighty above solar value, and an al- dure aimed at restoring the shape of the backgroundionizing mostsolarratioofSi/C. spectrum. A formal description of this procedure is given in the Appendix.Its accuracydependssignificantlyon the num- Taking into account this preliminary information we can ber of unsaturated lines of the subsequentionic transitions of assume that the UV spectrum to be found should maximize different elements (e.g. SiII/SiIII/SiIV, CII/CIII/CIV) avail- the product of ratios CII/CIV and SiIV/SiII in the range of ablefortheanalysis.Theabsorberatz =1.7817(described U ∼ 0.002−0.003forsolarmetalcontentandsolarelement abs 0 below)revealsenoughsuchlinesandweusethemtoestimate abundances. The spectral shape of the MF spectrum can be thespectralshapeofthebackgroundUVradiationintherange takenasafirstapproximation(formoredetailsseeAppendix). E >1Ryd. Applying the adjustment procedure as described in All calculations are carried out with the laboratory wave- Appendix, we estimated a new shape of the ionizing spec- lengths and oscillator strengths taken from Morton (2003). trum which ensured a self-consistent description of all lines SolarphotosphericabundanceforcarbonistakenfromAllende observedinthez =1.7817system.Thisspectrumisshown abs Prieto et al. (2002), for silicon, nitrogen and iron – from inFig.4bythedashedline,whereastheinitialMFspectrumis Holweger(2001). thesolidline.AsseeninFig.4,therestoredspectrumissofter in the range 2 Ryd < E < 6.5 Ryd but much harder above 4.2. Absorptionsystem atzabs=1.7817 6.5Ryd.ItshowsabreakattheHeIIionizationedgewiththe amplitudeJ (A)/J (B)≃3correspondingtotheopticaldepth ν ν Manyunsaturatedlinesofdifferentionictransitionsalongwith τc(HeII)≃1.Physicalparametersestimatedwiththismodified asinglesaturatedhydrogenlineLyαaredetectedinthissystem ionizingbackgroundarelistedinTable3,Col.2,andthecorre- D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption 5 Fig.3. Hydrogenandmetalabsorptionlinesassociatedwiththez =1.7817systemtowardHE0141–3932(normalizedinten- abs sities areshownbydotswith1 σ errorbars).Thezeroradialvelocityis fixedatz = 1.7817.Smoothcurvesare thesynthetic spectraconvolvedwiththecorrespondingpoint-spreadspectrographfunctionandcomputedwiththephysicalparameterslistedin Table3,Col.2.Boldhorizontallinesmarkpixelsincludedintheoptimizationprocedure.Thesyntheticprofilesofunmarkedab- sorptionfeatureswerecalculatedinasecondroundusingthevelocityv(x)andgasdensityn (x)distributionsalreadyobtained H intheoptimizationprocedure. spondingsyntheticprofilesareplottedinFig.3bythesmooth The subsystem B has an unsaturated hydrogen line and curves. henceallowsustoestimatethehydrogencolumndensitywitha sufficientlyhighaccuracy.The physicalparameterscomputed with the UV background deduced for the z = 1.7817 sys- abs 4.3. Absorptionsystem atzabs=1.7103 temaregiveninTable3,Col.4.Theobtainedextremelyhigh metallicity–almost9Z⊙ –isstriking.SincesiliconlinesSiIII Thisabsorptionsystemspansthevelocityrangeof500kms−1 λ1206 and SiIV λ1393,1402 are very weak and the element andislocatedinvelocityspaceatadistanceof9600kms−1 ratios ([Si/C], [N/C]) notknown a priori,the mean ionization from the QSO. It reveals many lines of differentionic transi- parameterU ≃ 0.04 representsa lower limit consistentwith 0 tions (Fig. 5). The structure of the Lyα, CIV, SiIV and NV theobservedintensitiesoftheCIVlinesandtheabsenceofthe profilesindicatesthatthesystemmaybedividedintotwosub- CII λ1334 absorption. Formally this subsystem could be fit- systems: one at –200 km s−1 < v < 180 km s−1 (A) and anotherat180kms−1 <v <320kms−1 (B). 6 D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption km s−1< v < −100 km s−1. A single available hydrogen line does not allow us to conclude whether the blue wing is blendedorthereisindeedagradientofmetalcontent.Thefor- mer possibility looks more probablesince there is a non-zero flux in the Lyα profile at –110 km s−1< v < –90 km s−1 with the mean intensity 0.018±0.005 (marked by the arrow inFig.5).Theconstantmetallicitythroughoutthissub-system seemstobeappropriatesinceverysteepbluewingsofseveral ions (SiIII, SiIV,CIV) do not indicate a progressive dilution. Thus,thecalculationswerecarriedoutwiththeassumptionof constantmetallicity.Theneutralhydrogencolumndensityand theshapeofthebluewingofthesyntheticLyαshowninFig.5 were calculated with the velocityand density fields estimated fromtheobservedmetallineprofiles(fordetailssee Sect.4.3 in Levshakovetal. 2003a).The obtainedphysicalparameters aregiveninTable3,Col.3.Wealsotriedotherionizingback- grounds(differentpowerlawsandtheMFspectrum),butnone of them was consistent with the observed relative intensities Fig.4. Spectral shape of a typical AGN ionizing continuum withintheCII/CIVandSiII/SiIII/SiIVprofiles. from Mathews & Ferland (1987)shown by the solid line and its modification (dashed line) estimated for the z = 1.7817 abs system.ThespectraarenormalizedsothatJ (hν =1Ryd)= ν Inspiteofalluncertaintiesintrinsictothissubsystemsev- 1.Factorsf aredefinedintheAppendix i eralparametersweresteadlyreproducedinallruns.Theseare (1)slightlyundersolarnitrogenabundance,[N/C]=−0.1±0.1, (2)significantlylowerratiosofSi/CandAl/Cascomparedto tedwithanyhigherionizationparameterproducingevenhigher their solar values,[Si/C] = −0.3±0.1, [Al/C] = −0.3±0.1, metallicityandhigher[Si/C]and[C/N]ratios. and (3)extremelyhighoverabundanceof iron[Fe/H] > 1.5. To confirm the high metallicity in this subsystem we re- ∼ The extremely high overabundance of iron as well as under- peated calculations assuming other ionizing backgrounds – abundancesof silicon and aluminium may be caused by non- power laws with α ranging between 1.0 and 1.8 and the MF equilibriumionization.Whenanabsorbinggascomestoequi- spectrum. These trials also delivered metallicity of about 10 libriumthroughcoolingandrecombiningitsionizationparam- solar. etercanbeoverstatedduetodifferentcoolingandrecombina- In principle,such highmetalenrichmentofthecircumnu- tiontimesoftheobservedionsstemmingfromdensityfluctu- cleargasispredictedinsomemodelsofchemicalevolutionof ations(so-called ”hotphotoionization”).A higherdensity gas QSO/host galaxies (Hamann & Ferland 1999, hereafter HM). hasshortercoolingandrecombinationtimesandhencecomes However,anotherexplanationofourresultsisthattheabsorb- fastertoequilibrium.Thus,thesub-systemAmaybedescribed inggasisnotinequilibriumwiththeionizingbackground,e.g., as consisting of dense gas clumps that are already close to isstillcoolingandrecombining.Inthiscasehighmetallicities equilibrium (seen in low ionization absorptions) and ambient canbecausedbya longerrecombinationtimeof hydrogenas rarefied gas still far from equilibrium (responsible for most comparedtoCIVandNV(e.g.,Osterbrock1989).Theioniza- of CIV and NV absorptions). The equilibrium ionization pa- tionparameterU and,hence,thetotalhydrogencolumndensity rametershouldbelower,probablyrangingbetween0.001and N ∝ 1/Υ (U) is determinedby the observedline intensi- H HI 0.003.WiththisU ,onlyamildoverabundanceofiron,[Fe/Si] ties ofdifferentions.Since hydrogenisionizedhigherthan it 0 ∼0.2−0.3,wouldbeenoughtodescribetheobservedintensity would be in the ionization equilibrium with the same param- oftheFeIIlines. eterU, thetotalhydrogenbecomesunderestimatedleadingto anartificiallyhighmetallicity.Wemayexpectthattheadjacent subsystemA(centeredatv =0kms−1)wouldhelptoclarify thephysicalconditionsinthezabs=1.7103absorber. Thus, we estimate a metallicity of >∼ 9Z⊙ in the higher ThesubsystemAshowscomplexprofilesoflowionization ionized subsystem B and ∼ 2Z⊙ in the lower ionized sub- lines CII, MgII, SiII, and FeII along with AlIII, SiIII, SiIV, systemA(bothmetallicitiesarereferredtosiliconlines).This NVandsaturatedCIV(seeFig.5).Thecomputationshadbeen strong metallicity difference is another argument in favor of carriedoutwiththeionizingbackgroundfromthezabs=1.7817 non-equilibrium ionization in sub-system B. It probably has system.Thepresenceofthesubsequentionictransitionsguar- lowergasdensitythaninAwhichleadstolongercoolingand anteestheaccuracyofthemeanionizationparameterof∼10% recombinationtimes.Wesuggestthatsometimeagothewhole (foragivenionizingbackground). absorbingcomplex(A+B)waseitherexposedtoamuchmore Theassumptionofconstantmetallicityinsidetheabsorber intenseradiationorshock-heateduptothetemperatureswhen turned out to be inconsistent with the observed blue wing of collisional ionization becomes significant (Klein et al. 1994, Lyαandtheabsenceofanymetalabsorptionintherange−200 2003;Levshakovetal.,2004). D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption 7 Fig.5. Same as Fig. 1 but for the z = 1.7103system. The zero radialvelocity is fixed at z = 1.71027.The corresponding abs physicalparametersarelistedinTable3,Cols.3,4.ThearrowintheLyαpanelindicatespixelswithnon-zerointensities 4.4. Absorptionsystem atzabs=1.6838 metallicityinsidetheabsorber.Theionizationparametergiven inTable3forthesubsystemAisdeterminedfromtheobserved This system separated by ∼ 12450 km s−1 from the QSO intensityofCIVandthenoiselevelattheexpectedpositionof shows a partially saturated Lyα and many metal lines with theCIIλ1334lineandshouldbeconsideredasalowerlimit. complex profiles (Fig. 6). SiII λ1260,1193,1190 and NV λ1242areblendedwithLyαforestabsorptions,andatthepo- Thealmostsolarratioof[Si/C]=0.06±0.1andastrongun- sitionofSiIIλ1526aclearcontinuumwindowisseen. derabundanceofnitrogen[N/C]<−0.5obtainedforbothsub- The apparent structure of the Lyα profile suggests that systemsindicatethatphotoionizationisprobablyclosetoequi- this system can be divided into two subsystems: one at – librium.However,slightlyhighermetallicityinthesub-system 250 km s−1< v < –180 km s−1 (A) and another at –180 Aandtheremainingflux0.04±0.01attheshallowbottomof km s−1< v < 150 km s−1 (B) which were analyzed sep- Lyα may indicate that hydrogenhas not yet reached its equi- arately. Calculations were carried out using both the ioniz- libriumwiththeionizingbackground(seesub-systemBinthe ing spectrum restored for the z = 1.7817 system and sev- foregoingsection). Althoughthe absolute valuesof the abun- abs eral power law spectra. Physical parameterslisted in Table 3, dancesareuncertain(theydependontheassumedbackground Cols.5,6correspondtothez =1.7817background.Thered andthemeanionizationparameter),thesolartooversolarcar- abs wingofthesyntheticprofileofLyαinthesubsystemBiscal- boncontent,theratio[Si/C]≃ 0andasignificantunderabun- culated simultaneously with metal lines assuming a constant danceofnitrogenareconstantlyreproducedinalltrials. 8 D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption Fig.6. Same as Fig. 1 but for the z = 1.6838system. The zero radialvelocity is fixed at z = 1.68377.The corresponding abs physicalparametersarelistedinTable3,Cols.5,6 4.5. Absorptionsystems atzabs= 1.7365and The distance between the absorbing cloud and the light 1.4978 source can be estimated from the photoionization model and thecolumndensityratiosofCII∗/CIIorSiII∗/SiII.Foranion OthersystemswithunusuallystrongandcomplexCIVprofiles intheinterstellar(intergalactic)medium,theratioofexcitedto areidentifiedinthespectrumofHE0141–3932.Unfortunately, ground-statepopulationis equal to the ratio of the collisional they cannot be analyzed by the MCI because their hydrogen excitationrateQ1→2 tothespontaneoustransitionprobability linesareunavailable,andwedescribethemonlyqualitatively. A2→1 (Bahcall&Wolf1968): Thesystem atz = 1.7365(separatedby7000kms−1from abs the QSO) shows also a clear NV doublet (Lyα profile is n2 = Q1→2 . (1) blended). The apparent ratio CIV/NV is very much like that n1 A2→1 inthesub-systemAatzabs=1.6838andthezabs=1.7365sys- ThecorrespondingatomicdataforCII∗ andSiII∗ arethefol- tzeambs=pro1b.4a9b7ly8h(∆asvsi=mil3a0r 0p0h0yskicmalsp−a1ra)meextheirbsi.tsThaestsryosntgemanadt lloiswioinnsg:wAit2h→e1le=ctr2o.n2s91at×T10−=6s1−014,Ktheqeexcit≃atio1n×ra1t0e−b7yccmol3- kin 1→2 complex SiIV absorption and a weak NV doublet as well as s−1forCII∗,andA2→1 =2.17×10−4s−1,q1e→2 ≃2×10−7 CIIλ1334(Lαisoutofrange),andinthesefeaturesresembles cm3 s−1 for SiII∗ (Silva & Viegas 2002). Since collisions thesub-systemBatz =1.6838. abs with other particles have much lower excitation rates, we put Q1→2 =q1e→2ne. 4.6. Thedistance from the lightsource WedonotdetectSiII∗ orCII∗ linesintheassociatedsys- tems,thereforeclear‘continuumwindows’attheexpectedpo- The oversolar metallicity obtained in the absorbers described sitionsofCII∗λ1335.7andSiII∗λ1264.7 wereusedtosetup- aboveplacetheminaclassofassociatedsystems.Furthermore, perlimitsonthecolumndensitiesofCII∗ andSiII∗ (Table3). theirextremelylargeradialvelocitiesimplythattheyoriginate Forthe3σupperlimitsonN(SiII∗)andN(CII∗),eq.(1)pro- ingasejectedfromthecircumnuclearregionoftheQSO/host vides n < 3 cm−3in the z = 1.78, and 1.71 (A) systems, e abs galaxy.Thisisalsosupportedbytherelativelystrongemission and n < 15 cm−3in the z = 1.68 (B) system. Since the e abs flux in FeII and FeIII lines and at the same time by the FeII degreeofionizationin thesesystemsis high(nH+/nH ≫ 1), absorptionsin the associated systems. Note that FeII lines in theupperlimitsonthetotalgasdensitynH arethe same,i.e., absorberswithN(HI) <∼1016cm−2areextremelyrare;prob- nH < 3cm−3andnH < 15cm−3,respectively(thecontribu- ablythisisthefirstsuchdetection. tionoftheionizedheliumisignoredsinceithasasmalleffect). D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption 9 Table 3. Physical parameters of the z = 1.7817, 1.7103 and 1.6838 metal absorbers toward HE 0141–3932 (z = 1.80) abs em derivedbytheMCIprocedure(limitsaregivenatthe1σlevel) z =1.7817 z =1.7103 z =1.6838 abs abs abs Parameter subsystemA subsystemB subsystemA subsystemB (1)f (2) (3)d (4)d (5) (6) U0 3.1E–3a 9.0E–3 3.8E–2 >∼2.8E–2 1.3E–2a NH,cm−2 4.2E17a 5.7E18 8.6E17 >∼3.2E17 2.5E18 σv,kms−1 20.8a 55.0 21.0 19.2 59.0a σy 0.63a 0.77 0.62 0.36 0.52a ZC 3.4E–4a 1.1E–3 2.1E–3 <∼5.2E–4 2.9E–4a ZN <1.2E–4 3.1E–4 3.2E–4 <∼5.0E–5 2.8E–5b ZMg 7.0E–5b 1.4E–4 ... ... ... Z 7.0E–6b 6.2E–6 ... ... ... Al ZSi 4.3E–5a 7.4E–5 3.0E–4 <∼8.5E–5 4.8E–5a ZFe 6.0E–5b ∼8.0E–4 ... ... ... [ZC] 0.14±0.08 0.65 0.94 <∼0.33 0.08±0.10 [ZN] <0.15 0.56 0.58 <∼ −0.3 −0.48±0.15 [ZMg] 0.30±0.10 0.6 ... ... ... [Z ] 0.30±0.10 0.3 ... ... ... Al [ZSi] 0.09±0.08 0.33 0.94 <∼0.4 0.14±0.10 [ZFe] 0.30±0.15 ∼1.5 ... ... ... N(HI),cm−2 (2.6±0.5)E15 1.0E16e (2.6±0.5)E14 (1.1±0.2)E14 2.5E15e N(CII),cm−2 (1.64±0.08)E13 (1.5±0.2)E14 <∼1.0E12 <∼1.6E11 (7.3±1.5)E12 N(CII∗),cm−2 <5.0E11 <4.3E12 ... ... <1.5E12 N(MgII),cm−2 (1.20±0.20)E11 (5.3±1.5)E12 ... ... ... N(SiII),cm−2 (2.8±0.3)E12 (1.2±0.1)E13 ... ... ... N(SiII∗),cm−2 <1.3E11 <2.0E11 ... ... ... N(FeII),cm−2 (1.4±0.4)E11 (5.5±2.0)E11 ... ... ... N(AlIII),cm−2 (3.6±1.0)E11 (1.4±0.3)E12 ... ... ... N(SiIII),cm−2 7.5E12c (5.5±0.6)E13 (2.3±1.2)E11 <∼8.5E10 (7.9±0.8)E12 N(CIV),cm−2 (2.2±0.2)E13 (1.7±0.2)E15 (3.4±0.3)E14 (3.4±0.2)E13 (2.3±0.1)E14 N(SiIV),cm−2 (4.5±0.4)E12 (7.7±0.8)E13 (1.6±0.5)E12 <3.0E11 (1.2±0.1)E13 N(NV),cm−2 <1.4E12 (1.8±0.2)E14 (7.7±0.8)E13 (4.5±0.5)E12 (1.3±0.1)E13 hTi,K 0.8E4 1.2E4 1.3E4 1.8E4 1.6E4 a,bUncertainties:a∼15−20%,andb∼30%. cThevalueofN(SiIII)iscalculatedonbaseofotherlines. dPhysicalparameters(U0,NH,σv,σyandmetallicities)areonlyillustrativesinceestimatedforthe photoionizationequilibriumwhereastheabsorptionsystemisinnon-equilibrium. eEstimatedundertheassumptionofconstantmetallicityinsidetheabsorber. fZX =NX/NH;[ZX]=log(NX/NH)−log(NX/NH)⊙. To estimate the distance, the QSO continuum luminosity ergs−1 Hz−1 whichshowsthatbothvaluesare in reasonable atthe LymanlimitL mustbe known.Absolutespectropho- agreement.In the followingwe use the second one since it is νc tometryisnotavailableforHE0141–3932.Thereforeweesti- basedontheobservationaldata. matedtheintrinsicluminosityL from(i)thecomparisonof Given the upper limits on n , the distance from the QSO νc H theQSOBmagnitude(assumingtheQSOspectralenergydis- to the absorbing cloud can be calculated from the estimated tributionisaMF-type,i.e.,α = 0.5intherange912A˚< λ < ionizationparameterU whichisdefinedas 1600 A˚) with the specific flux of a star having m = 0.0 outside the Earth’s atmosphere (4.4 × 10−20 erg sB−1 cm−2 U = Q(H0) = nph , (2) Hz−1) and from (ii) the empirical formula given by Tytler 4πr2cnH nH [1987, Eq.(17)]which is obtained from a fit to (fν,mv) data where onover60QSOswithawiderangeofredshifts.Theobserved ∞ L B magnitude of 16.09 (corrected for extinction) translates to Q(H0)= ν dν (3) thefluxfν(4400A˚)=1.6×10−26ergs−1 cm−2Hz−1 which Zνc hν in turn leads to the apparentluminosity near the Lyman limit is the number of hydrogen ionizing photons emitted per unit Lνc ∼ 8 × 1031 erg s−1 Hz−1 (H0 = 71 km s−1 Mpc−1, time by the central source, c is the speed of light, νc is the Ωm = 0.3,andΩΛ = 0.7areusedtocalculatetheluminosity frequency of the Lyman continuum edge, and nph the corre- distanceof13Gpc).ThesecondmethodgivesLνc ∼5×1031 spondingdensityofionizingphotons. 10 D.Reimersetal.:HE0141–3932:abrightQSOwithanunusualemissionlinespectrumandassociatedabsorption With the estimated Lyman continuum luminosity L ∼ lessthan7×1031ergs−1Hz−1.Thisimplieseitheranunusu- νc 5×1031ergs−1Hz−1, onefindsQ(H0)∼7.5×1057photons allyflatradiationcontinuum(typicallyforQSOsisL ∝ν−0.5 ν s−1, assuming L = L (ν/ν )−α, and α = 1 in the range at ν < 1013 Hz and∝ ν−1.5 above),orthatthe apparentop- ν νc c ν > ν .Asubstitutionofthenumericalvaluesin(2)provides ticalluminosityisDoppler-boosteddueto the relativisticmo- c r >100kpc,r >280kpc,andr >450kpc. tion of the light source. Another argument in favor of boost- 1.68 1.71 1.78 ingcomesfromthemetallicityestimations.HE0141–3932isa brightsource.ItissupposedthattheQSOluminosityisdeter- 5. Discussionandconclusions mined by the accretion rate which requiresa large amountof Thecharacteristicsofboththebroademissionlinesandasso- circumnucleargas.This,inturn,supposesa largemassofthe ciatedabsorptionsofHE0141–3932canbebestexplainedby contributingstellarpopulationand,hence,ahighmetalenrich- thealmostpole-onviewofthisquasar.Theweaknessofemis- mentofthe accretinggas.For reference,allQSOs with lumi- sion lines is then due to dilution by direct radiation from the nositiesabove5×1031ergs−1Hz−1inthesampleofDietrich accretiondisk,whereasthevelocityshiftsoftheassociatedsys- etal.(2003)havemetallicitiesZ > 3Z⊙ withthemeanvalue temsandtheirdistancesfromthelightsourcecanbecausedby of 4-5Z⊙. The metallicity of 4-5Z⊙ has been also measured the entrainment into the large-scale outflowing jet. However, intheassociatedsystemofaverybrightQSOHE0515–4414 powerfuljetspropagatingtodistancesof∼0.5Mpcimplythe (Levshakov et al. 2003b). Gas in HE 0141–3932 has metal- existence of significant radio radiation, but HE 0141–3932is licity Z ≈ 1−2Z⊙, which supposes a relatively low stellar a radio-quiet QSO. An upper limit to its radio flux of 1 mJy populationinvolvedintheenrichment,lowaccretionrateand, translates into the intrinsic radio luminosity L < 7 × 1031 hence,lowluminosity.Boostingcanbecausedbyarelativistic ν ergs−1 Hz−1. Thisis a radio powerofa typicalFR I source. jetseenatasmallviewingangle.Takingintoaccountthemea- Jets in the FR I-type structures are known to be subsonic or suredequivalentwidthsoftheemissionlines,wemayassume slightlyoversonicwithvelocities1000–10000kms−1,heav- thattheluminosityisamplifiedby∼10times,i.e.theintrinsic ier than and isobaric with the external medium (e.g., Hughes luminosity of HE 0141–3932mightbe only L ∼ 5×1030 νc 1991).Thesecharacteristicsareinlinewiththesuggestionthat ergs−1 Hz−1. theobservedabsorptionsoriginateintheentrainedclouds.Itis Anotherissueofinterestistherelativeabundancesobtained alsoknownthatFRIjetsdonotshowanextendedradioemis- for the absorbinggas. The analyzedabsorptionsystems show sion.Thismeansthatradioobservationsofsuchjets,especially high iron content, [Fe/C] = 0.15±0.1, [Fe/Mg] = 0.0±0.1 whentheyareseenatasmallangletothelineofsight,needa (z = 1.78),butatthe same time nitrogenis stronglyunder- abs high spatial resolution and high sensitivity. Nevertheless, the abundant,[N/C] < −0.5(z =1.68).Althoughthesevalues ∼ abs calculated distances of several hundreds of kiloparsecs seem were estimated in different absorption systems they are rep- tobe4-5timeoverestimatedsincethetypicaljetlengthofthe resentative for the bulk of circumnuclear gas for the follow- FRIobjectisbelow100kpc.Wecannotexplainthesourceof ing reason. The mass of the stellar populationinvolvedin the thisdiscrepancy.Itshouldbenoted,however,thatdistancesof enrichment of a quasar’s circumnuclear region is > 104M⊙ hundredsofkiloparsecsfortheassociatedsystemsarenotex- (Baldwin et al. 2003a) and hence large metallicity gradients ceptional[see,e.g.,Morrisetal. (1986);Tripp,Lu,& Savage andsharpdiscontinuitiesduetoenrichmentbyonlyafewstars (1996);D’Odoricoetal.(2004)]. are unlikely. In the Hamann & Ferland (1993, 1999) models The second fact that is hard to explain is the large veloc- of QSO chemical evolution, solar metallicity is reached after ity excess between low- and high-ionization emission lines. > 0.2Gyrandischaracterizedbyarelativeoverabundanceof ∼ According to a model of the quasar atmosphere (e.g., Elvis nitrogen,[N/C] > 0, and an underabundanceof iron, [Fe/C] ∼ 2004), low-ionization emission lines (Hα, OI, FeII, MgII, <0.Duetothedelayof1GyrinFeenrichmentexpectedfrom CIII])comefromtheouterregionoftheaccretiondiskwhich the longerevolutionof SNe Ia which are the main sourcesof iswellshieldedfromthecentralsourceradiationandoptically iron, the emission line ratios FeII/CIV and FeII/MgII were thick for Lyα. Lyα and high-ionization emission lines (CIV, proposed as a clock to constrain the QSO ages. However, in SiIV,NV)areformedinacoolphaseofthewindarisingfrom thesemodels,largevaluesof[Fe/C]and[Fe/Mg]arealwaysas- the inner parts of the accretion disk. The emission at 3400 A˚ sociatedwithaconsiderableoverabundanceofnitrogen,[N/C] observed in HE 0141–3932 cannot be interpreted unambigu- > 0.3. We do not observe such behavior in our systems and, ously,butifitis(evenpartially)duetoLyαatz = 1.80,then hence,cannotconfirmthis‘ironclock’.Thisisinlinewiththe itsredshiftandstrengthisinconsistentwiththisscenariosince resultofMatteucci&Recchi(2001),whoshowedthatthetime CIV and SiIV are seen at z = 1.75. The same situation (i.e., scaleforenrichmentbySNeIaisnotuniquebutastrongfunc- z >z )isobservedinPG1407+265.Apparently,acom- tion of the adopted stellar lifetimes, initial mass function and Lyα CIV plex geometrical model of the broad emission line region is starformationrateandcanvarybymorethananorderofmag- necessarytoexplaintheobservations. nitude. As already mentioned, the relativistic jet beamed toward Acknowledgements. TheworkofS.A.L.andI.I.A.issupportedbythe us was discovered in the bright (B = 15.7) and radio-quiet RFBR grant No. 03-02-17522 and by the RLSS grant 1115.2003.2. PG 1407+265 (Blundell et al. 2003). There are indications C.F. is supported by the Verbundforschung of the BMBF/DLR that HE 0141–3932may also have a similar small-scale rela- grant No. 50 OR 9911 1. S.L. acknowledges support from the tivistic jet. The Lyman limit luminosity of HE 0141–3932 is Chilean CentrodeAstrof´ısicaFONDAP No. 15010003, and from Lνc = 5×1031ergs−1 Hz−1,whereasitsradioluminosityis FONDECYTgrantNo1030491.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.