ebook img

Hardy Inequalities and Applications: Inequalities with Double Singular Weight PDF

158 Pages·2022·3.931 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hardy Inequalities and Applications: Inequalities with Double Singular Weight

NikolaiKutev,TsviatkoRangelov HardyInequalitiesandApplications Also of Interest EllipticandParabolicEquationsInvolvingtheHardy-LerayPotential IreneoPeralAlonso,FernandoSoriadeDiego,2021 ISBN978-3-11-060346-0,e-ISBN(PDF)978-3-11-060627-0, e-ISBN(EPUB)978-3-11-060560-0 CriticalParabolic-TypeProblems TomaszW.Dłotko,YejuanWang,2020 ISBN978-3-11-059755-4,e-ISBN(PDF)978-3-11-059983-1, e-ISBN(EPUB)978-3-11-059868-1 FourierMeetsHilbertandRiesz.AnIntroductiontotheCorresponding Transforms RenéErlinCastillo,2022 ISBN978-3-11-078405-3,e-ISBN(PDF)978-3-11-078409-1, e-ISBN(EPUB)978-3-11-078412-1 MeasureTheoryandNonlinearEvolutionEquations FlaviaSmarrazzo,2022 ISBN978-3-11-055600-1,e-ISBN(PDF)978-3-11-055690-2, e-ISBN(EPUB)978-3-11-055604-9 Non-InvertibleDynamicalSystems.Volume1:ErgodicTheory–Finite andInfinite,ThermodynamicFormalism,SymbolicDynamicsand DistanceExpandingMaps MariuszUrbański,MarioRoy,SaraMunday,2021 ISBN978-3-11-070264-4,e-ISBN(PDF)978-3-11-070268-2, e-ISBN(EPUB)978-3-11-070275-0 Nikolai Kutev, Tsviatko Rangelov Hardy Inequalities and Applications | Inequalities with Double Singular Weight MathematicsSubjectClassification2020 26D10,35P15,35K20,35Q93,35B44 Authors Prof.Dr.NikolaiKutev Prof.Dr.TsviatkoRangelov InstituteofMathematicsandInformatics InstituteofMathematicsandInformatics MathematicalPhysicsDepartment MathematicalPhysicsDepartment BulgarianAcademyofSciences BulgarianAcademyofSciences Acad.G.Bonchevstr.8 Acad.G.Bonchevstr.8 1113Sofia 1113Sofia Bulgaria Bulgaria [email protected] [email protected] ISBN978-3-11-099230-4 e-ISBN(PDF)978-3-11-098037-0 e-ISBN(EPUB)978-3-11-098049-3 LibraryofCongressControlNumber:2022943736 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Coverimage:svetolk/iStock/GettyImagesPlus Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface TheaimofthebookistoderivenewHardytypeinequalitieswithoptimalconstant andwithadditionalterms.Attainabilityoftheoptimalconstantforcertainfunctions isinvestigatedtoo. Thestudyisbasedonmathematicalanalysis,partialdifferentialequations,inte- gralinequalitiesandspectraltheory. The main results and contributions are applied for an estimate from below of thefirsteigenvalueofthep-LaplacianinboundeddomainswithDirichletboundary conditions and for the study of global existence, finite time blow-up and null non- controllability for initial boundary value problems of singular or degenerate heat equations. Themainideas,mathematicaltoolsandapplicationsaredesignedformasterde- greestudents,PhDstudentsandresearcherswholiketospecializeinthefieldofinte- gralinequalitiesanddifferentialequations. Sofia,Bulgaria,August2022 NikolaiKutev TsviatkoRangelov https://doi.org/10.1515/9783110980370-201 Contents Preface|V 1 Introduction|1 2 PreliminaryremarksonHardyinequalities|7 2.1 Inequalitieswithgeneralweights|8 2.2 Inequalitieswithweightssingularontheboundary|9 2.3 Inequalitieswithweightssingularatapoint|11 2.4 Hardyinequalitieswithanadditionalterm|12 3 Hardyinequalitiesinabstractform|19 3.1 Generalweights|19 3.2 Hardyinequalitieswithweightthe firsteigenfunctionofthe p-Laplacian|22 3.3 Hardyinequalitieswithadditionallogarithmicterm|25 3.4 One-parametricfamilyofHardyinequalities|28 3.5 Comparisonwithsomeexistingresults|34 4 Hardyinequalitiesinsphericalareas|37 4.1 Inequalitiesinanannulus|37 4.2 Inequalitiesinaball|44 4.3 Inequalitiesinanexteriorofaball|48 4.4 InequalityinBcforu∈W1,p(Bc)|55 r 0 r 4.5 Concludingnotes|57 5 GeneralHardyinequalitieswithoptimalconstant|59 5.1 WeightedHardyinequality|59 5.2 OptimalityoftheHardyconstant|65 5.3 Examplesandcomments|68 6 Hardyinequalitieswithweightssingularataninteriorpoint|73 6.1 Preliminaries|73 6.2 Mainresult|74 6.3 Star-shapeddomains|77 6.4 Generaldomains|79 6.5 Examplesandcomments|81 7 Hardyinequalitiesinstar-shapeddomainswithdoublesingular weights|85 7.1 Preliminaries|85 VIII | Contents 7.2 Hardyinequalitieswithadditionalboundaryterm|86 7.3 AttainabilityoftheHardyconstant|89 7.4 Comments|95 8 Estimatesfrombelowforthefirsteigenvalueofthep-Laplacian|97 8.1 Existingestimatesofthefirsteigenvalueofthep-Laplacian|97 8.2 Estimatesfrombelowofλp,nusingHardyinequalities|100 8.2.1 EstimatesbymeansofHardyinequalitieswithdoublesingular weights|101 8.2.2 EstimatesbymeansofHardyinequalitieswithadditionallogarithmic term|103 8.2.3 Estimatesbymeansofaone-parametricfamilyofHardy inequalities|107 8.3 Comparisonbetweendifferentanalyticalestimatesofλp,n|113 8.4 Numericalcomparison|119 9 ApplicationofHardyinequalitiesforsomeparabolicequations|123 9.1 Nullnoncontrollability|123 9.2 Globalexistence|130 9.3 Finitetimeblow-up|134 9.4 Comments|138 Bibliography|141 Index|149 1 Introduction ThisbookisdevotedtotheclassicalHardyinequality,itsgeneralizationsandappli- cations for estimates from below of the first eigenvalue λp,n(Ω) of the p-Laplacian, p > 1,inaboundeddomainΩ ⊂ ℝn,n ≥ 2,andglobalsolvability,finitetimeblow- upandnullnoncontrollabilityforsingularparabolicproblemswithHardypotential. Onlythemultidimensionalcasen ≥ 2isconsideredbecauseforn = 1thereexistde- tailedliteratureandsatisfactoryresults;seeforinstanceHardy[98,99,100],Neĉas [146],Maz’ja[142],OpicandKufner[147],Hoffmann-Ostenhofetal.[104].Unlikethe one-dimensionalcase,thetheoryforn≥2isfarfrombeingcompletelysolved. ThisbookcanberegardedasaworkintheseriesofworksofMaz’ja[142],Opic and Kufner [147], Ghoussoub and Moradifam [88], Balinsky et al. [22], Kufner et al. [118],RuzhanskyandSuragan[163].WefocusontheoptimalityoftheHardyconstant andonitsattainability.FurtheronintheworkwesaythattheHardyconstantisop- timalifforagreateronethecorrespondingHardyinequalityfailsforallfunctionsof theadmissibleclass.TheoptimalHardyconstantisattainableintheHardyinequality whenanequalityisachievedforsomeadmissiblefunction.FortheHardyinequality withsingularweightsataninteriorpointofΩ,orontheboundary𝜕Ω,wealwaysprove theoptimalityoftheHardyconstant.AsfortheattainabilityoftheHardyconstant,we showthatanequalityisachievedonlyforHardyinequalitywithadditional“nonlin- ear”term.Itiswellknownthatforinequalitieswithoptimalconstantandadditional “linear”term,anequalityisnotachieved.OnlyinthecasewhentheHardyconstant isgreaterthantheoptimalone,byavariationaltechniqueitisprovedthattheHardy constantisattainable;seeforexamplePinchoverandTintarev[151]andthereferences therein. IntheliteraturemainlyHardyinequalitieswithsingularweightsatapoint,oron theboundary,𝜕Ω,oronsomek-dimensionalmanifold,1 ≤ k ≤ n−1,arestudied. ThesubjectoftheinvestigationsinthisbookisHardytypeinequalitiesinbounded domainsΩ∈ℝn,n≥2,withdoublesingularweights,inaninteriorpointofΩandon theboundary𝜕Ω. OuraimistoderivenewHardyinequalities,whichhaveanoptimalconstantand suitableadditionaltermssuchthattheHardyconstantisattainable.Forexample,the Hardyconstantisoptimalforconvexandstar-shapeddomainsandtheHardyconstant isattainableasaresultofa“nonlinear”additionalterm. The background of the theory of Hardy inequalities is mathematical and func- tionalanalysis,differentialequations,spectralanalysisandtheuncertaintyprinciple inphysics. AfterthepioneeringpapersHardy[98,99,100]andthebookHardyetal.[101] thereweremanygeneralizationsinthetwentiethcenturyoftheclassicalHardyin- equalityaswellassomenewfunctionalinequalitiesmotivatedbyHardy’sworks;for example,seeLieb[133]andRuzhanskyandSuragan[163],Chapters3and7: https://doi.org/10.1515/9783110980370-001 2 | 1 Introduction (i) theHardy–Littlewoodinequality(seeHardyandLittlewood[102,103]) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫u(x)|x−y|−rv(y)dxdy󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤Cp(1,r),n‖u‖p‖v‖q, ℝn foreveryu∈Lp(ℝn),v∈Lq(ℝn),1<p,q<∞,0<r <n, 1 + 1 + r =2; p q n (ii) theHardy–Littlewood–Sobolevinequality(seeSobolev[170]) 󵄩󵄩󵄩󵄩|x|−r⋆u󵄩󵄩󵄩󵄩q ≤Cp(2,r),n‖u‖p, foreveryu∈Lp(ℝn),1<p,q,nr <∞, p1 + nr =1+ q1 andoptimalconstantCp(2,r),n; (iii)the double weighted Hardy–Littlewood–Sobolev inequality of Stein and Weiss [171]: 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫V(x,y)u(y)dy󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩q ≤Cα(3,β),r,n‖u‖p, ℝn withV(x,y) = |x|−β|x−y|−r|y|−α,foreveryu ∈ Lp(ℝn),0 ≤ α < pn−p1,0 ≤ β < qn, 1 + r+α+β =1+ 1; p n q (iv) theOkikiolu–Glaser–Martin–Grosse–Thirringinequality(seeGlaseretal.[89]) 󵄩󵄩󵄩󵄩|x|−bu󵄩󵄩󵄩󵄩p ≤Cn(4,p)‖∇u‖2, n≥3, 0≤b<1, p= 2b+2nn−2, foreveryu∈W1,2(ℝn),whichisageneralizationoftheSobolevinequality (5) ‖u‖2n ≤Cn ‖∇u‖2, n≥3; n−2 (v) theHardy–Rellichinequality(seeRellich[160]) (6) u2 2 Cn ∫ |x|4dx≤ ∫|Δu| dx, n≥5, ℝn ℝn foreveryu∈C0∞(ℝn\{0})andoptimalconstantCn(6) =(n(n4−4))2; (vi) the Caffarelli–Kohn–Nirenberg inequality (see Caffarelli et al. [43], Catrina and Wang[48]) p |u|q q (7) |∇u|p (∫ |x|δqdx) ≤Cn,p,γ,q ∫ |x|γp dx ℝn ℝn foreveryu∈C0∞(ℝn)andδq<n,γp<n,γ≤δ≤γ+1, q1 − nδ = p1 − γn+1. ThelimitcaseoftheCaffarelli–Kohn–Nirenberginequalityforp = q,δ = γ+1is theHardyinequalityinDall’Aglioetal.[52],

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.