137 Graduate Texts in Mathematics Editorial Board S. Axler F.W. Gehring K.A. Ribet Springer Science+Business Media, LLC Graduate Texts in Mathematics T AKEUTUZARING. Introduction to 35 ALEXANDERiWERMER. Several Complex Axiomatic Set Theory. 2nd ed. Variables and Banach Algebras. 3rd ed. 2 OXTOBY. Measure and Category. 2nd ed. 36 KELLEy/NAMIOKA et al. Linear 3 SCHAEFER. Topological Vector Spaces. Topological Spaces. 2nd ed. 37 MONIC Mathematical Logic. 4 HILTON/STAMMBACH. A Course in 38 GRAUERTIFRITZSCHE. Several Complex Homological Algebra. 2nd ed. Variables. 5 MAc LANE. Categories for the Working 39 ARVESON. An Invitation to C·-Algebras. Mathematician. 2nd ed. 40 KEMENy/SNELLIKNAPP. Denumerable 6 HUGHESIPIPER. Projective Planes. Markov Chains. 2nd ed. 7 SERRE. A Course in Arithmetic. 41 ApOSTOL. Modular Functions and Dirichlet 8 TAKEUTUZARING. Axiomatic Set Theory. Series in Number Theory. 9 HUMPHREYS. Introduction to Lie Algebras 2nded. and Representation Theory. 42 SERRE. Linear Representations of Finite 10 COHEN. A Course in Simple Homotopy Groups. Theory. 43 GILLMAN/JERISON. Rings of Continuous II CONWAY. Functions of One Complex Functions. Variable I. 2nd ed. 44 KENDIG. Elementary Algebraic Geometry. 12 BEALS. Advanced Mathematical Analysis. 45 LoEvE. Probability Theory I. 4th ed. 13 ANDERSONIFULLER. Rings and Categories 46 LoEvE. Probability Theory II. 4th ed. of Modules. 2nd ed. 47 MOISE. Geometric Topology in 14 GOLUBITSKy/GUlLLEMIN. Stable Mappings Dimensions 2 and 3. and Their Singularities. 48 SAOISlWu. General Relativity for 15 BERBERIAN. Lectures in Functional Mathematicians. Analysis and Operator Theory. 49 GRUENBERGIWEIR. Linear Geometry. 16 WINTER. The Structure of Fields. 2nd ed. 17 ROSENBLATT. Random Processes. 2nd ed. 50 EDWARDS. Fermat's Last Theorem. 18 HALMOS. Measure Theory. 51 KLINGENBERG. A Course in Differential 19 HALMOS. A Hilbert Space Problem Book. Geometry. 2nd ed. 52 HARTSHORNE. Algebraic Geometry. 20 HUSEMOLLER. Fibre Bundles. 3rd ed. 53 MANlN. A Course in Mathematical Logic. 21 HUMPHREYS. Linear Algebraic Groups. 54 GRA VERiW ATKINS. Combinatorics with 22 BARNES/MACK. An Algebraic Introduction Emphasis on the Theory of Graphs. to Mathematical Logic. 55 BROWNIPEARCY. Introduction to Operator 23 GREUB. Linear Algebra. 4th ed. Theory I: Elements of Functional 24 HOLMES. Geometric Functional Analysis Analysis. and Its Applications. 56 MASSEY. Algebraic Topology: An 25 HEWITT/STROMBERG. Real and Abstract Introduction. Analysis. 57 CROWELLIFox. Introduction to Knot 26 MANES. Algebraic Theories. Theory. 27 KELLEY. General Topology. 58 KOBLITZ. p-adic Numbers, p-adic Analysis, 28 ZARISKIISAMUEL. Commutative Algebra. and Zeta-Functions. 2nd ed. Vol.I. 59 LANG. Cyclotomic Fields. 29 ZARISKIISAMUEL. Commutative Algebra. 60 ARNOLD. Mathematical Methods in VoU!. Classical Mechanics. 2nd ed. 30 JACOBSON. Lectures in Abstract Algebra I. 61 WHITEHEAD. Elements of Homotopy Basic Concepts. Theory. 31 JACOBSON. Lectures in Abstract Algebra II. 62 KARGAPOLOvIMERLZJAKOV. Fundamentals Linear Algebra. of the Theory of Groups. 32 JACOBSON. Lectures in Abstract Algebra 63 BOLLOBAS. Graph Theory. Ill. Theory of Fields and Galois Theory. 64 EDWARDS. Fourier Series. Vol. I. 2nd ed. 33 HIRSCH. Differential Topology. 65 WELLS. Differential Analysis on Complex 34 SPITZER. Principles of Random Walk. Manifolds. 2nd ed. 2nd ed. (continued ajier index) Sheldon Axler Paul Bourdon Wade Ramey Harmonic Function Theory Second Edition With 21 Illustrations t Springer Sheldon Axler Paul Bourdon Mathematics Department Mathematics Department San Francisco State University Washington and Lee University San Francisco, CA 94132 Lexington, VA 24450 USA USA [email protected] [email protected] Wade Ramey 8 Bret Harte Way Berkeley, CA 94708 USA [email protected] Editorial Board S. Axler F.W. Gehring K.A. Ribet Mathematics Department Mathematics Department Mathematics Department San Francisco State East Hall University of California University University of Michigan at Berkeley San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840 USA USA USA Mathematics Subject Classification (2000): 31-01, 31B05, 31C05 Library of Congress Cataloging-in-Publication Data Axler, Sheldon Jay. Harmonic function theory/Sheldon Axler, Paul Bourdon, Wade Ramey.-2nd ed. p. cm. - (Graduate texts in mathematics; 137) Includes bibliographical references and indexes. ISBN 978-1-4419-2911-2 ISBN 978-1-4757-8137-3 (eBook) DOI 10.1007/978-1-4757-8137-3 1. Harmonic functions. I. Bourdon, Paul. II. Ramey, Wade. III. Title. IV. Series. QA405 .A95 2001 515'.53-dc21 00-053771 © 200 I, 1992 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2001 Softcover reprint of the hardcover 2nd edition 200 I All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief. excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by llQyone. This reprint has been authorized by Springer-Verlag (BerlinlHeidelberg/New York) for sale in the People's Republic of China only and not for export therefrom. Reprinted in China by Beijing World Publishing Corporation, 2004 98765 432 I ISBN 978-1-4419-2911-2 SPIN 10791946 Cantents Preface ix Acknowledgments xi CHAPTER 1 Basic Properties of Harmonic Functions 1 Definitions and Examples ....................... 1 lnvariance Properties . . . . . . . . . . . . . . . . . . . . . . . . .. 2 The Mean-Value Property. . . . . . . . . . . . . . . . . . . . . . .. 4 The Maximum Principle. . . . . . . . . . . . . . . . . . . . . . . .. 7 The Poisson Kernelfor the Ball . . . . . . . . . . . . . . . . . . .. 9 The Dirichlet Problem for the Ball . . . . . . . . . . . . . . . . .. 12 Converse of the Mean-Value Property . . . . . . . . . . . . . . .. 17 Real Analyticity and Homogeneous Expansions . . . . . . . . .. 19 Origin of the Term "Harmonic" . . . . . . . . . . . . . . . . . . .. 25 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 CHAPTER 2 Bounded Harmonic Functions 31 liouville's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . .. 31 Isolated Singularities .. . . . . . . . . . . . . . . . . . . . . . . .. 32 Cauchy's Estimates ........................... 33 Normal Families . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 Maximum Principles. . . . . . . . . . . . . . . . . . . . . . . . . .. 36 Limits Along Rays . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 Bounded Harmonic Functions on the Ball. . . . . . . . . . . . .. 40 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42 v vi Contents CHAPTER 3 Positive Harmonic Functions 45 Liouville's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 Harnack's Inequality and Harnack's Principle . . . . . . . . . .. 47 Isolated Singularities ....... . . . . . . . . . . . . . . . . . .. 50 Positive Harmonic Functions on the Ball . . . . . . . . . . . . .. 55 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 56 CHAPTER 4 The Kelvin Transform 59 Inversion in the Unit Sphere. . . . . . . . . . . . . . . . . . . . .. 59 Motivation and Definition . . . . . . . . . . . . . . . . . . . . . .. 61 The Kelvin Transform Preserves Harmonic Functions . . . . .. 62 Harmonicity at Infinity . . . . . . . . . . . . . . . . . . . . . . . .. 63 The Exterior Dirichlet Problem . . . . . . . . . . . . . . . . . . .. 66 Symmetry and the Schwarz Reflection Principle. . . . . . . . .. 67 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71 CHAPTER 5 Harmonic Polynomials 73 Polynomial Decompositions . . . . . . . . . . . . . . . . . . . . .. 74 Spherical Harmonic Decomposition of L 2 (5) ........... 78 Inner Product of Spherical Harmonics. . . . . . . . . . . . . . .. 82 Spherical Harmonics Via Differentiation . . . . . . . . . . . . .. 85 Explicit Bases of .1fm(Rn) and .1fm(5) ............... 92 Zonal Harmonics . . . . . ". . . . . . . . . . . . . . . . . . . . . . .. 94 The Poisson Kernel Revisited . . . . . . . . . . . . . . . . . . . .. 97 A Geometric Characterization of Zonal Harmonics . . . . . . . . 100 An Explicit Formula for Zonal Harmonics ............. 104 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 CHAPTER 6 Harmonic Hardy Spaces 111 Poisson Integrals of Measures . . . . . . . . . . . . . . . . . . . . . III Weak* Convergence ........................... 115 The Spaces hP (B) ............................ 117 The Hilbert Space h 2 (B) ........................ 121 The Schwarz Lemma .......................... 123 The Fatou Theorem ........................... 128 Exercises .................................. 138 Contents vii CHAPTER 7 Harmonic Functions on Half-Spaces 143 The Poisson Kernel for the Upper Half-Space ........... 144 The Dirichlet Problem for the Upper Half-Space .......... 146 The Harmonic Hardy Spaces hP (H) ... . . . . . . . . . . . ... 151 From the Ball to the Upper Half-Space, and Back ......... 153 Positive Harmonic Functions on the Upper Half-Space ...... 156 Nontangential limits .......................... 160 The Local Fatou Theorem ....................... 161 Exercises .................................. 167 CHAPTER 8 Harmonic Bergman Spaces 171 Reproducing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 172 The Reproducing Kernel of the Ball . . . . . . . . . . . . . . . . . 176 Examples in bP(B) ............................ 181 The Reproducing Kernel of the Upper Half-Space ......... 185 Exercises .................................. 188 CHAPTER 9 The Decomposition Theorem 191 The Fundamental Solution of the Laplacian ............ 191 Decomposition of Harmonic Functions ............... 193 Bacher's Theorem Revisited ...................... 197 Removable Sets for Bounded Harmonic Functions .'. ...... 200 The Logarithmic Conjugation Theorem . ; ............. 203 Exercises . . . . . . . . . . . . . . . . . . . . .....' . . . . . . . . . 206 CHAPTER 10 Annular Regions 209 Laurent Series ............................... 209 Isolated Singularities .......................... 210 The Residue Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 213 The Poisson Kernel for Annular Regions . . . . . . . . . . . . . . 215 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 CHAPTER 11 The Dirichlet Problem and Boundary Behavior 223 The Dirichlet Problem .......................... 223 Subharmonic Functions ......................... 224 viii Contents The Perron Construction ........................ 226 Barrier Functions and Geometric Criteria for Solvability .... 227 Nonextendability Results ........................ 233 Exercises .................................. 236 APPENDIX A Volume, Surface Area, and Integration on Spheres 239 Volume of the Ball and Surface Area of the Sphere ........ 239 Slice Integration on Spheres ...................... 241 Exercises .................................. 244 APPENDIX B Harmonic Function Theory and Mathematica 247 References 249 Symbol Index 251 Index 255 Preface Harmonic functions-the solutions of Laplace's equation-playa crucial role in many areas of mathematics, physics, and engineering. But learning about them is not always easy. At times the authors have agreed with Lord Kelvin and Peter Tait, who wrote ([18], Preface) There can be but one opinion as to the beauty and utility of this analysis of Laplace; but the manner in which it has been hitherto presented has seemed repulsive to the ablest mathematicians, and difficult to ordinary mathematical students. The quotation has been included mostly for the sake of amusement, but it does convey a sense of the difficulties the uninitiated sometimes encounter. The main purpose of our text, then, is to make learning about har monic functions easier. We start at the beginning of the subject, assum ing only that our readers have a good foundation in real and complex analysis along with a knowledge of some basic results from functional analysis. The first fifteen chapters of [15], for example, provide suffi cient preparation. In several cases we simplify standard proofs. For example, we re place the usual tedious calculations showing that the Kelvin transform of a harmonic function is harmonic with some straightforward obser vations that we believe are more revealing. Another example is our proof of Bacher's Theorem, which is more elementary than the classi cal proofs. We also present material not usually covered in standard treatments of harmonic functions (such as [9], [11], and [19]). The section on the Schwarz Lemma and the chapter on Bergman spaces are examples. For ix