Contemporary Mathematicians Gian-Carlo Rota Editor Hassler Whitney in the 1970s (Photograph by Sally Whitney) Hassler Whitney at age 14 in the Swiss Alps Hassler Whitney Collected Papers Volume I James Eells Domingo Toledo Editors Birkhiuser Boston • Basel • Berlin 1992 James Eells Domingo Toledo Department of Mathematics Department of Mathematics University of Warwick University of Utah Coventry CV 4 7AL Salt Lake City, Utah 84112 England U.S.A. Library of Congress Cataloging-in-Publication Data Whitney, Hassler. The collected papers of Hassler Whitney / edited by James Eells, Domingo Toledo p. cm. - (Contemporary mathematicians) Includes bibliographical references. ISBN-13: 978-1-4612-7740-8 e-ISBN-13: 978-1-4612-2972-8 DOl: 10.1007/978-1-4612-2972-8 1. Topology. 2. Geometry, Differential. 3. Combinatorial analysis. 1. Eells, James, 1926- II. Toledo, Domingo. III. Title. IV. Series. QA611.W4854 1992 514-dc20 91-9885 CIP Printed on acid-free paper. © Birkhiiuser Boston, 1992 Softcover reprint of the hardcover 1st edition 1992 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any fonn or by any !p.eans, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner. Permission to photocopy for internal or personal use, or the internal or personal use of specific clients is granted by Birkhiiuser Boston for libraries and other users registered with the Copyright Clearance Center (Ccq, provided that the base fee of $0.00p er copy, plus $0.20 per page is paid directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A. Special requests should be addressed directly to Birkhiiuser Boston, 675 Massachusetts Avenue, Cambridge, MA 02139, U.S.A. 3558-0/91 $0.00 + .20 Printed and bound by Quinn Woodbine, Woodbine, NJ 987 6 5 4 3 2 I The Collected Papers of Hassler Whitney Contents - Volume 1 (Bracketed numbers are from the Bibliography) Contents - Volume 1 · v Contents - Volume 2 · vii Preface · x Academic Appointments and Awards · xi Bibliography of Hassler Whitney . . · xii Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 [82] Moscow 1935: Topology Moving Toward America Chapter 1 Graphs and Combinatorics ....................... 23 [3] A theorem on graphs, Annals of Math. (2) v. 32, 1931, 378-390 ....................... . 24 [5] Non-separable and planar graphs, AMS Transac. v. 34, 1932, 339-362 . 37 [6] Congruent graphs and the connectivity of graphs, Am. Jour. Math. v. 54, 1932, 150-168 .................. . 61 [10] The coloring of graphs, Annals of Math., (2) v. 33, 1932, 688-718 . 80 [12] A set of topological invariants for graphs, Am. Jour. Math., v. 55, 1933, 231-235 .................. 111 [13] On the classification of graphs, Am. Jour. Math., v. 55, 1933,236-244 116 [14] 2-Isomorphic graphs, Am. Jour. Math., v. 55, 1933, 245-254 . . 125 [17] Planar graphs, Fundamenta Math., V. 21, 1933, 73-84 . . . . . 135 [23] On the abstract properties of linear dependence, Am. Jour. Math., v. 57, 1935,509-533 ................. 147 [37] A numerical equivalent of the four color problem, Monatshefte fur Math. un Phys. 3, 1937-207-213 . . . . . . . . . . . 172 [77] On reducibility in the four color problem, unpublished manuscript, 1971 179 [78] (With W. T. Tutte) Kempe chains and the four colour problem, Utilitas Mathematica 2(1972), 241-281 ............. 185 v Chapter 2 Differentiable Functions and Singularities .... 227 [18] Analytic extensions of differentiable functions defined in closed sets, AMS Transac., v. 36, 1934, 63-89 . . . . . . . . . . . . . 228 [19] Derivatives, difference quotients and Taylor's formula, AMS Bull., v. 40, 1934, 89-94 .................. 255 [20] Differentiable functions defined in closed sets I, AMS Transac., v. 36, 1934, 369-387 ................. 261 [21] Derivatives, difference quotients and Taylor's formula II, Annals of Math. (2) v. 35, 1934,476--481 . . . . . . . . . . . . . . . . . . . 280 [22] Functions differentiable on the boundaries of regions, Annals of Math. (2) v. 35, 1934,482-485 . . . . . . . . . . . . . . . 286 [26] A function not constant on a connected set of critical points, Duke Math. J., v. 1, 1935, 514-517 .......... 290 [27] Differentiable functions defined in arbitrary subsets of Euclidean space, AMS Transac., v. 40, 1936,309-317 . . . . . . . . . 294 [45] Differentiability of the remainder term in Taylor's formula, Duke Math. J., 10, 1943, 153-158 . . . . . . . . . . 303 [46] Differentiable even functions, Duke Math. J., 10, 1943, 159-160 309 [47] The general type of singularity of a set of 2n - 1 smooth functions of n variables, Duke Math. J., 10, 1943, 161-172 . . . . . . . 311 [49] On the extension of differentiable functions, AMS Bull., 50, 1944, 76-81 323 [55] On ideals of differentiable functions, Am. Jour. Math. 70, 1948, 635-658 329 [61] On totally differentiable and smooth functions, Pacific J. Math. 1, 1951, 143-159 ..................... 353 [63] On singularities of mappings of Euclidean spaces, I. Mappings of the plane into the plane, Annals of Math. (2) 62, 1955, 374-410 370 [64] On functions with bounded n-th differences, J. de Maths. Pures et Appl. 36, 1957, 67-95 ............. 407 [67] Singularities of mappings of Euclidean spaces, Symposium Intemacional de Topologia Algebraica, Mexico, 1956,285-301, Mexico, La Universidad Nacional Autonoma, 1958 ..... 436 [70] On bounded functions with bounded n-th differences, AMS Proc. 10, 1959,480-481 . . . . . . . . . . . . . . . . . . . . 453 Chapter 3 Analytic Spaces ... 455 [66] Elementary structure of real algebraic varieties, Annals of Math. (2) 66, 1957, 545-556 ...................... 456 [68] (With F. Bruhat) Quelques proprietes fondamentales des ensembles analytiques-reels, Comm. Math. Helv. 33, 1959, 132-160 468 [73] Local properties of analytic varieties, in: differential and combinatorial topology (Symposium in Honor of Marston Morse), Princeton, NJ, Princeton University Press, 1965, 205-244 . . . . 497 [74] Tangents to an analytic variety, Annals of Math (2) 81, 1965, 496-549 537 Permissions vi The Collected Papers of Hassler Whitney Contents - Volume 2 (Bracketed numbers are from the Bibliography) Contents - Volume 1 . v Contents - Volume 2 vii Preface . x Academic Appointments and Awards .xi Bibliography of Hassler Whitney . . xii Chapter 1 Manifolds xiii [28] Differentiable Manifolds, Annals of Math.(2) v.37, 1936,645-680 . . 1 [29] The imbedding of Manifolds in families of analytic manifolds, Annals of Math.(2) v. 37, 1926, 865-878 . . . . . . . . . . . 37 [30] On regular closed curves in the plane, Compositio Math. 4, 1937,276-284 51 [35] Analytic coordinate systems and arcs in a manifold, Annals of Math.(2) 38, 1937,809-818 .................. 60 [50] The self-intersections of a smooth n-manifold in 2n-space, Annals of Math. (2), 45, 1944, 220-246 . . . . . . . . 70 [51] The singularities of a smooth n-manifold in (2n - I)-space, Annals of Math.(2), 45, 1944,247-293. . . . . . . . . 97 [72] The work of John W. Milnor, Proceedings ICM 1962, Institut Mittag-Leffler, Djursholm, Sweden, xlviii-I. . . . . . . . . . . . . . . . . . . . . 144 Chapter 2 Bundles and Characteristic Classes . . . . . . . . . . . . . . . . . . . . 147 [36] Topological properties of differentiable manifolds, AMS Bull. 43, 1937, 785-805 . . . . . . . . . . . . . . . . . . 148 [42] On the theory of sphere-bundles, NAS Proc., 26, 1940, 148-153 . 169 [44] On the topology of differentiable manifolds, Lectures in Topology, U. of Michigan Press, 1941, 101-141 .......... . 175 [69] (With A. Dold) Classification of oriented sphere bundles over a 4-complex, Annals of Math. (2) 69, 1959,667-677 ..... . 216 vii Chapter 3 Topology and Algebraic Topology . . . . . . . . . . . . . . . . . . . . . 227 [11] A characterization of the closed 2-cell, AMS Transac., v. 35, 1933,261-273 228 [15] Regular families of curves, Annals. of Math.(2) v. 34, 1933,244-270 241 [31] On matrices of integers and combinatorial topology, Duke Math. J., 3, 1937,35-45. . . . . . . . . . . . . . . . . . . . . . 268 [32] On the maps of an n-sphere into another n-sphere, Duke Math. J., 3, 1937,46-50. . . . . . . . . . . . . . . . . . . . 279 [33] The maps of an n-complex into an n-sphere, Duke Math. J., 3, 1937,51-55. . . . . . . . . . . . . . . . . . . . 284 [38] Cross sections of curves in 3-space, Duke Math. J.,4, 1938,222-226 289 [39] On products in a complex, Annals of Math.(2) 39, 1938,397-432. . 294 [40] Tensor products of abelian groups, Duke Math. J., 4, 1938, 495-528 330 [41] Some combinatorial properties of complexes, NAS Proc., 26, 143-148 364 [43] On regular families of curves, AMS Bull., 47, 1941, 145-147 370 [48] Topics in the theory of A~lian groups, I. Divisibility of Homomorphisms, AMS Bull., 50, 1944, 129-134 . . . . . . . . . . . . . 373 [54] Complexes of manifolds, NAS Proc., v. 33, 1947, 10-11 379 [56] Relations between the second and third homotopy groups of a simply-connected space, Annals of Math.(2) 50, 1949, 180-202 . 381 [57] Classification of the mappings of a 3-complex into a simply-connected space, Annals of Math.(2) 50, 1949, 270-284 . . . . . . . . . . . . 404 [58] An extension theorem for mappings into simply-connected spaces, Annals of Math.(2) 50, 1949, 285-296 . . . . . . . . . . . . 419 Chapter 4 Geometric Integration Theory ...................... 431 [52] Algebraic topology and integration theory, NAS Proc., v. 33, 1947, 1-6 . .. 432 [53] Geometric methods in cohomology theory, NAS Proc., v. 33, 1947,7-9 . .. 438 [59] La topologie algebrique et la theorie de l'integration, Colloques Internationaux du CNRS XII, Topologie Algebrique, 1947, 107-113, published by CNRS, Paris, 1949 . . . . . . . . . . . . . . . . . . . . . 441 [62] r-dimensional integration in n-space, Proc. Int Congo Math., 1950, vol. 1,245-256, Amer. Math. Soc. 1952 . . . . . . 448 [65] Introduction to "Geometric Integration Theory", Princeton, NJ, Princeton University Press, 1957, pp. 3-31 . . . . . . . . . 460 Chapter 5 Other Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 [9] A logical expansion in mathematics, AMS Bull., v. 38, 1932,572-579. .. 490 [16] Characteristic functions and the algebra of logic, Annals of Math.(2) v. 34, 1933,405-414 . . . . . . . . .. . . . . . . . . . . . . . . 498 viii [60] (With L.H. Loomis) An inequality related to the isoperimetric inequality related to the isoperimetric inequality, AMS Bull., 55, 1949,961-962 508 [71] (With A.M. Gleason) The extension of linear functionals defined on H-infinity, Pacific J. Math. 12, 1962, 163-182 ........ 510 [75] The mathematics of physical quantities. Part I, Mathematical models for measurement, Am. Math. Monthly 75(1968), 115-138, Part II, Quantity structures and dimensional analysis, ibid. 237-256 . 530 [76] Logic fad or tool? nico 4, 1969, Revue per . du centre Beige de Pedagogie de la Mathematique, 2-14 . . . 584 [81] Comment on the division of the plane by lines, Am. Math. Monthly 86(1979), p. 700 . . . . 597 Permissions ix