ebook img

Hardy Type Inequalities on Time Scales PDF

309 Pages·2016·3.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hardy Type Inequalities on Time Scales

Ravi P. Agarwal · Donal O'Regan Samir H. Saker Hardy Type Inequalities on Time Scales Hardy Type Inequalities on Time Scales Ravi P. Agarwal • Donal O’Regan (cid:129) Samir H. Saker Hardy Type Inequalities on Time Scales 123 RaviP.Agarwal DonalO’Regan DepartmentofMathematics SchoolofMathematics TexasA&MUniversity–Kingsville StatisticsandAppliedMathematics Kingsville,TX,USA NationalUniversityofIreland Galway,Ireland SamirH.Saker DepartmentofMathematics MansouraUniversity Mansoura,Egypt ISBN978-3-319-44298-3 ISBN978-3-319-44299-0 (eBook) DOI10.1007/978-3-319-44299-0 LibraryofCongressControlNumber:2016950725 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland RaviP.Agarwal:ToSadhna, Sheba, andDanah DonalO’Regan:ToAlice,Aoife,Lorna, Daniel,andNiamh SamirH.Saker:ToMona,Meran,Maryam, Mennah,andAhmed Preface Neitherofuscompletelyunderstoodwhattheotherwasdoing, butwerealizedthatourjointeffortwillgivethetheorem,andto bealittleimpudentandconceited,probabilisticnumbertheory wasborn!Thiscollaborationisagoodexampletoshowthat twobrainscanbebetterthanone,sinceneitherofuscouldhave donetheworkalone. PaulErdo˝s(1933–1996) Hardy’sinterestininequalities(inbothdiscreteandcontinuousforms)wasduring the period 1906–1928. As a result of his work, the subject was changed radically, andwhathadpreviouslybeenacollectionofisolatedformulasbecameasystematic discipline.TheclassicalbookInequalitiesbyHardyetal.[77]containstwochapters devoted to Hardy- and Hilbert-type inequalities and the growth of Hardy-type inequalitiesintheliteraturestimulatedthisbook. The book is devoted to dynamic inequalities of Hardy type and extensions and generalizationsviaconvexityonatimescaleT.Inparticular,thebookcontainsthe timescaleversionsofclassicalHardy-typeinequalities,Hardy-andLittlewood-type inequalities, Hardy-Knopp-type inequalities via convexity, Copson-type inequali- ties,Walsh-typeinequalities,Liendeler-typeinequalities,Levinson-typeinequalities and Pachpatte-type inequalities, Bennett-type inequalities, Chan-type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special caseswhenTDRandTDNandcanbeextendedtodifferenttypesofinequalities ondifferenttimescalessuchasTDhN,h>0,TDqN forq>1,etc. The book consists of seven chapters and is organized as follows. In Chap.1, we present preliminaries, basic concepts, and the basic inequalities that will be needed in the book. Next, we present time scale versions of classical Hardy- type inequalities and Hardy- and Littlewood-type inequalities. We also prove extensions of Hardy-type inequalities and its general form via convexity on time scales. Chapter 2 is devoted to Copson-type inequalities on an arbitrary time scaleT.Inparticular,weconsiderclassicalformsofCopson-typeinequalitiesand their converses which are extensions of Hardy-type inequalities. In Chap.3, we present Leindler-type inequalities and their extensions on an arbitrary time scale T. We also consider the dual of these inequalities and their converses in this chapter. Chapter 4 is devoted to Littlewood-type inequalities on an arbitrary time scale T. First, we consider the generalized form of Littlewood-type inequalities vii viii Preface with decreasing functions. Next, we consider a generalization of Littlewood-type inequalitiesthatwasconsideredbyBennett,andweendthechapterwiththesneak- out principle on time scales. Chapter 5 is concerned with weighted Hardy-type inequalitiesonanarbitrarytimescaleT.Theresultscanbeconsideredasextensions of the results due to Copson, Bliss, Flett and Bennett, Leindler, Chen, and Yang. In Chap.6, we discuss Levinson-type inequalities on time scales. Also we include somedynamicinequalitiesontimescalesofChanandPachpattetype.Theproofsof themainresultsincludethedefinitionofthelogarithmicfunctionontimescalesand itsdeltaderivativeandtheapplicationofJensen’sinequality.Chapter7isdevoted toHardy-Knopp-typeinequalitiesonanarbitrarytimescaleT.Aone-dimensional, two-dimensional, and multidimensional versions of Hardy-Knopp inequalities are considered and extended on time scales via convexity. The refinement inequalities ofHardy-Knopptypewhichdependsontheapplicationsofsuperquadraticfunctions andthecorrespondingrefinementJensen’sinequalitywillalsobediscussed. In this book, we followed the history and development of these inequalities. Each section is self-contained, and one can see the relationship between the time scaleversionsoftheinequalitiesandtheclassicalones.Tothebestoftheauthors’ knowledge, this is the first book devoted to Hardy-type inequalities and their extensionsontimescales. Wewishtoexpressourthankstoourfamiliesandfriends. Kingsville,TX,USA RaviP.Agarwal Galway,Ireland DonalO’Regan Mansoura,Egypt SamirH.Saker Contents 1 HardyandLittlewoodTypeInequalities.................................. 1 1.1 PreliminariesandBasicInequalitiesonTimeScales.................. 1 1.2 Hardy-TypeInequalities ................................................ 14 1.3 Hardy-LittlewoodTypeInequalities ................................... 22 1.4 AnExtensionofHardy’sTypeInequality ............................. 36 1.5 GeneralizationsofHardy’sInequalityviaConvexity ................. 40 2 Copson-TypeInequalities................................................... 49 2.1 Copson-TypeInequalitiesI............................................. 49 2.2 Copson-TypeInequalitiesII............................................ 54 2.3 ConversesofCopson-TypeInequalities................................ 62 3 Leindler-TypeInequalities.................................................. 69 3.1 Leindler-TypeInequalitiesI............................................ 69 3.2 Leindler-TypeInequalitiesII ........................................... 74 3.3 ConversesofLeindler-TypeInequalitiesI............................. 79 3.4 ConversesofLeindler-TypeInequalitiesII............................ 84 4 Littlewood-BennettTypeInequalities ..................................... 91 4.1 Littlewood-TypeInequalities........................................... 91 4.2 Littlewood-BennettTypeInequalitiesI................................ 94 4.3 Littlewood-BennettTypeInequalitiesII ............................... 104 4.4 Sneak-OutPrincipleonTimeScales................................... 112 5 WeightedHardyTypeInequalities......................................... 121 5.1 WeightedHardy-TypeInequalitiesI ................................... 121 5.2 WeightedHardy-TypeInequalitiesII .................................. 136 6 Levinson-TypeInequalities ................................................. 153 6.1 Levinson-TypeInequalitiesI ........................................... 153 6.2 Levinson-TypeInequalitiesII .......................................... 180 6.3 Pachpatte-TypeInequalitiesI........................................... 189 6.4 YangandHwang-TypeInequalities.................................... 197 ix x Contents 6.5 Chan-TypeInequalities ................................................. 206 6.6 Pachpatte-TypeInequalitiesII.......................................... 212 7 Hardy-KnoppTypeInequalities ........................................... 221 7.1 Hardy-KnoppTypeInequalities........................................ 221 7.2 Hardy-KnoppTypeInequalitieswithTwoFunctions ................. 233 7.3 Hardy-KnoppTypeInequalitieswithKernels......................... 238 7.4 Hardy-KnoppTypeInequalitiesviaSuperquadracity................. 265 7.5 RefinementsofHardy-KnoppTypeInequalities ...................... 274 7.6 Diamond-˛TypeInequalities .......................................... 287 References......................................................................... 295 Index............................................................................... 303 Chapter 1 Hardy and Littlewood Type Inequalities Ascienceissaidtobeusefulifitsdevelopmenttendsto accentuatetheexistinginequalitiesinthedistributionofwealth, ormoredirectlypromotesthedestructionofhumanlife. GodfreyHaroldHardy(1877–1947). This chapter considers time scale versions of classical Hardy-type inequalities and time scale versions of Hardy and Littlewood type inequalities. We present extensionsofHardy-typeinequalitiesontimescales.Thesedynamicinequalitiesnot only contain the integral and discrete inequalities but can be extended to different types of time scales. The chapter is divided into five sections and is organized as follows. InSect.1.1,wepresentsomepreliminaries,definitionsandconceptsconcerning timescalecalculusandbasicdynamicinequalitiesthatwillbeneededintheproofs of the main results. In Sect.1.2, we give two proofs of Hardy-type inequalities on time scales. Section 1.3 presents the time scale version of Hardy-Littlewood type inequalities. In Sect.1.4, we give the time scale version of an extension of Hardy typeinequalitiesandinSect.1.5,wewillusetheconceptofconvexitytoestablished ageneralizationofHardy’sinequalityontimescales. 1.1 PreliminariesandBasicInequalitieson TimeScales In recent years the study of dynamic inequalities on time scales has received a lot of attention in the literature and has become a major field in pure and applied mathematics [10, 145]. The idea goes back to its founder Stefan Hilger [80] who initiated the study of dynamic equations on time scales to avoid proving results twice—oncefordifferentialequationsandonceagainfordifferenceequations.The books on the subject of time scale, i.e., measure chain, by Bohner and Peterson [33, 34] summarize and organize much of time scale calculus. The three most popular examples of calculus on time scales are differential calculus, difference calculus, and quantum calculus (see Kac and Cheung [88]), i.e, when T D R, TDNandTDqN0 Dfqt W t2N0gwhereq>1.Weassumethatthereaderhasa goodbackgroundintimescalecalculus. ©SpringerInternationalPublishingSwitzerland2016 1 R.P.Agarwaletal.,HardyTypeInequalitiesonTimeScales, DOI10.1007/978-3-319-44299-0_1

Description:
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via conve
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.