ebook img

Hartley - Zisserman reading club - Universiteit van Amsterdam PDF

95 Pages·2008·1.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hartley - Zisserman reading club - Universiteit van Amsterdam

Hartley - Zisserman reading club UNIVERSITEIT VAN AMSTERDAM Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne p.1/35 HZ Appendix 6: Iterative estimation methods UNIVERSITEIT VAN AMSTERDAM Topics: • Basic methods: Newton, Gauss-Newton, gradient descent. • Levenberg-Marquardt. • Sparse Levenberg-Marquardt. • Applications to homography, fundamental matrix, bundle adjustment. • Sparse methods for equations solving. • Robust cost functions. • Parameterization. Lecture notes which I found useful (methods for non-linear least squares problems): http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf p.2/35 Iterative estimation methods UNIVERSITEIT VAN AMSTERDAM Problem: how to find minimum of non-linear functions? p.3/35 Iterative estimation methods UNIVERSITEIT VAN AMSTERDAM Problem: how to find minimum of non-linear functions? Examples of HZ problems: -homography estimation. -fundamental matrix estimation. -multiple image bundle adjustment. -camera calibration (Zhang paper). p.3/35 Iterative estimation methods UNIVERSITEIT VAN AMSTERDAM Problem: how to find minimum of non-linear functions? Examples of HZ problems: -homography estimation. -fundamental matrix estimation. -multiple image bundle adjustment. -camera calibration (Zhang paper). Examples of my recent problems: -optimization of skeleton geometry given marker data. -optimization of skeleton pose given marker data. p.3/35 Iterative estimation methods UNIVERSITEIT VAN AMSTERDAM Problem: how to find minimum of non-linear functions? Examples of HZ problems: -homography estimation. -fundamental matrix estimation. -multiple image bundle adjustment. -camera calibration (Zhang paper). Examples of my recent problems: -optimization of skeleton geometry given marker data. -optimization of skeleton pose given marker data. Central approach of Appendix 6: Levenberg-Marquardt. Questions: Pronunciation? Why LM? p.3/35 Newton iteration UNIVERSITEIT VAN AMSTERDAM Goal: minimize X = f(P) for P. X is the measurement vector. P is the parameter vector. f is some non-linear function. p.4/35 Newton iteration UNIVERSITEIT VAN AMSTERDAM Goal: minimize X = f(P) for P. X is the measurement vector. P is the parameter vector. f is some non-linear function. In other words: (cid:15) Minimize = X − f(P). p.4/35 Newton iteration UNIVERSITEIT VAN AMSTERDAM Goal: minimize X = f(P) for P. X is the measurement vector. P is the parameter vector. f is some non-linear function. In other words: (cid:15) Minimize = X − f(P). We assume f is locally linear at each P , then i J f(P + ∆ ) = f(P ) + ∆ , i i i i i J where matrix is the Jacobian ∂f/∂P at P . i i p.4/35 Newton iteration UNIVERSITEIT VAN AMSTERDAM Goal: minimize X = f(P) for P. X is the measurement vector. P is the parameter vector. f is some non-linear function. In other words: (cid:15) Minimize = X − f(P). We assume f is locally linear at each P , then i J f(P + ∆ ) = f(P ) + ∆ , i i i i i J where matrix is the Jacobian ∂f/∂P at P . i i (cid:15) J So we want to minimize k + ∆ k for some vector ∆ . i i i i p.4/35

Description:
A Flexible New Technique for Camera Calibration -camera calibration (Zhang paper). p.3/35 Central approach of Appendix 6: Levenberg-Marquardt.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.