ebook img

HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS by Anand Arvind Joshi A Thesis ... PDF

57 Pages·2006·0.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS by Anand Arvind Joshi A Thesis ...

HARMONICMAPPINGS BETWEENRIEMANNIAN MANIFOLDS by AnandArvindJoshi A ThesisPresented tothe FACULTYOF THEGRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA InPartial Fulfillmentofthe RequirementsfortheDegree MASTEROFARTS (MATHEMATICS) August2006 Copyright 2006 AnandArvindJoshi Dedication Idedicatethisthesistomyparents Arvindand SuvarnaJoshi. ii Table of Contents Dedication ii Abstract iv 1 HarmonicMappings 1 1.1 SpaceofMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ConnectionsintheSpaceofMaps . . . . . . . . . . . . . . . . . . . . 4 1.3 TheFirst VariationFormula . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 HarmonicMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 The HeatFlowMethod 18 2.1 TheEells SampsonTheorem . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 TheHeat Flow Method . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Existence ofLocal and GlobalSolutions 31 3.1 ExistenceofLocalSolutions . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 ExistenceofGlobalTime-DependentSolutions . . . . . . . . . . . . . 43 Bibliography 48 Appendices 49 A Ho¨lderSpaces andSome Results onPDEs 49 A.1 Ho¨lderSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A.2 SomeResults onPDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A.3 Fre´chet Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 iii Abstract HarmonicmappingsbetweentwoRiemannianmanifoldsisanobjectofextensivestudy, due to their wide applications in mathematics, science and engineering. Proving the existence of such mappings is challenging because of the non-linear nature of the cor- responding partial differential equations. This thesis is an exposition of a theorem by Eells and Sampson, which states that any given map from a Riemannian manifold to a Riemannianmanifoldwithnon-positivesectionalcurvaturecan befreely homotopedto aharmonicmap. Inparticular,thisprovestheexistenceofharmonicmapsbetweensuch manifolds. Thetechniqueused fortheproofis theheat-flow method. iv Chapter 1 Harmonic Mappings In this chapter we define and discuss harmonic mappings. Let (M,g) and (N,h) be m and n dimensional Riemannian manifolds, and let u denote a smooth map from M to N, i.e. u ∈ C∞(M,N). A natural questionto ask is: what is the‘least expanding’map from M to N? In order to make precise what we mean by ‘least expanding’ map here, weneedtoanalyzethespaceofmapsC∞(M,N). Inthesectionsthatfollow,wedothis analysis and define an energy of maps on this space. A harmonic map will be a critical pointofthisenergy as discussedlater. 1.1 Space of Maps Let T M denote the tangent space of M and let T M∗ be the dual space of this tan- x x gent space. We know that u ∈ C∞(M,N) implies that du is a linear map from x T M to T N, i.e. du ∈ Hom(T M,T N). We want to find a metric on x u(x) x x u(x) Hom(T M,T N) so thatwecan define energy ofmaps. Wefirst provealemma. x u(x) Lemma 1.1.1. T M ∼= T M∗. The isomorphism is linear and induces a metric on x x T M∗. x 1 Proof. The Riemannian metric g induces a natural linear isomorphism between T M x and its dual T M∗ defined as follows. Let X = m Xi(x)( ∂ ) ∈ T M and w = x x i=0 ∂xi x x x m w (x)(dxi) ∈ T M∗. Define ♭ : T M → TPM and♯ : T M∗ → T M i=0 i x x x x x x P m m X♭ = ( g (x)Xj(x))(dxi) , (1.1) x ij x i=1 i=1 X X m m ∂ w♯ = ( gij(x)w (x))( ) . (1.2) j ∂xi x i=1 i=1 X X Clearly ♯ and ♭ are linear. Also it can be verified that they are inverse of each other resulting in a linear isomorphismbetween T M and T M∗. Now we define a metricg∗ x x x on T M∗ by x g∗(w ,θ ) = g (w♯,θ♯) for w ,θ ∈ T M∗. (1.3) x x x x x x x x x Thisbilinearformg∗ isametricduetolinearityof♯. Wecanalsogetg∗((di) ,(dj) ) = x x x x x x gij where(gij) denotesthematrixinverseofg = (g ). x ij Proposition1.1.2. Hom(T M,T N) ∼= T M∗ ⊗T N. x u(x) x u(x) Proof. For every f ∈ Hom(T M,T N) we associate a bilinear map f† ∈ T M∗ ⊗ x u(x) x T N by defining u(x) f†(V,w) = w(f(V)), ∀V ∈ T M,w ∈ T N∗. (1.4) x u(x) Wecanseethat,givensuchabilinearmap,wecanalsoassociatewithitalinearmapin Hom(T M,T (x)). x u We knowthat du ∈ Hom(T M,T N) isrepresented in localcoordinates by x x u(x) ∂ m ∂uα ∂ du = (x) . (1.5) x ∂xi ∂xi ∂yα (cid:18)(cid:18) (cid:19)(cid:19) α=1(cid:18) (cid:19) (cid:18) (cid:19)u(x) X 2 SincethebasisforT M∗ ⊗T N is givenby x u(x) ∂ (dxi) ⊗( ) , (1.6) x ∂yα u(x) du isrepresented by x m n ∂uα ∂ du = (x)(dxi) ⊗ . (1.7) x ∂xi x ∂yα i=1 α=1(cid:18) (cid:19) (cid:18) (cid:19)u(x) XX We proved that gij is an inner product on T M∗. Also h is the induced inner x u(x) productinT . ThesetwoinnerproductsinduceaninnerproductonT M∗⊗T (x)N u(x) x u givenby ∂ ∂ (dxi) ⊗ ,(dxj) ⊗ = gijh (u(x)). (1.8) x ∂yα x ∂yβ αβ * (cid:18) (cid:19)u(x) (cid:18) (cid:19)u(x)+ Sincethisinnerproductisdefined everywhereonM, wedefinean innerproducton sectionsbysetting hσ,σ′i(x) = hσ(x),σ′(x)i , for x ∈ M;σ,σ′ ∈ Γ(T∗M ⊗u−1TN). (1.9) x Withthisinnerproduct,wedefineanorm ondu givenby x m n ∂uα ∂uβ |du|2 = gijh (u) . (1.10) αβ ∂xi ∂xj i,j=1α,β=1 (cid:18) (cid:19)(cid:18) (cid:19) X X WiththisnormdefinedonHom(TM,TN),wenowdefinetheenergydensityofamap. Definition 1.1.1. Givenu ∈ C∞(M,N), theenergydensityfunctionofu isdefined as 1 e(u)(x) = |du|2(x), x ∈ M. (1.11) 2 3 Definition 1.1.2. Let (M,g) be a compact Riemannian manifold. Given u ∈ C∞(M,N), theenergyorharmonicenergyofuis defined as 1 E(u) = e(u)dµ = |dµ |. (1.12) g g 2 ZM ZM The energy densityof u can be interpreted in a followingway. Let {e ,...,e }, and 1 m {e′,...,e′ } be orthonormal bases with respect to g and h , for tangent spaces T M 1 n x u(x) x and T N, respectively. Weexpressdu inthesebases as u(x) x n du (e ) = λαe′ , i = 1,...,m. (1.13) x i i α α=1 X Then, weget m n |du|2(x) = (λα)2. (1.14) i i=1 α=1 XX Consequently,wecanregardtheenergydensityfunctionale(u)(x)asthe‘rateofexpan- sion’ofthedifferentialdu : T M → T N ofuat x ∈ M. Thisiswhywecalle(u ) x x u(x) x ‘energy density’ofthemap. Thus the energy E(u) is defined for each u ∈ C∞(M,N). The energy of maps E can be regarded as a functional E : C∞(M,N) → R, and we want to find maps which are criticalpointsofthisfunctionalE. 1.2 Connections in the Space of Maps Having introduced an inner product and norm for u ∈ Hom(M,N) i.e. on Γ(TM∗ ⊗ u−1TN) we want to know what is the effect on energy if the map u is changed by a small amount. In other words, we want to be able to take directional derivatives in the 4 spaceΓ(TM∗⊗u−1TN). Todothat,wedevelopthenotionofconnectionforthisspace. First, wedevelopconnectionsforTM∗ andu−1TN. Let ∇ denotetheLevi-CivitaconnectionofM whichgivesusamap ∇ : Γ(TM) → Γ(TM∗ ⊗TN) (1.15) which assigns a tensor field ∇Y ∈ Γ(TM∗ ⊗ TM) of type (1,1) to Y ∈ Γ(TM), a (0,1)tensorfield. ∇Y isthecovariantdifferentialofY. Let♯and♭betheisomorphisms betweenTM andTM∗ givenin(1.1)and(1.2). Wecandefineaconnection∇∗ inTM∗ by setting ∇∗ w(Y) = (∇ w♯)♭(Y), Y ∈ Γ(TM),w ∈ Γ(TM∗) (1.16) X X = g (∇ w♯,Y) (1.17) x X = X(g (w♯,Y))−g (w♯,∇ Y) bycompatibilityof∇ (1.18) x x X = Xw(Y)−w(∇ Y) (1.19) X whichcouldalsoserveasanalternatedefinitionfortheconnection∇∗ andalsoexplains that the connection ∇∗ on TM∗ and connection ∇ on TM can be regarded as dual to each other. Because of the compatibility of ∇ with g , we can see that the connection ∇∗ is ij compatiblewiththemetricgij onTM∗ bythefollowingcomputation. Lemma 1.2.1. Xg∗(w,θ) = g∗(∇∗ w,θ)+g∗(w,∇∗ ,θ). X X 5 Proof. RHS = g((∇∗ w)♯,θ♯)+g(w♯,(∇∗ θ)♯) (1.20) X X = g(∇ w♯,θ♯)+g(w♯,∇ θ♯) (1.21) X X = Xw(θ♯) = LHS (1.22) Thus ∇∗ is a Riemannian connection. Now that we have introduced the connection ∇∗ inTM∗,whataretheconnectioncoefficients? Weuse(1.19)todothecomputation. ∂ ∂ ∂ ∂ (∇∗ dxk)( ) = dxk( )−dxk(∇ ) (1.23) ∂∂xj ∂xl ∂xj ∂xl (∂∂xj)∂xl ∂ = δk −Γk (1.24) ∂xj l jl = −Γk (1.25) jl Thusweget an expressionfor∇∗ as m ∇∗ dxk = − Γkdxj, 1 ≤ i,k ≤ m. (1.26) ∂ ij ∂xi j=1 X We notethat theconnection coefficients of∇∗ induced in TM∗ from ∇ are negativeof theconnectioncoefficientsof∇. Now consider the tangent bundle u−1TN ⊂ TM induced from TN by the map u : M → N. At each pointx, ∂ ∂ ◦u (x),..., ◦u (x) (1.27) ∂y1 ∂yn (cid:26)(cid:18) (cid:19) (cid:18) (cid:19) (cid:27) 6

Description:
Harmonic mappings between two Riemannian manifolds is an object of and n dimensional Riemannian manifolds, and let u denote a smooth map from M to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.