NikolaiKutev,TsviatkoRangelov HardyInequalitiesandApplications Also of Interest EllipticandParabolicEquationsInvolvingtheHardy-LerayPotential IreneoPeralAlonso,FernandoSoriadeDiego,2021 ISBN978-3-11-060346-0,e-ISBN(PDF)978-3-11-060627-0, e-ISBN(EPUB)978-3-11-060560-0 CriticalParabolic-TypeProblems TomaszW.Dłotko,YejuanWang,2020 ISBN978-3-11-059755-4,e-ISBN(PDF)978-3-11-059983-1, e-ISBN(EPUB)978-3-11-059868-1 FourierMeetsHilbertandRiesz.AnIntroductiontotheCorresponding Transforms RenéErlinCastillo,2022 ISBN978-3-11-078405-3,e-ISBN(PDF)978-3-11-078409-1, e-ISBN(EPUB)978-3-11-078412-1 MeasureTheoryandNonlinearEvolutionEquations FlaviaSmarrazzo,2022 ISBN978-3-11-055600-1,e-ISBN(PDF)978-3-11-055690-2, e-ISBN(EPUB)978-3-11-055604-9 Non-InvertibleDynamicalSystems.Volume1:ErgodicTheory–Finite andInfinite,ThermodynamicFormalism,SymbolicDynamicsand DistanceExpandingMaps MariuszUrbański,MarioRoy,SaraMunday,2021 ISBN978-3-11-070264-4,e-ISBN(PDF)978-3-11-070268-2, e-ISBN(EPUB)978-3-11-070275-0 Nikolai Kutev, Tsviatko Rangelov Hardy Inequalities and Applications | Inequalities with Double Singular Weight MathematicsSubjectClassification2020 26D10,35P15,35K20,35Q93,35B44 Authors Prof.Dr.NikolaiKutev Prof.Dr.TsviatkoRangelov InstituteofMathematicsandInformatics InstituteofMathematicsandInformatics MathematicalPhysicsDepartment MathematicalPhysicsDepartment BulgarianAcademyofSciences BulgarianAcademyofSciences Acad.G.Bonchevstr.8 Acad.G.Bonchevstr.8 1113Sofia 1113Sofia Bulgaria Bulgaria [email protected] [email protected] ISBN978-3-11-099230-4 e-ISBN(PDF)978-3-11-098037-0 e-ISBN(EPUB)978-3-11-098049-3 LibraryofCongressControlNumber:2022943736 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Coverimage:svetolk/iStock/GettyImagesPlus Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface TheaimofthebookistoderivenewHardytypeinequalitieswithoptimalconstant andwithadditionalterms.Attainabilityoftheoptimalconstantforcertainfunctions isinvestigatedtoo. Thestudyisbasedonmathematicalanalysis,partialdifferentialequations,inte- gralinequalitiesandspectraltheory. The main results and contributions are applied for an estimate from below of thefirsteigenvalueofthep-LaplacianinboundeddomainswithDirichletboundary conditions and for the study of global existence, finite time blow-up and null non- controllability for initial boundary value problems of singular or degenerate heat equations. Themainideas,mathematicaltoolsandapplicationsaredesignedformasterde- greestudents,PhDstudentsandresearcherswholiketospecializeinthefieldofinte- gralinequalitiesanddifferentialequations. Sofia,Bulgaria,August2022 NikolaiKutev TsviatkoRangelov https://doi.org/10.1515/9783110980370-201 Contents Preface|V 1 Introduction|1 2 PreliminaryremarksonHardyinequalities|7 2.1 Inequalitieswithgeneralweights|8 2.2 Inequalitieswithweightssingularontheboundary|9 2.3 Inequalitieswithweightssingularatapoint|11 2.4 Hardyinequalitieswithanadditionalterm|12 3 Hardyinequalitiesinabstractform|19 3.1 Generalweights|19 3.2 Hardyinequalitieswithweightthe firsteigenfunctionofthe p-Laplacian|22 3.3 Hardyinequalitieswithadditionallogarithmicterm|25 3.4 One-parametricfamilyofHardyinequalities|28 3.5 Comparisonwithsomeexistingresults|34 4 Hardyinequalitiesinsphericalareas|37 4.1 Inequalitiesinanannulus|37 4.2 Inequalitiesinaball|44 4.3 Inequalitiesinanexteriorofaball|48 4.4 InequalityinBcforu∈W1,p(Bc)|55 r 0 r 4.5 Concludingnotes|57 5 GeneralHardyinequalitieswithoptimalconstant|59 5.1 WeightedHardyinequality|59 5.2 OptimalityoftheHardyconstant|65 5.3 Examplesandcomments|68 6 Hardyinequalitieswithweightssingularataninteriorpoint|73 6.1 Preliminaries|73 6.2 Mainresult|74 6.3 Star-shapeddomains|77 6.4 Generaldomains|79 6.5 Examplesandcomments|81 7 Hardyinequalitiesinstar-shapeddomainswithdoublesingular weights|85 7.1 Preliminaries|85 VIII | Contents 7.2 Hardyinequalitieswithadditionalboundaryterm|86 7.3 AttainabilityoftheHardyconstant|89 7.4 Comments|95 8 Estimatesfrombelowforthefirsteigenvalueofthep-Laplacian|97 8.1 Existingestimatesofthefirsteigenvalueofthep-Laplacian|97 8.2 Estimatesfrombelowofλp,nusingHardyinequalities|100 8.2.1 EstimatesbymeansofHardyinequalitieswithdoublesingular weights|101 8.2.2 EstimatesbymeansofHardyinequalitieswithadditionallogarithmic term|103 8.2.3 Estimatesbymeansofaone-parametricfamilyofHardy inequalities|107 8.3 Comparisonbetweendifferentanalyticalestimatesofλp,n|113 8.4 Numericalcomparison|119 9 ApplicationofHardyinequalitiesforsomeparabolicequations|123 9.1 Nullnoncontrollability|123 9.2 Globalexistence|130 9.3 Finitetimeblow-up|134 9.4 Comments|138 Bibliography|141 Index|149 1 Introduction ThisbookisdevotedtotheclassicalHardyinequality,itsgeneralizationsandappli- cations for estimates from below of the first eigenvalue λp,n(Ω) of the p-Laplacian, p > 1,inaboundeddomainΩ ⊂ ℝn,n ≥ 2,andglobalsolvability,finitetimeblow- upandnullnoncontrollabilityforsingularparabolicproblemswithHardypotential. Onlythemultidimensionalcasen ≥ 2isconsideredbecauseforn = 1thereexistde- tailedliteratureandsatisfactoryresults;seeforinstanceHardy[98,99,100],Neĉas [146],Maz’ja[142],OpicandKufner[147],Hoffmann-Ostenhofetal.[104].Unlikethe one-dimensionalcase,thetheoryforn≥2isfarfrombeingcompletelysolved. ThisbookcanberegardedasaworkintheseriesofworksofMaz’ja[142],Opic and Kufner [147], Ghoussoub and Moradifam [88], Balinsky et al. [22], Kufner et al. [118],RuzhanskyandSuragan[163].WefocusontheoptimalityoftheHardyconstant andonitsattainability.FurtheronintheworkwesaythattheHardyconstantisop- timalifforagreateronethecorrespondingHardyinequalityfailsforallfunctionsof theadmissibleclass.TheoptimalHardyconstantisattainableintheHardyinequality whenanequalityisachievedforsomeadmissiblefunction.FortheHardyinequality withsingularweightsataninteriorpointofΩ,orontheboundary𝜕Ω,wealwaysprove theoptimalityoftheHardyconstant.AsfortheattainabilityoftheHardyconstant,we showthatanequalityisachievedonlyforHardyinequalitywithadditional“nonlin- ear”term.Itiswellknownthatforinequalitieswithoptimalconstantandadditional “linear”term,anequalityisnotachieved.OnlyinthecasewhentheHardyconstant isgreaterthantheoptimalone,byavariationaltechniqueitisprovedthattheHardy constantisattainable;seeforexamplePinchoverandTintarev[151]andthereferences therein. IntheliteraturemainlyHardyinequalitieswithsingularweightsatapoint,oron theboundary,𝜕Ω,oronsomek-dimensionalmanifold,1 ≤ k ≤ n−1,arestudied. ThesubjectoftheinvestigationsinthisbookisHardytypeinequalitiesinbounded domainsΩ∈ℝn,n≥2,withdoublesingularweights,inaninteriorpointofΩandon theboundary𝜕Ω. OuraimistoderivenewHardyinequalities,whichhaveanoptimalconstantand suitableadditionaltermssuchthattheHardyconstantisattainable.Forexample,the Hardyconstantisoptimalforconvexandstar-shapeddomainsandtheHardyconstant isattainableasaresultofa“nonlinear”additionalterm. The background of the theory of Hardy inequalities is mathematical and func- tionalanalysis,differentialequations,spectralanalysisandtheuncertaintyprinciple inphysics. AfterthepioneeringpapersHardy[98,99,100]andthebookHardyetal.[101] thereweremanygeneralizationsinthetwentiethcenturyoftheclassicalHardyin- equalityaswellassomenewfunctionalinequalitiesmotivatedbyHardy’sworks;for example,seeLieb[133]andRuzhanskyandSuragan[163],Chapters3and7: https://doi.org/10.1515/9783110980370-001 2 | 1 Introduction (i) theHardy–Littlewoodinequality(seeHardyandLittlewood[102,103]) ∫u(x)|x−y|−rv(y)dxdy≤Cp(1,r),n‖u‖p‖v‖q, ℝn foreveryu∈Lp(ℝn),v∈Lq(ℝn),1<p,q<∞,0<r <n, 1 + 1 + r =2; p q n (ii) theHardy–Littlewood–Sobolevinequality(seeSobolev[170]) |x|−r⋆uq ≤Cp(2,r),n‖u‖p, foreveryu∈Lp(ℝn),1<p,q,nr <∞, p1 + nr =1+ q1 andoptimalconstantCp(2,r),n; (iii)the double weighted Hardy–Littlewood–Sobolev inequality of Stein and Weiss [171]: ∫V(x,y)u(y)dyq ≤Cα(3,β),r,n‖u‖p, ℝn withV(x,y) = |x|−β|x−y|−r|y|−α,foreveryu ∈ Lp(ℝn),0 ≤ α < pn−p1,0 ≤ β < qn, 1 + r+α+β =1+ 1; p n q (iv) theOkikiolu–Glaser–Martin–Grosse–Thirringinequality(seeGlaseretal.[89]) |x|−bup ≤Cn(4,p)‖∇u‖2, n≥3, 0≤b<1, p= 2b+2nn−2, foreveryu∈W1,2(ℝn),whichisageneralizationoftheSobolevinequality (5) ‖u‖2n ≤Cn ‖∇u‖2, n≥3; n−2 (v) theHardy–Rellichinequality(seeRellich[160]) (6) u2 2 Cn ∫ |x|4dx≤ ∫|Δu| dx, n≥5, ℝn ℝn foreveryu∈C0∞(ℝn\{0})andoptimalconstantCn(6) =(n(n4−4))2; (vi) the Caffarelli–Kohn–Nirenberg inequality (see Caffarelli et al. [43], Catrina and Wang[48]) p |u|q q (7) |∇u|p (∫ |x|δqdx) ≤Cn,p,γ,q ∫ |x|γp dx ℝn ℝn foreveryu∈C0∞(ℝn)andδq<n,γp<n,γ≤δ≤γ+1, q1 − nδ = p1 − γn+1. ThelimitcaseoftheCaffarelli–Kohn–Nirenberginequalityforp = q,δ = γ+1is theHardyinequalityinDall’Aglioetal.[52],