Hardness Assurance Testing and Radiation Hardening by Design Techniques for Silicon-Germanium Heterojunction Bipolar Transistors and Digital Logic Circuits A Thesis Presented to The Academic Faculty by Akil K. Sutton In Partial Fulfillment of the Requirements for the Degree Doctorate of Philosophy in Electrical and Computer Engineering Georgia Institute of Technology August 2009 To my loving parents Roland and Miriam, my siblings Charleen and Makesi, and my relatives and friends. ii ACKNOWLEDGEMENTS I would like to offer my sincere thanks to all those individuals that have guided my graduate school research career over the past few years. First, my deepest appreciation and gratitude are due to my advisor Dr. John D. Cressler who has skillfully inspired, motivated and challenged me academically over the past few years. Second, I would like to thank my committee members Dr. Chaitanya Deo, Dr. William Alan Doolittle, Dr. Paul Hasler, Dr. David Keezer, Dr. Gary May, and Dr. John Papapolymerou, for their intellectual dis- cussions and invaluable feedback provided in the review of this dissertation. My journey through this process has been enhanced by the many intellectually stimu- lating discussions with the colleagues of the SiGe Devices and Circuits Group at Georgia TECH. Sincere thanks are due to the following past and present group members includ- ing Dr. Jongoo Lee, Dr. Emery Chen, Dr. Zhenrong Jin, Dr. QingQing Liang, Dr. Tian- bing Chen, Dr. Ramkumar Krithivasan, Dr. Chendong Zhu, Dr. Yuan Lu, Dr. Joel An- drews, Dr. Lance Kuo, Dr. Jon Comeau, Dr. Xiangto Li, Dr. Enhai Zhao, Curtis Grens, BeccaHaugerud,AdnanAhmed,MustansirPratapgarhwala,MintengHan,Dr.MarcoBellini, Aravind Appaswamy, Laleh Najafizadeh, Jiahui Yuan, Tushar Thrivikraman, Tom Cheng, Prabir Saha, Nand Jha, Anuj Madan, Steven Horst, Partha Chakraborty, Duane Howard, Ryan Diestelhorst, Stanley Phillips, Kurt Moen, Steven Finn, Ted Wilcox, Dylan Thomas, Sachin Seth, John Poh, Troy England, Greg Duperon III, Jessica Nance, Adilson Cardoso, ChrisCoen,Dr.RaoRapeta,Dr.GnanaPrakash,Dr.BongimJun,Dr.Jos-LuisOlveraCer- vantes, Jiongjiong Mo, Gustavo Espinel, and Steven Finn. Many thanks are also due to the graduate affairs staff at the School of Electrical and Computer engineering especially Ms. Marilou Mycko, Mrs. Jacqueline Trappier, Mrs. Gail Palmer, Mrs. Pat Grindel, and Mrs. Tasha Torrence. Thanks are also due to the staff at GEDC including Joi Adams, DeeDee Bennett, Gary Hutchinson, Ryan Stephens, and Chris Evans. This dissertation would not be possible without the support of several collaborators from a broad spectrum of university, government and corporate entities. I would like to iii thank Dr. Paul W. Marshall, Dr. Cheryl Marshall, Dr. Jonathan Pellish, Ken Label, Mar- tin Carts, Hak Kim, and Ray Ladbury, all from the NASA Goddard Space Flight Center Radiation Effects Group. Many thanks are also due to Lew Cohn from the Defense and Threat Reduction Agency, Dr. Robert Reed, Jeff Black, and Nicholas Pate from Van- derbilt University, Dr. Guofu Niu and Dr. Tamara Isaacs-Smith from Auburn University, Tim Essert and Carlos Castenada from the Crocker Nuclear Laboratory at the University of California at Davis, Dr. George Vizkelethy and Dr. Paul Dodd from Sandia National Laboratory,Dr. DaleMc.MorrowfromtheNavalResearchLaboratory,andDr. AlexGrillo from the University of California at Santa Cruz. Thanks are also due to the SiGe teams at IBM Microelectronics for generously providing the design space and hardware without which this research would not have been possible. I would also like to thank my parents – Miriam Duncan-Sutton and Roland Victor Sutton, for providing mewith the verybest education that was possiblewithin their means, and I would also like to thank my brother and sister Makesi Omari Moyo Sutton and Charleen Gamaldo, for their support as well as many extended family that have always been willing contributors to my success. Most importantly, I would like to thank God wihout whom none of this would be possible. iv TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 RADIATION EFFECTS IN MICROELECTRONICS . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Radiation-Induced Damage Mechanisms in Microelectronic Devices and Circuits . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Atomic Displacement in Silicon . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Ionization in Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Ionization in Silicon Dioxide . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Extreme Environment Electronics . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Space-Based Electronic Components . . . . . . . . . . . . . . . . . 28 2.3.2 High-Energy-Physics Particle Detectors . . . . . . . . . . . . . . . . 29 2.3.3 Radiation Test Facilities . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 SiGe BiCMOS Technology Platforms . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Technology Development and Transistor Operation . . . . . . . . . 34 2.4.2 IBM SiGe Technology Platforms . . . . . . . . . . . . . . . . . . . . 38 3 MEDIUM-ENERGY PROTON-INDUCED DEGRADATION . . . . . 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Radiation-Induced Excess Base Current . . . . . . . . . . . . . . . . . . . . 43 3.4 Proton-Induced Degradation in 3rd-generation SiGe HBTs . . . . . . . . . 45 v 3.4.1 Gummel and Current Gain Characteristics . . . . . . . . . . . . . . 45 3.4.2 Common-Emitter Output Characteristics . . . . . . . . . . . . . . . 50 3.4.3 Avalanche Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.4 Neutral Base Recombination . . . . . . . . . . . . . . . . . . . . . . 53 3.4.5 Low-Frequency Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.6 Mixed-Mode Electrical Stress . . . . . . . . . . . . . . . . . . . . . 59 3.4.7 Transistor Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.8 High-Temperature Annealing . . . . . . . . . . . . . . . . . . . . . 62 3.5 The Effects of Technology Scaling on Medium-Energy Proton-Induced Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5.1 dc Performance Degradation . . . . . . . . . . . . . . . . . . . . . . 64 3.5.2 ac Performance Degradation . . . . . . . . . . . . . . . . . . . . . . 73 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 HARDNESS ASSURANCE TESTING . . . . . . . . . . . . . . . . . . . . 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Hardness Assurance Testing for Space-Based Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Radiation-Induced Excess Base Current . . . . . . . . . . . . . . . 80 4.2.3 Base-Current Ideality Factors . . . . . . . . . . . . . . . . . . . . . 86 4.2.4 Dose Rate Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3 Hardness Assurance Testing for High-Energy-Physics Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.2 Proton Energy Effects . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.3 Displacement Damage Factors . . . . . . . . . . . . . . . . . . . . . 95 4.3.4 Ionization Saturation Phenomena . . . . . . . . . . . . . . . . . . . 98 4.3.5 Radiation-Induced Degradation at High Injection . . . . . . . . . . 100 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 LASER-INDUCED SEU IN HBT DIGITAL LOGIC . . . . . . . . . . . 105 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 vi 5.2.1 Single-Photon Pulsed Laser Irradiation . . . . . . . . . . . . . . . . 106 5.2.2 Circuit for Radiation Effects Self Test (CREST) . . . . . . . . . . . 107 5.2.3 128-Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.4 Error Detection and Capture . . . . . . . . . . . . . . . . . . . . . 115 5.3 Error Signature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.1 Clock Buffer Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.2 Flip-Flop Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3.3 Impact of Latch Architecture . . . . . . . . . . . . . . . . . . . . . 122 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 PROTON-INDUCED SEU AT CRYOGENIC TEMPERATURES . . 127 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Proton-Induced Ionization at Cryogenic Temperatures . . . . . . . . . . . 128 6.2.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.2.2 dc Performance Degradation . . . . . . . . . . . . . . . . . . . . . . 128 6.3 Proton-Induced SEU Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 130 6.4 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4.1 16-Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4.2 Proton and Heavy-Ion Broadbeam Irradiation . . . . . . . . . . . . 132 6.5 Proton- and Heavy-Ion-Induced Cross Sections . . . . . . . . . . . . . . . . 134 6.6 Error Signature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.7 2-D TCAD Charge Collection Simulations . . . . . . . . . . . . . . . . . . 140 6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7 TRANSISTOR-LEVEL LAYOUT-BASED RHBD TECHNIQUES . . 143 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Transistor-Level Implementation . . . . . . . . . . . . . . . . . . . . . . . . 144 7.2.1 Layout Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.2.2 dc and ac Performance Characteristics . . . . . . . . . . . . . . . . 146 7.2.3 Proton-Induced Ionization Effects . . . . . . . . . . . . . . . . . . . 148 7.3 Heavy-Ion Microbeam Analysis . . . . . . . . . . . . . . . . . . . . . . . . 149 7.3.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 vii 7.3.2 Impact of N-ring Layout and Spacing . . . . . . . . . . . . . . . . . 149 7.3.3 Impact of N-ring Voltage . . . . . . . . . . . . . . . . . . . . . . . . 151 7.3.4 Impact of Ion Location and Angle of Incidence. . . . . . . . . . . . 152 7.3.5 Impact of N-ring Area . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.3.6 Heavy-Ion Microbeam Charge Collection Summary . . . . . . . . . 156 7.4 3-D TCAD Charge Collection Simulations . . . . . . . . . . . . . . . . . . 158 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8 LASER-INDUCED HBT CURRENT TRANSIENTS . . . . . . . . . . 167 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.2 Two-Photon Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.3 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 8.3.1 Backside TPA Packaging . . . . . . . . . . . . . . . . . . . . . . . . 169 8.3.2 Two-Photon Pulsed Laser Irradiation . . . . . . . . . . . . . . . . . 170 8.4 Laser-Induced Current Transients in the Nominal-HBT . . . . . . . . . . . 172 8.4.1 Lateral Position Dependence of the Laser Focal Spot . . . . . . . . 172 8.4.2 Vertical Position Dependence of the Laser Focal Spot . . . . . . . . 175 8.5 Laser-Induced Current Transients in the External R-HBT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.5.1 Lateral Position Dependence of the Laser Focal Spot . . . . . . . . 177 8.5.2 Vertical Position Dependence of the Laser Focal Spot . . . . . . . . 179 8.5.3 Impact of the N-ring Voltage. . . . . . . . . . . . . . . . . . . . . . 181 8.5.4 Impact of the Laser Pulse Energy . . . . . . . . . . . . . . . . . . . 183 8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9 TRANSISTOR-LEVEL RHBD APPLIED TO HBT DIGITAL LOGIC189 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 9.2.1 16-Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 190 9.2.2 Heavy-Ion Broadbeam Irradiation . . . . . . . . . . . . . . . . . . . 192 9.3 Heavy-Ion Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 9.3.1 Impact of Substrate Contact Location . . . . . . . . . . . . . . . . 193 9.3.2 Impact of the Angle of Incidence . . . . . . . . . . . . . . . . . . . 197 viii 9.3.3 Impact of the Substrate and N-ring Voltage . . . . . . . . . . . . . 199 9.3.4 Comparison of Transistor- and Circuit-Level RHBD Approaches . . 202 9.3.5 Impact of Transistor Geometry . . . . . . . . . . . . . . . . . . . . 204 9.4 On-Orbit Event Rate Calculations . . . . . . . . . . . . . . . . . . . . . . . 207 9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 10 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . 211 10.1 Total-Dose Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10.2 Single-Event Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 10.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 ix LIST OF TABLES 1 Important parameters for the measurement of radiation-induced degrada- tion in microelectronic devices and circuits. . . . . . . . . . . . . . . . . . 6 2 1st-, 2nd-, 3rd-, and 4th-generation HBT performance figures of merit. . . 38 3 Selected geometries for 1st- through 4th-generation HBTs. . . . . . . . . . 67 4 Single-photon pulsed laser parameters. . . . . . . . . . . . . . . . . . . . . 106 5 Flip-flop- and register-level area and power consumption. . . . . . . . . . 111 6 Categories for analyzing of pulsed-laser-induced error signatures. . . . . . 116 7 Area and power consumption of the LP Std M/S and DI shift registers. . 132 8 A and A for all RHBD devices compared to 16O microbeam induced NR DT Q (E), Q (DT +1), and Q at θ=0o and 15o. . . . . . . . . . . . . 157 C C C,INT 9 Two-photon pulsed laser system parameters. . . . . . . . . . . . . . . . . 171 10 Area and power consumption of circuit- and transistor-level RHBD shift registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11 Normally-incident Weibull parameters at 4 Gbit/s. . . . . . . . . . . . . . 194 12 Normally-incident Weibull parameters at 1 Gbit/s. . . . . . . . . . . . . . 203 13 A comparison of several transistor-level sensitive areas. . . . . . . . . . . 205 14 On-orbit event rate calculations at 1 Gbit/s. . . . . . . . . . . . . . . . . 209 x
Description: