Hartree-FockMany-BodyPerturbationTheoryforNuclearGround-States Alexander Tichai,1,∗ Joachim Langhammer,1 Sven Binder,2,3 and Robert Roth1,† 1Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany 2DepartmentofPhysicsandAstronomy, UniversityofTennessee, Knoxville, TN37996, USA 3Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Weinvestigatetheorder-by-orderconvergencebehaviorofmany-bodyperturbationtheory(MBPT)asasim- pleandefficienttooltoapproximatetheground-stateenergyofclosed-shellnuclei.Toaddresstheconvergence propertiesdirectly,weexploreperturbativecorrectionsupto30thorderandhighlighttheroleofthepartitioning forconvergence.TheuseofasimpleHartree-Focksolutiontoconstructtheunperturbedbasisleadstoaconver- gentMBPTseriesforsoftinteractions,incontrastto,e.g.,aharmonicoscillatorbasis. Forlargermodelspaces andheaviernuclei,whereadirecthigh-orderMBPTcalculationinnotfeasible,weperformthird-ordercalcula- tionandcomparetoadvancedabinitiocoupled-clustercalculationsforthesameinteractionsandmodelspaces. Wedemonstratethatthird-orderMBPTprovidesground-stateenergiesfornucleiupintotinisotopicchainthat 6 areinexcellentagreementwiththebestavailablecoupled-clusterresultsatafractionofthecomputationalcost. 1 0 2 Introduction. The solution of the Schrödinger equation ground-state energies of selected closed-shell medium-mass for atomicnuclei using realisticnuclear interactions isat the andheavynucleiatthird-orderMBPT,andcomparetorecent n heart of ab initio nuclear structure theory. In practice this coupledcluster(CC)calculations[6]. a J problemissolvedbyconstructingapproximatemethodsfora The Nuclear Hamiltonian. For all following investiga- 4 truncated,i.e.,finite-dimensionalHilbertspace. However,for tions we start from the chiral nucleon-nucleon (NN) interac- 1 thecalculationofground-stateenergiesofheavynucleisignif- tion at next-to-next-to-next-to leading order (N3LO) by En- icantalgorithmicandcomputationaleffortsareneeded. There temandMachleidt[25]combinedwiththethree-nucleon(3N) ] exist a plethora of different ab initio methods, e.g., coupled interaction at next-to-next-to leading order N2LO in its local h cluster(CC)theory[1–6],in-mediumsimilarityrenormaliza- form [26] with three-body cutoff Λ = 400MeV/c. Addi- t 3N - tiongroup(IM-SRG) [7–11],orself-consistentGreen’sfunc- tionally, we use the similarity renormalization group (SRG) l c tionmethods[12–14]. However,itisdesirabletohaveanal- tosoftentheHamiltonianthroughacontinuousunitarytrans- u ternative, light-weight framework available. A conceptually formation controlled by a flow parameter [27–31]. In prin- n simple method to solve for the eigenenergies of a physical ciplethistransformationinducesbeyond-3Noperatorsupthe [ system is many-body perturbation theory (MBPT) [15–17]. massnumberoftheconsiderednucleus, which, however, we 1 A perturbative treatment is the standard approach for many have to neglect. To avoid the complication of dealing with v problemsfromdifferentfieldsoftheoreticalphysics. Thead- explicit 3N interactions, we make use of the normal-ordered 3 vantage of MBPT compared to other ab initio approaches is two-body approximation (NO2B) of the 3N interaction that 0 its simplicity, which also allows for straightforward gener- has been found to be very accurate for medium-mass nuclei, 7 3 alizations to excited states and open-shell nuclei [18] with- see Refs. [32, 33]. For the matrix-element preparation we 0 out the need of sophisticated equation-of-motion techniques. adopt the procedure we introduced in Ref. [6], i.e., in par- . The reason why MBPT usually is not considered as ab ini- ticular,weusethelargeSRGmodel-spaceandexploittheit- 1 0 tio technique are convergence issues of the underlying per- erative scheme where necessary. Thus, the matrix elements 6 turbation series. Several studies of high-order MBPT based andthetreatmentofthechiralNN+3Ninteractionareidenti- 1 on Slater determinants constructed from harmonic oscillator caltoRef.[6]andwecancompareddirectlytotheCCresults : (HO) single-particle states (HO-MBPT) have shown that the presentedthere. v i perturbationseriesisdivergentinalmosteverycase[18,19]. Many-Body Perturbation Theory. The essence of X In such cases one heavily relies on the use of resummation Rayleigh-Schrödinger perturbation theory is the definition r techniques, e.g., Padé approximants, that enable a robust ex- of an additive splitting, referred to as partitioning, of a a tractionofobservablesalthoughtheperturbativeexpansiondi- given Hamiltonian H into an unperturbed part H and a 0 verges[19–21]. perturbationW. Introducinganauxiliaryparameterλyieldsa InthisLetter, weformulateMBPTbasedonHartree-Fock one-parameterfamilyofoperators, (HF)single-particlestates(HF-MBPT),and,forthefirsttime, investigate the convergence behavior of the perturbation se- H = H +λW, (1) λ 0 ries up to 30th order. We compare the ground-state energies of 4He and 16O to results from exact diagonalizations in the wheretheperturbationisdefinedbyW = H−H . Asansatz 0 configurationinteraction(CI)approachusingthesamemodel for the solution of the eigenvalue problem of H we take a space [22–24]. Based on the rapidly converging perturba- powerseriesexpansionintermsofanauxiliaryparameterλ, tionseriesresultingfromtheuseofHFbasisstates,westudy wheretheexpansioncoefficientsaregivenbytheenergycor- rectionsandstatecorrections,respectively. Wechoose H to 0 betheHFHamiltonianarisingfromaninitialNN+3Ninterac- ∗[email protected] tion. WehaveshowninRefs.[18,19]thathigh-orderMBPT †[email protected] corrections are accessible by means of a recursive scheme, 2 allowing for detailed investigations of the convergence char- state with singly-excited determinants [17] and by orthogo- acteristics of the perturbation series. In general we cannot nality the zero-body part is only present in the expectation expect that a perturbation series is convergent [34–36], but valueoftheperturbation.Inprinciple,thederivationofenergy onecanexploitresummation-theorytechniquestoextractin- corrections beyond third order is straight forward. However, formation on the observables of interest. There are different consideringadiagrammaticapproachintermsofHugenholtz schemesandtransformationsthatcanbeusedtoextract,e.g., diagrams,thenumberofcontributingdiagramsatagivenper- the ground-state energy froma divergent expansion [37–39]. turbation order p increases rapidly [41] such that it becomes Padé approximants have proven to be particularly useful in challengingtogobeyondthird-orderinpractice.Additionally, thetreatmentofhigh-orderHO-MBPT[18,19].Additionally, terms from higher-order corrections involve expressions that theyarewell-knowntomathematiciansespeciallyinthefield are notoriously hard to compute, because their effective im- of convergence acceleration [21, 36, 37]. However, the cal- plementation,e.g.,bymeansofBLAS-enabledmatrixopera- culation of energy corrections up to sufficiently high orders tions,isnotobvious. Thecomputationalpowerneededtoper- is only feasible for light nuclei due to increasing computa- formthird-orderMBPTcalculationsuptotheheavy-massre- tional requirements. When proceeding to the medium-mass gioncaninprinciplebeprovidedbyasinglecomputingnode regiononemustchooseadifferentstrategy. Dependingonthe within1−3%ofthecomputingtimeneededforstate-of-the- rateofconvergence,onemightexpectlow-orderpartialsums artCCcalculations. of the perturbation series to be a reasonable approximation Convergence Characteristics of Hartree-Fock Many-Body to the exact ground-state energy. Having only low-order in- Perturbation Theory. We start with comparing perturbation formation available, resummation methods are less effective, series from HO- and HF-MBPT, and focus on their conver- because one can only construct a small number of approxi- gence characteristics and sensitivity to the SRG flow param- mantsthatyieldvalidapproximationsonlyifthetransformed eter. In Fig. 1 we present a direct comparison of the order- sequence converges sufficiently fast [18]. However, one al- by-order behavior for the two partitionings up to 30th order ternativeistoexploitthefreedominthepartitioning,i.e.,the for 16O. For these high-order calculations we use an N - max choice of the unperturbed basis, to improve the convergence truncationofthemany-bodymodelspacesimilartheno-core oftheperturbationseries. Forlow-ordercalculationsthecor- shell model (NCSM) [23]. The left column of Fig. 1 shows rectionscanbeexpressedintermsoftheparticle-holeformal- thehigh-orderpartialsumsandtherightcolumntheindivid- ism. NotethattheHartree-Fockenergycorrespondstothethe ual energy corrections for each order. Panel (a) shows the first-orderpartialsum, partialsumsfromHO-MBPTforasequenceofmodelspaces with fixed SRG flow parameter α = 0.08fm4. The partial E = E(0)+E(1) . (2) HF sumsaredivergentforeverymodelspace. Thedivergenceis Therefore, the first contribution to the correlation energy ap- also apparent from panel (c) which reveals the exponentially pearsinsecond-orderHF-MBPT.Thesecond-andthird-order increasingenergycorrections.Incontrast,panel(b)showsthe partialsumfortheground-stateenergywithrespecttoHFba- partialsumsarisingfromHF-MBPTthatareconvergentforall sisforatwo-bodyoperatoraregivenby[40] modelspaces. Furthermore, theconvergedvaluesagreewith directCIresults. Asseeninpanel(d),theenergycorrections 1(cid:88)<(cid:15)F (cid:88)>(cid:15)F (cid:104)ab|W|ij(cid:105)(cid:104)ij|W|ab(cid:105) areexponentiallysuppressedforhigherorders,givingriseto E(2) = 4 ((cid:15) +(cid:15) −(cid:15) −(cid:15) ) arobustconvergence. ab ij a b i j In Fig. 2 we show the high-order partial sums and energy 1 (cid:88)<(cid:15)F (cid:88)>(cid:15)F (cid:104)ab|W|ij(cid:105)(cid:104)ij|W|cd(cid:105)(cid:104)cd|W|ab(cid:105) corrections in HF-MBPT for different SRG flow parameters. E(3) = 8 ((cid:15) +(cid:15) −(cid:15) −(cid:15) )((cid:15) +(cid:15) −(cid:15) −(cid:15) ) Panels(a),(b)and(c)showtheconvergentperturbationseries abcd ij a b c d a b i j for 4He,16O and 24O, respectively. The calculations are per- 1(cid:88)<(cid:15)F (cid:88)>(cid:15)F (cid:104)ab|W|ij(cid:105)(cid:104)ij|W|kl(cid:105)(cid:104)kl|W|ab(cid:105) formedforfixedN = 6for4He,16OandN = 4for24O + max max 8 ((cid:15) +(cid:15) −(cid:15) −(cid:15) )((cid:15) +(cid:15) −(cid:15) −(cid:15)) and the flow-parameter dependence of the absolute energies a b i j a b k l ab ijkl results from the varying degree of convergence with respect (cid:88)<(cid:15)F (cid:88)>(cid:15)F (cid:104)ab|W|ij(cid:105)(cid:104)cj|W|kb(cid:105)(cid:104)ik|W|ac(cid:105) tothemany-bodymodelspace. + . (3) ((cid:15) +(cid:15) −(cid:15) −(cid:15) )((cid:15) +(cid:15) −(cid:15) −(cid:15) ) A more interesting flow-parameter dependence can be ob- a b i j a c i k abc ijk servedfortheindividualenergycorrectionsinpanels(d),(e), In the third-order energy correction the first, second and and (f). There is a clear dependence of the convergence rate thirdtermarecalledparticle-particle(pp),hole-hole(hh)and on the flow parameter for the oxygen isotopes. For 16O the particle-hole(ph)correction, respectively. The(cid:15) correspond seriesconvergesexponentiallyinallthreecasesandthelarger i totheHFsingle-particleenergiesandallmatrixelementsare the flow parameter, i.e. the softer the Hamiltonian, the more taken to be antisymmetrized. Summation indices a,b,c,.. rapid the convergence—as might be naively expected. For correspond to particle indices, i.e., above the Fermi level (cid:15) , 24O the behavior is slightly more complicated. For the soft- F whereasi, j,k,...correspondtoholeindicesrangingfromlow- est interaction with α = 0.08fm4 there is still a clear expo- estoccupiedsingle-particlestatesuptotheFermilevel. The nential convergence. However, for the harder interactions, zero-andone-bodypartsofthenormal-orderedHamiltonian i.e., α = 0.02,0.04fm4, we observe no systematic decrease onlyenterinthefirst-orderenergycorrection. Brillouin’sthe- ofthehigh-orderperturbativecontributionsanymore,theyre- oremstatesthatthereisnomixingoftheHartree-Fockground mainapproximatelyconstantandcauseasmall-amplitudeos- 3 40 partialsums energycorrections (p)E[MeV]sum −−−−−1186200000 (a) (c) 11110000−351||0[MeV]E(p) (p)E[MeV]sum −−−−−222211642086 4He 11110000−−331||[MeVE(p) −140 10−3 −−28 (a) (d) 10−5 ] 60 103 30 (p)E[MeV]sum −−−−−11184200000 2(b)6 10 14 18 22 26 30 2(d)6 10 14 18 22 26 301111100000−−−−7531||0[MeV]E(p) (p)E[MeV]sum −−−−−−1118642000000 (b) (e) 16O 1111100000−−−3531||[MeV]E(p) perturbationorderp perturbationorderp 24O 103 -120 V] 10 |E FNNImNGa+x.31=N. P-2faur(lt(cid:108)li)ai,nlts4eurm(a(cid:72)cst)iooafnn1dw6Oi6thi(n(cid:70)αH)=.OT0.bh0ae8sficmso(r4arae)nsapdnodtnrudHninFcgabtieaonsniesrpg(abyr)acmfooerrrtteehcres- (p)E[Mesum -140 1100−−31|[MeV(p) ] tions for each order are displayed in (c) and (d), respectively. All -160 calculationsareperformedatoscillatorfrequency(cid:126)Ω=24MeV. (c) (f) 10−5 2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30 perturbationorderp perturbationorderp cillatorybehaviorofthepartialsums. However,eveninthese FIG.2. PartialsumsforvaryingflowparametersinHF-MBPTfor cases we can easily extract a robust estimate for the asymp- 4He(a),16O(b)and24O(c). Thecorrespondingenergycorrections toticvalue. Inthecaseof4Hethesuppressionisindependent aregivenin(d),(e)and(f),respectively.Themodelspaceforthefirst ofαandweobservethesamerapidconvergenceforallinter- andsecondpanelaretruncatedatN = 6. Thetruncationforthe max actions. thirdpanelisgivenbyNmax =4. Theflowparametersforthediffer- The numerical values of the partial sums for selected or- entdatasetsareα=0.02fm4((cid:108)),0.04fm4((cid:72))and0.08fm4((cid:70)).All ders of HF-MPBT for the three nuclei and the different flow calculationsuseaNN+3N-fullinteractionwithoscillatorfrequency (cid:126)Ω=24MeV. parametersaresummarizedinTab.Itogetherwiththeresults ofdirectCIcalculationsforthesameHamiltoniansandmodel spaces. Thehigher-orderpartialsumsareingoodagreement culationsfortheselargespaces,however,thecoupled-cluster withtheCIresults—inmostcasesthedeviationoftheground- frameworkhasproventoprovideaccurateresultsforground- stateenergyismuchsmallerthan0.1%. state energies of closed-shell nuclei [1–4]. We compare the Basedonourdetailedanalysisofhigh-orderHF-MBPTand HF-MBPTresultstorecentCCcalculationsattheCCSDand duetotheexponentialsuppressionoftheenergycorrections, theCR-CC(2,3)level[5,6,42]. StartingfromaHFreference we can take low-order partial sums as a reasonable approxi- statethisapproachprovidesacompleteinclusionofsinglyand mationtotheconvergedresults. Thismotivatestheinvestiga- doublyexcitedclustersontopofthereferencestateand,inthe tionofthird-orderpartialsumsforselectedmedium-massand caseofCR-CC(2,3)anapproximatenon-iterativeinclusionof heavyclosed-shellnucleiinthefollowing. triplyexcitedclusters[43–46]. ExplicitSummationforHeavyNuclei. Forheaviernuclei InFigs.3and4theground-stateenergiespernucleon(a)as and larger model spaces we cannot compute the high-order wellasthecorrelationenergyE = E−E pernucleon(b) corr HF perturbationseriesexplicitlyand,thus,wecannotinvestigate from HF-MBPT and CR-CC(2,3) are depicted for an initial the convergence characteristics explicitly. We can, however, chiralNN+3NandaninitialchiralNNinteraction. TheSRG- evaluate the perturbative contributions up to third order very induced three-nucleon contribution are taken into account in efficiently. To demonstrate the validity of a low-order per- both cases, leading to the NN+3N-full and NN+3N-induced turbative approximation, we need to compare our results to interactions,respectively. established ab initio techniques, in our case, coupled-cluster Thesefiguresshowaremarkableresult: Thebindingener- calculationswithsophisticatedtriplescorrections. gies in third-order HF-MBPT and CR-CC(2,3) are in excel- Weconsiderasequenceofclosed-shellnucleirangingfrom lent agreement with each other. The relative differences are 4He to 132Sn and perform calculations in second and third- in most cases much smaller than 1%. The same observation orderHF-MBPTinalargemodelspacetruncatedwithrespect holdsforthecorrelationenergy,i.e.,thecorrectionstotheHF to the single-particle principal quantum number e = 12. energy. Thethird-orderenergycorrectionscontributeapprox- max WerestrictourselvestoSRG-evolvedHamiltonianswithflow imately 0.2 MeV to the overall binding energy per nucleon parameterα=0.08fm4,whichwasusedextensivelyinprevi- andare,therefore,nonnegligibleeventhoughthethird-order ouscalculationsandshowedfavorableorder-by-orderconver- energy corrections in HF-MBPT are one order of magnitude gence in our high-order studies. We cannot perform CI cal- smallerthanthesecond-ordercorrection. 4 6 − NN+3N-full 7 V] − Me 8 − [ A 9 / − E 10 − (a) 1 − V] e M 1.5 [ − A / corr −2 E (b) 2.5 − 4He 16O 24O 36Ca 40Ca 48Ca 52Ca 54Ca 48Ni 56Ni 60Ni 66Ni 68Ni 78Ni 88Sr 90Zr 100Sn116Sn118Sn120Sn132Sn FIG.3. Panel(a)showstheground-stateenergiespernucleonfromthird-orderHF-M◦BPT((cid:108))incomparisontoCR-CC(2,3)((cid:72))resultsfor selectedclosed-shellnuclei.Panel(b)showsthecorrelationenergypernucleon,E(2)( )aswellasE(2)+E(3)((cid:108))forHF-MBPT.Additionally, 0 0 0 the correlation energy per nuclei for CCSD ((cid:52)) and CR-CC(2,3) ((cid:72)) are shown. All calculations were performed with the NN+3N-full interactionwithα=0.08fm4,(cid:126)Ω=24MeVinane =12truncatedmodelspace.Experimentalvaluesareindicatedbyblackbars. max 6 − NN+3N-induced V] 7 e − M [ 8 A − / E 9 − (a) 0.8 − V] 1 e − M 1.2 [ − A / 1.4 orr − Ec 1.6 − 1.8 (b) − 4He 16O 24O 36Ca 40Ca 48Ca 52Ca 54Ca 48Ni 56Ni 60Ni 66Ni 68Ni 78Ni 88Sr 90Zr 100Sn116Sn118Sn120Sn132Sn FIG.4.BindingenergyandcorrelationenergyfortheNN+3N-inducedinteraction.AllotherparametersasinFig3. The third-order energy contribution (3) consists of three ual third-order contributions on the input Hamiltonian show termscorrespondingtothreeHugenholtzdiagrams. Figure5 thatapartialinclusionofselectedthird-ordertermsmaylead disentanglestheirindividualcontributionstotheoverallthird- towrongestimates. order energy correction. The contribution of the pp and hh Conclusions. We have discussed Rayleigh-Schrödinger corrections are almost constant over the entire mass range, MBPT as an efficient approach to compute ground-state en- whereastheenergycorrectionarisingfromthe phtermscales ergies for closed-shell nuclei up to the heavy-mass region. with increasing mass number in the case of a NN+3N-full The use of a HF basis has enabled us to overcome conver- interaction. For the tin isotopes the third-order energy cor- genceproblemsthatgenerallyariseinHO-MBPT.Investigat- rectioncontributes3%oftheoverallbindingenergyinthird- ing 16O in different model spaces showed convergent partial order HF-MBPT and is not negligible. In particular we see sums when using HF-MBPT and the limit of the perturba- thatmostofthethird-orderenergycorrectionarisesfromthe tion series coincides with the results from explicit CI calcu- ph diagram. In the case of a NN+3N-induced interaction lations. Additionally, we found systematic dependencies of we see that all three terms are suppressed with increasing the convergence rate on the SRG parameter in the case of massnumber. Thesesystematicdependenciesoftheindivid- 16Oand24O. Thus,inHF-MBPTwecanimprovetheconver- 5 titioning, or equivalently, defining a starting point of the re- TABLE I. Ground-state energies for 4He, 16O and 24O in units of cursive calculation is the most important part. We have seen [MeV]obtainedinHF-MBPTfordifferentordersupto p = 30and fromtheradicallydifferentbehavioroftheperturbationseries in CI calculations with NN+3N-full interactions for different flow in HF-MBPT and HO-MBPT that the partial sums are very paramtersα. Themodelspacesaretruncatedby N = 6for4He and 16O and N = 4 in the case of 24O. The HmOaxfrequency is sensitive to the partitioning. When using HF-MBPT we can max (cid:126)Ω=24MeV. improvetheorder-by-orderconvergencebyusingsofterinter- actions corresponding, e.g., to larger SRG flow parameters. α [fm4] Even for HF basis sets harder interactions can spoil conver- 0.02 0.04 0.08 gence. The ‘softness’ of the interaction has been character- E(s2u)m -19.204 -20.269 -23.588 ized in terms of Weinberg eigenvalues, which are connected E(3) -20.334 -23.224 -26.589 tothespectrumoftwo-bodyGreen’sfunctions[47–49]. Sim- sum 4He E(s1u0m) -20.507 -24.444 -26.947 ilarexpressionsalsoappearintheformulasforthefirst-order E(20) -20.526 -24.462 -26.964 statecorrection. Thoughthegeneralconnectionseemsobvi- sum E(30) -20.537 -24.469 -26.971 ous,oneshouldbecarefulwithconclusionsabouttheconver- sum gence of MBPT for a finite nucleus based on the softness of CI -20.539 -24.483 -26.994 the interaction. Our work has shown that the partitioning is E(2) -85.620 -107.241 -120.699 sum key for convergence. Our observation that the convergence E(3) -89.315 -110.861 -123.863 sum of HF-MBPT deteriorates for harder interactions could sim- 16O E(s1u0m) -83.780 -107.199 -122.561 plybeexplainedbythefactthattheunperturbedHFsolution E(20) -84.180 -107.341 -122.577 sum becomesamuchworseapproximationforthegroundstatein E(s3u0m) -84.018 -107.331 -122.577 thesecases. CI -84.043 -107.330 -122.577 ThesuperiorconvergencepropertiesofHF-MBPThasmo- E(2) -125.460 -124.459 -149.053 tivatedtheuseoflow-orderapproximationstoinvestigatenu- sum E(3) -122.880 -126.670 -151.059 cleiinthemedium-massregion. Wehavevalidatedtheselow- sum 24O E(s1u0m) -119.705 -121.233 -147.446 order approximations to the most sophisticated CC calcula- E(20) -119.335 -121.314 -147.508 tionsandfoundexcellentagreementofthird-orderHF-MBPT sum E(30) -119.483 -120.948 -147.489 and CR-CC(2,3) at the level of better than 1%. The consis- sum tency of high-order partial summations with exact CI diago- CI -119.131 -120.947 -147.488 nalizationsaswellastheagreementoflow-ordersummations withcoupled-clusterresultsmayqualifyHF-MBPTasanab 0.2 initio approach. However, the strong dependence of conver- V] NN+3N-full e genceonthepartitioningshouldbeareasonforcaution. The [M 0 HF partitioning seems to be robust for sufficiently soft inter- A / 0.2 actions,butthereisnoformalguaranteeforconvergence. (3) − Thegreatadvantageoflow-orderHF-MBPTisitssimplic- E 0.4 ity: Computationally, the third-order calculations are much − V] 0.2 NN+3N-induced cheaper than CC or IM-SRG calculations. It is, therefore, Me ideal for survey calculations over a large range of medium- 0 [ mass nuclei, e.g., to explore the ground-state systematics for A (3)/ −0.2 new interactions. Formally, the underlying equations and al- E gorithms are trivial compared to CC or IM-SRG. As a result 0.4 − 4He 16O 24O 40Ca 48Ca 56Ni 78Ni 90Zr 100Sn132Sn ofthisformalsimplicity, extensionstothedescriptionexited states and open-shell nuclei are straight-forward. We have demonstratedthisalreadyforlightnucleiusinghigh-orderde- FIG.5. Individualcontributionsofthediagramsappearingatthird- generate HO-MBPT [18]. Alternative multi-configurational order perturbation theory. Show are the contributions per nucleon formulationsforopen-shellnucleiareunderinvestigation. from the pp-diagram((cid:4) ) , the hh-diagram ((cid:70)) and the ph-diagram Acknowledgements. This work is supported by the DFG ( ).Theoverallcontributionofthethird-ordercorrectionisdepicted (cid:72) in((cid:108)).ThefirstpanelcorrespondstotheNN+3N-fullinteractionand through grant SFB 1245, the Helmholtz International Cen- thesecondpaneltoaNN+3N-inducedinteractionwithα=0.08fm4, terforFAIR,andtheBMBFthroughcontract05P15RDFN1. (cid:126)Ω=24MeV,ande =12. S.Bindergratefullyacknowledgesthefinancialsupportofthe max Alexander-von-Humboldt Foundation (Feodor-Lynen schol- arship). Numerical calculations have been performed at the gencebehavioroftheperturbationseriesbyfurtherevolving computing center of the TU Darmstadt (lichtenberg), at the theHamiltonian,whereasthedivergentHO-MBPTseriesare LOEWE-CSCFrankfurt,andattheNationalEnergyResearch unaffected. Scientific Computing Center supported by the Office of Sci- We can identify a hierarchy of elements influencing the ence of the U.S. Department of Energy under Contract No. convergencepropertiesofperturbationseries. Definingapar- DE-AC02-05CH11231. 6 [1] D. J. Dean and M. Hjorth-Jensen, Phys. Rev. C 69, 054320 JournalofPhysics:ConferenceSeries454,012063(2013). (2004). [25] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) [2] R.J.BartlettandM.Musial,Rev.Mod.Phys.79,291(2007). (2003). [3] G.Hagen, T.Papenbrock, D.J.Dean, andM.Hjorth-Jensen, [26] P.Navrátil,FewBodySystems41,117(2007). Phys.Rev.C82,034330(2010). [27] S.K.Bogner,R.J.Furnstahl, andR.J.Perry,Phys.Rev.C75, [4] K.Kowalski,D.J.Dean,M.Hjorth-Jensen,T.Papenbrock, and 061001(R)(2007). P.Piecuch,Phys.Rev.Lett.92,132501(2004). [28] H.HergertandR.Roth,Phys.Rev.C75,051001(R)(2007). [5] P.Piecuch,J.R.Gour, andM.Włoch,InternationalJournalof [29] R.Roth,S.Reinhardt, andH.Hergert,Phys.Rev.C77,064003 QuantumChemistry109,3268(2009). (2008). [6] S.Binder,J.Langhammer,A.Calci, andR.Roth,Phys.Lett. [30] R.Roth,A.Calci,J.Langhammer, andS.Binder,Phys.Rev.C B736,119(2014). 90,024325(2014). [7] H.Hergert,S.K.Bogner,S.Binder,A.Calci,J.Langhammer, [31] E. D. Jurgenson, P. Maris, R. J. Furnstahl, P. Navrátil, W. E. R.Roth, andA.Schwenk,Phys.Rev.C87,034307(2013). Ormand, andJ.P.Vary,Phys.Rev.C87,054312(2013). [8] K.Tsukiyama,S.K.Bogner, andA.Schwenk,Phys.Rev.Lett. [32] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and 106,222502(2011). P.Navrátil,Phys.Rev.Lett.109,052501(2012). [9] T.D.Morris,N.Parzuchowski, andS.K.Bogner,Phys.Rev. [33] S.Binder,J.Langhammer,A.Calci,P.Navrátil, andR.Roth, C92,034331(2015). Phys.Rev.C87,021303(2013). [10] H.Hergert,Phys.Rev.C90(2014). [34] C.M.BenderandT.T.Wu,Phys.Rev.184,1231(1969). [11] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and [35] C.M.BenderandT.T.Wu,Phys.Rev.D7,1620(1973). K.Tsukiyama, (2015),arXiv:1512.06956[nucl-th]. [36] C.BenderandS.A.Orszag,AdvancedMathematicalMethods [12] A.Cipollone,C.Barbieri, andP.Navrátil,Phys.Rev.Lett.111, forScientistsandEngineers: AsymptoticMethodsandPertur- 062501(2013). bationTheory(Springer,1999). [13] V.Somà,A.Cipollone,C.Barbieri,P.Navrátil, andT.Duguet, [37] E.J.Weniger,ComputerPhysicsReport10,189(1989). Phys.Rev.C89,061301(2014). [38] J.Boyd,ActaApplicandaeMathematica193995,1(1999). [14] V.Somà,C.Barbieri, andT.Duguet,Phys.Rev.C87,011303 [39] N.Y.SPernice,arXiv:9609139v1 (2008). (2013). [40] R.Roth,P.Papakonstantinou,N.Paar,H.Hergert,T.Neff, and [15] E.Schrödinger,AnnalenderPhysik385,437(1926). H.Feldmeier,Phys.Rev.C73,044312(2006). [16] I. Shavitt and R. J. Bartlett, Many-body methods in chemistry [41] “Online encyclopedia of integer sequences,” http://oeis. andphysics(CambridgeUniversityPress,2009). org/A064732. [17] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry [42] S.Binder,Coupled-ClusterTheoryforNuclearStructure,Ph.D. (DoverPublicationsInc.‘,1982). thesis,TUDarmstadt(2014). [18] J. Langhammer, R. Roth, and C. Stumpf, Phys. Rev. C 86, [43] G.Hagen, T.Papenbrock, D.J.Dean, andM.Hjorth-Jensen, 054315(2012). Phys.Rev.C82,034330(2010). [19] R.RothandJ.Langhammer,Phys.Lett.B683(2010). [44] P.PiecuchandM.Włoch,J.Chem.Phys.123(2005). [20] G.A.Baker,AdvancesinTheoreticalPhysics1,1(1965). [45] P. Piecuch, M. Włoch, J. R. Gour, and A. Kinal, Chemical [21] G.A.BakerandP.Graves-Morris,PadéApproximants,second PhysicsLetters418,467(2006). editioned.,EncyclopediaofMathematicaandItsApplications, [46] M. Włoch, J. R. Gour, and P. Piecuch, J Phys Chem A 111, Vol.59(CambridgeUniversityPress,1996). 11359(2007). [22] R.Roth,J.Langhammer,A.Calci,S.Binder, andP.Navrátil, [47] S.Weinberg,Phys.Rev.131,440(1963). Phys.Rev.Lett.107,072501(2011). [48] S.K.Bogner,R.J.Furnstahl,S.Ramanan, andA.Schwenk, [23] B.R.Barrett, P.Navrátil, andJ.P.Vary,ProgressinParticle Nucl.Phys.A773,203(2006). andNuclearPhysics69,131(2013). [49] S. Ramanan, S. K. Bogner, and R. J. Furnstahl, Nucl. Phys. [24] P. Maris, H. Aktulga, S. Binder, A. Calci, Ü. Çatalyürek, A797,81(2007). J.Langhammer,E.Ng,E.Saule,R.Roth,J.Vary, andC.Yang,