ebook img

Harmonic Analysis, Partial Differential Equations and Applications: In Honor of Richard L. Wheeden (Applied and Numerical Harmonic Analysis) PDF

319 Pages·2017·2.266 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Harmonic Analysis, Partial Differential Equations and Applications: In Honor of Richard L. Wheeden (Applied and Numerical Harmonic Analysis)

Applied and Numerical Harmonic Analysis Sagun Chanillo, Bruno Franchi Guozhen Lu, Carlos Perez Eric T. Sawyer Editors Harmonic Analysis, Partial Differential Equations and Applications In Honor of Richard L. Wheeden Applied and Numerical Harmonic Analysis SeriesEditor JohnJ.Benedetto UniversityofMaryland CollegePark,MD,USA EditorialAdvisoryBoard AkramAldroubi GittaKutyniok VanderbiltUniversity TechnischeUniversitätBerlin Nashville,TN,USA Berlin,Germany DouglasCochran MauroMaggioni ArizonaStateUniversity DukeUniversity Phoenix,AZ,USA Durham,NC,USA HansG.Feichtinger ZuoweiShen UniversityofVienna NationalUniversityofSingapore Vienna,Austria Singapore,Singapore ChristopherHeil ThomasStrohmer GeorgiaInstituteofTechnology UniversityofCalifornia Atlanta,GA,USA Davis,CA,USA StéphaneJaffard YangWang UniversityofParisXII MichiganStateUniversity Paris,France EastLansing,MI,USA JelenaKovacˇevic´ CarnegieMellonUniversity Pittsburgh,PA,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/4968 Sagun Chanillo (cid:129) Bruno Franchi (cid:129) Guozhen Lu (cid:129) Carlos Perez (cid:129) Eric T. Sawyer Editors Harmonic Analysis, Partial Differential Equations and Applications In Honor of Richard L. Wheeden Editors SagunChanillo BrunoFranchi Dept.ofMath DepartmentofMathematics RutgersUniversity UniversityofBologna Piscataway Bologna,Italy NewJersey,USA GuozhenLu CarlosPerez Dept.ofMath. DepartmentofMathematics Univ.ofConnecticut UniversityofBilbao StorrsCT,USA Bilbao,Spain EricT.Sawyer DeptofMathandStat McMasterUniversity Hamilton Ontario,Canada ISSN2296-5009 ISSN2296-5017 (electronic) AppliedandNumericalHarmonicAnalysis ISBN978-3-319-52741-3 ISBN978-3-319-52742-0 (eBook) DOI10.1007/978-3-319-52742-0 LibraryofCongressControlNumber:2017933468 MathematicsSubjectClassification(2010):35R03,35J70,42B20,42B37,42B25 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisbookispublishedunderthetradenameBirkhäuser,www.birkhauser-science.com TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Richard L. Wheeden Preface It is a pleasure to bring out this volume of contributed papers on the occasion of the retirement of Richard Wheeden. Dick Wheeden as he is known to his many friendsandcollaboratorsspentalmostallhisprofessionallifeatRutgersUniversity since 1967, other than sabbatical periods at the Institute for Advanced Study, Princeton, Purdue University, and the University of Buenos Aires, Argentina. He hasmademanyoriginalcontributionstoPotentialTheory,HarmonicAnalysis,and PartialDifferentialequations.Manyofhispapershaveprofoundlyinfluencedthese fields and have had long lasting effects, stimulating research and shedding light. Inadditionmanycolleaguesandespeciallyyoungpeoplehavebenefittedfromthe generosity of his spirit, where he has shared mathematical insight and provided encouragement. We hope this volume showcases some of the research directions DickWheedenwasinstrumentalinpioneering. 1 Potential TheoryandWeighted Norm Inequalities for SingularIntegrals DickWheeden’sworkinAnalysiscanbebrokenintotwoperiods.Thefirstperiod consistsofhisworkinPotentialTheory,thetheoryofsingularintegralswithadeep emphasison weightednorminequalities,and a second periodfromthe late 1980s wherehe andhis collaboratorssuccessfullyappliedweightednorminequalitiesto thestudyofdegenerateellipticequations,subellipticoperators,andMonge-Ampère equations. WheedenobtainedhisPh.D.in 1965fromtheUniversityofChicagounderthe supervisionof AntoniZygmund.One veryproductiveoutcomeof this association withZygmundisthebeautifulgraduatetextbookMeasureandIntegral[36]. vii viii Preface Wheeden’sthesisdealtwithhypersingularintegrals.Thesearesingularintegrals oftheform ˆ (cid:2).y/ Tf .x/D .f .xCy/(cid:2)f .x// dy; 0<˛ <2; Rn jyjnC˛ where(cid:2).y/ishomogeneousofdegreezero,integrableonSn(cid:2)1 andsatisfies ˆ y(cid:2).y/d(cid:3).y/D0; 1(cid:3)i(cid:3)n: i Sn(cid:2)1 Sincethesingularityofthe kernel (cid:2).y/ ismorethanthatofastandardCalderón- jyjnC˛ Zygmundkernel,oneneedssomesmoothnessonf toensureboundedness.Atypical resultfoundin[34]is kTfkLp.Rn/ (cid:3)CkfkW˛;p.Rn/; 1<p<1; where W˛;p.Rn/ is the fractional Sobolev space of order ˛. These results are developedfurtherin[35]. Another important result that Wheeden obtained at Chicago and in his early time at Rutgers was with Richard Hunt. This work may be viewed as a deep generalizationofaclassictheoremofFatouwhichstatesthatnonnegativeharmonic functionsintheunitdiskinthecomplexplanehavenontangentiallimitsa.e.onthe boundary,thatisontheunitcircle.ThetheoremofFatouwasgeneralizedtohigher dimensionsandotherdomainsbyCalderónandCarleson.Theworks[17,18]extend theFatoutheoremto Lipschitzdomains,wherenowoneis dealingwith harmonic measureontheboundary.Themainresultis Theorem1 Let (cid:2) (cid:4) Rn be a bounded domain with Lipschitz boundary. Let !P0.Q/,Q 2 @(cid:2),denoteharmonicmeasurewithrespecttoafixedpointP0 2 (cid:2). Then any nonnegative harmonic function u.P/in (cid:2) has nontangentiallimits a.e. withrespecttoharmonicmeasure!P0 on@(cid:2). Theproofreliesonconstructingcleverbarriersandinparticularonapenetrating analysis using Harnack’sinequality on the kernelfunction K.P;Q/, P 2 (cid:2), Q 2 @(cid:2),whichistheRadon-Nikodymderivative d!P.Q/ K.P;Q/D : d!P0.Q/ 1.1 SingularIntegralsand Weighted Inequalities In 1967, Wheeden moved to Rutgers University and began a long and fruitful collaborationwithhiscolleagueB.Muckenhoupt.Twoexamplesofmanyseminal Preface ix resultsprovedbyMuckenhouptandWheedenarethetheoremsonweightednorm inequalities for the Hilbert transform and the fractionalintegral operator. To state theseresultswerecalladefinition. Definition1 Let1 < p < 1,andletw 2 L1 .Rn/ beapositivefunctiononRn. loc Thenw2A ifandonlyifforallcubesQ, p (cid:2) ˆ (cid:3)(cid:2) ˆ (cid:3) 1 1 p(cid:2)1 sup w w(cid:2)p(cid:2)11 <1: jQj jQj Q Q Q The A condition had already appeared in Muckenhoupt’s pioneering work on p the Hardy-Littlewoodmaximal function[51]. But now Wheeden along with Hunt and Muckenhoupt [19] carried it further. They considered the prototypical one- dimensionalsingularintegral,theHilberttransform, ˆ 1 f .y/ Hf .x/Dp:v: dy; x(cid:2)y (cid:2)1 andestablishedthefollowingtrailblazingtheorem. Theorem2 A nonnegativew 2 L1 .R/ satisfiestheLp weightednorm inequality loc fortheHilberttransform, (cid:2)ˆ (cid:3) (cid:2)ˆ (cid:3) 1 1 p p jHfjpw (cid:3)C jfjpw ; p R R ifandonlyifw2A . p Theirkeydifficultyinestablishingthisresultwastoproveitwhenp D 2.Then onecanadapttheCalderón-Zygmundschemeforsingularintegralsandfinishwith an interpolation. The case p D 2 had been studied earlier by Helson and Szegö [47]usingacompletelydifferentfunctiontheoreticapproach,wheretheyobtained theequivalenceoftheweightednorminequalitywithasubtledecompositionofthe weightinvolvingtheconjugatefunction.Theorem2finallycharacterizedthesetwo equivalentpropertiesin termsof a remarkablysimple andcheckablecriterion,the A condition.Theorem2 wasthe forerunnerto a delugeof resultsbyWheedenin p thedecadessince,tomultiplieroperatorsbyKurtzandWheeden[20],totheLusin squarefunctionby Gundyand Wheeden[16] (precededbySegoviaandWheeden [33]), and the Littlewood-Paley g(cid:3) function by Muckenhouptand Wheeden [24], (cid:4) tonamejusta few.With Muckenhoupt,Wheedenalso initiateda studyofthe two weight theory for the Hardy-Littlewood maximal operator and Hilbert transform [25]andwithChanilloastudyofthetwoweighttheoryforthesquarefunction[6]. Thatisonenowseeksconditionsonnonnegativefunctionsv;wsothatonehas (cid:2)ˆ (cid:3) (cid:2)ˆ (cid:3) 1 1 p p jTfjpv (cid:3)C jfjpw ; p Rn Rn x Preface where T could be a singular integral operator, a square function, or the Hardy- Littlewoodmaximaloperator.Thepapers[25]and[6]stimulatedmuchresearchina searchforanappropriatetwoweighttheoryforsingularintegrals.Intheearly1990s Wheedenreturnedto this questionandundertooka studyof two weightproblems forthefractionalintegral.Theseresultsaredescribedlaterinthispreface. The later “one weight” results mentioned above relied on the so-called good- (cid:4) inequalities [37], [40], a beautiful stratagem with which Wheeden was wholly won over. We cite two instances of results proved by Wheeden, where good-(cid:4) inequalities play a key step in the proofs. The first example is joint work with Chanillo [1] where he investigated a complete theory of differentiation based on theMarcinkiewiczintegral ! ˆ 1 jf .xCt/Cf .x(cid:2)t/(cid:2)2f.x/j2 2 Mf .x/D dt : Rn jtjnC2 ThisworkviewedMf asaroughsquarefunctionandtheaimwastotreatitinthe spiritoftheworkofBurkholderandGundy[37]fortheLusinsquarefunctionand establishcontrolviaagood-(cid:4)inequalityandmaximalfunctions. ThesecondworkwithMuckenhoupt,destinedtoplayamajorroleinWheeden’s interestindegenerateellipticPDEinthelate1980sonward,wasthepaper[23]on fractionalintegraloperatorsI˛.Definefor0<˛ <n, ˆ f .y/ I˛f .x/D Rn jx(cid:2)yjn(cid:2)˛dy: Theorem3 Letv beapositivefunctiononRn.Thenfor 1 D 1 (cid:2) ˛, 1 < p < n q p n ˛ and 1p C p10 D1,theweightednorminequalityforI˛, (cid:2)ˆ (cid:3) (cid:2)ˆ (cid:3) 1 1 q p j.I˛f/vjq (cid:3)Cp jfvjp ; Rn Rn holdsifandonlyifforallcubesQ, (cid:2) ˆ (cid:3) (cid:2) ˆ (cid:3) 1 1 1 q 1 0 p0 sup vq v(cid:2)p <1: jQj jQj Q Q Q Thecorrespondinginequalityforthefractionalmaximaloperator ˆ 1 M˛f .x/DQsWux2pQjQj1(cid:2)˛n Qjf.y/jdy; ´ which is dominated by the fractional integral I˛jfj.x/ D Rn jx(cid:2)jfy.yjn/(cid:2)j˛dy, can be established by a variety of techniques, and from this, the inequality for the larger

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.