ebook img

Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C58 PDF

0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C58

Astronomy&Astrophysicsmanuscriptno.ms0205-WH˙26˙Jan10 (cid:13)c ESO2010 January27,2010 Hard X-ray timing and spectral characteristics of the energetic + pulsar PSRJ0205 6449 in supernova remnant 3C58 An RXTE PCA/HEXTE and XMM-Newton view on the 0.5-250 keV band L.Kuiper1,W.Hermsen1,2,J.O.Urama3,P.R.denHartog1,4,A.G.Lyne5,andB.W.Stappers5 1 SRON-NetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CA,Utrecht,TheNetherlands e-mail:[email protected] 0 2 AstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,POBox94249,1090GE,Amsterdam,TheNetherlands 1 e-mail:[email protected] 0 3 Dept.ofPhysics&Astronomy,UniversityofNigeria,Nsukka 2 e-mail:[email protected] 4 StanfordUniversityHEPL/KIPACPhysics,382ViaPuebloMallStanford,94305,USA n e-mail:[email protected] a 5 JodrellBankCenterforAstrophysics,SchoolofPhysicsandAstronomy,TheUniversityofManchesterManchesterM139PL,UK J e-mail:[email protected]; [email protected] 7 2 Received11December2009/Acceptedxxx2010 ] ABSTRACT E H Aims.PSRJ0205+6449isayoungrotation-poweredpulsarinSNR3C58.Itisoneofonlythreeyoung(<10,000yearold)pulsars whicharesofardetectedintheradioandtheclassicalX-raybands,aswellasathardX-raysabove20keVandathigh-energy(>100 . h MeV)γ-rays.TheothertwoyoungpulsarsaretheCrabandPSRB1509-58.Ouraimistoderivethetimingandspectralcharacteristics p ofPSRJ0205+6449overthebroadX-raybandfrom∼0.5to∼270keV. - Methods.We used all publicly available RXTE observations of PSRJ0205+6449 to first generate accurate ephemerides over the o period September 30, 2000 - March 18, 2006. Next, phase-folding procedures yielded pulse profilesusing data from RXTEPCA r t andHEXTE,andXMM-NewtonEPICPN.AllprofileshavebeenphasealignedwitharadioprofilederivedfromtheJodrellBank s Observatorydata,andthetime-averagedtimingandspectralcharacteristicsofthepulsedX-rayemissionhavebeenderived. a Results.Whileourtimingsolutionsareconsistentwithearlierresults,ourworkshowssharperstructuresinthePCAX-rayprofile. [ TheX-raypulseprofileconsistsoftwosharppulses,separatedinphaseby0.488±0.002,whichcanbedescribedwith2asymmetric 1 Lorentzians,eachwiththerisingwingsteeperthanthetrailingwing,andfull-width-half-maximum1.41±0.05msand2.35±0.22 v ms,respectively.Wefindanindicationforafluxincreasebyafactor∼2,about3.5σabovethetime-averagedvalue,forthesecond, 8 weaker pulse during a two-week interval, while its pulse shape did not change. The spectrum of the pulsed X-ray emission is of 5 non-thermalorigin,exhibitingapower-lawshapewithphotonindexΓ=1.03±0.02overtheenergyband∼0.5to∼270keV.Inthe 9 energybandcoveredwiththePCA(∼3−30keV)thespectraofthetwopulseshavethesamephotonindex,namely,1.04±0.03and 4 1.10±0.08,respectively.ComparisonsofthedetailedtimingandspectralcharacteristicsofPSRJ0205+6449intheradio,hardX-ray . andgamma-raybandswiththoseoftheCrabpulsar,PSRB1509-58andthemiddle-agedVelapulsardorevealmoredifferencesthan 1 similarities. 0 0 Key words. Stars: neutron – pulsars: individual PSRJ0205+6449, PSR B1509-58, Crab, Vela – X-rays: general – Gamma rays: 1 observations–Radiationmechanisms:non-thermal : v i X 1. Introduction in doubt the possible association with 3C 58, which coincides r positionally with the historical 828 yr old supernova SN1191 a PSRJ0205+6449 is a young rotation-poweredpulsar of which (Stephenson&Green, 2002). However,an age of severalthou- the pulsations were first discovered in X-rays in a 2002 sandyearsfor3C58,closertothecharacteristicageofthepul- Chandra X-ray Observatory (CXO) observation, reported by sar,canbederivedfromthevelocitiesoftheradioexpansionof Murrayetal. (2002) together with a confirmation in an the PWN (Bietenholz, 2006) and of optical knots (Fesenetal., analysis of archival Rossi X-Ray Timing Explorer (RXTE) 2008). data. Subsequently, the weak radio signal was detected by Recently, Livingstoneetal. (2009) presented for Camiloetal. (2002). PSRJ0205+6449 is a young, 65-ms pul- PSRJ0205+6449 phase-coherent timing analyses using X- sarlocatedinthecenterofsupernovaremnant/pulsarwindneb- raydatafromtheProportionalCounterArray(PCA;2-60keV) ula(PWN)3C58.Itisoneofthemostenergeticpulsarsinthe aboardRXTEandradiodatafromtheJodrellBankObservatory Galaxy with a spin-down luminosity E˙ ∼ 2.7 × 1037erg s−1, and the Green Bank Telescope (GBT), spanning together 6.4 and characteristic age τ ∼ 5.4 kyr. This characteristic age, es- yrs. This work revealed timing noise and two spin-up glitches. timatedwiththevaluesoftheperiodandperiodderivative,puts Furthermore,theypresenteddetailedcharacteristicsoftheX-ray profile,which was detectedup to ∼40 keV. TheirX-ray profile Sendoffprintrequeststo:L.Kuiper template consisted of two Gaussian-shaped pulses, a narrow 2 L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 (full-width-half-maximum (FWHM) ∼ 1.6 ms), more intense Table1.RXTEPSRJ0205+6449observationsummary pulse and a broader (FWHM ∼ 3.8 ms) weak pulse separated 0.505 in phase, the single radio pulse leading the main X-ray Obs.id. Datebegin DateEnd MJD Exposurea pulse by φ = 0.10 ± 0.01. Earlier results from an analysis of (ks) partoftheRXTEandGBTdatawerereportedbyRansometal. 20259 30-09-1997 30-09-1997 50721-50722 16.96 (2004). These authors also presented spectral fits over the 60130 17-08-2001 19-08-2001 52138-52141 80.35 energy band 3–16 keV for both pulses: the best fit power-law photon indices were hard, namely Γ = 0.84+0.06 for the main 70089 10-03-2002 23-04-2003 52343-52752 268.95 −0.15 pulseandΓ=1.0+0.4forthesecond(weaker)pulse. 90080 28-02-2004 03-03-2005 53063-53432 243.23 −0.3 Finally, high-energy γ-ray pulsations (≥ 0.1 GeV) from 91063 12-03-2005 18-03-2006 53441-53813 328.74 PSRJ0205+6449 were discovered with the Large Area Telescope(LAT)aboardtheFermiGamma-raySpaceTelescope aScreened(GTI)exposureforPCAunit-2 (Abdoetal.,2009a),foldingtheγ-rayarrivaltimeswiththera- diorotationalephemerisfrom,again,theGBTandJodrellBank. The γ-ray light curve for energies ≥ 0.1 GeV shows also two peakswithintensitiesdifferingbyafactor∼2,alignedwiththe offivecollimatedXenonproportionalcounterunits(PCUs)with X-raypeaks,However,themainX-raypulsecoincidesinphase atotaleffectiveareaof∼6500cm2overa∼1◦(FWHM)fieldof withthe weakestγ-raypulsewhichhasthesoftestspectrumof view.EachPCUhasafrontPropaneanti-coincidencelayerand the two athigh-energyγ-rays. Thetotal pulsedγ-ray spectrum three Xenonlayerswhichprovidethe basic scientific data, and exhibitsasimplepower-lawshapewithindexΓ∼2.1andexpo- issensitivetophotonswithenergiesintherange2-60keV.The nentialcutoffat∼3.0GeV. energy resolution is about 18% at 6 keV. All data used in this PSRJ0205+6449isnowoneofonlythreeyoung(<10,000 work have been collected from observations in GoodXenon or yearold)pulsarswhicharedetectedintheclassicalX-rayband GoodXenonwithPropane mode allowing high-time-resolution andathardX-raysabove20keV,aswellasathigh-energy(>0.1 (0.9µs)studiesin256spectralchannels. GeV)γ-rayenergies,theothersbeingtheCrabpulsarandPSR TheHEXTEinstrument(Rothschildetal.,1998)consistsof B1509-58(PSRJ1513-5908).TheCrabpulsarhasbeenstudied twoindependentdetectorclustersAandB,eachcontainingfour overthetotalhigh-energybandalreadyingreatdetail(seefora Na(Tl)/ CsI(Na) scintillation detectors. The HEXTE detectors coherenthigh-energypicturefromsoftX-raysuptohigh-energy aremechanicallycollimatedtoa∼1◦(FWHM)fieldofviewand γ-rays Kuiperetal., 2001), with even a detection of pulsed γ- coverthe15-250keVenergyrangewithanenergyresolutionof raysabove25GeV(Aliuetal.,2008). ∼15%at60keV.Thecollectingareais1400cm2takingintoac- Thedetectionofpulsedemissionabove100MeVfromPSR countthelossofthespectralcapabilitiesofoneofthedetectors. B1509-58hadtowaitforthenewgenerationofcurrentlyoper- Thebesttimeresolutionofthetaggedeventsis7.6µs.Initsde- ationalγ-raytelescopes(Pellizzonietal.,2009).However,these faultoperationmodethefieldofviewofeachclusterisswitched threeyoungpulsarshaveverydifferenttimingandspectralchar- onandoffsourcetoprovideinstantaneousbackgroundmeasure- acteristics.Thismakesitparticularlyinterestingtodeterminethe ments. Due to the co-alignmentof HEXTE and the PCA, both timingandspectralcharacteristicsofPSRJ0205+6449inmore instrumentssimultaneouslyobservethesamefieldofview. detail over the high-energyband of the electro-magnetic spec- RXTEobservedPSRJ0205+6449 forthefirsttimeonSept. trum in order to compare these with those of Crab and PSR 30,1997(MJD50721)forabout17ks.Datafromthisobserva- B1509-58andforconfrontationwiththeoreticalpredictions.In tionwereusedbyMurrayetal.(2002)toconfirmthepulsation this work our aim is to extend the coverage in the hard X-ray discoveredwithChandra.Adedicatedmuchdeeperobservation bandtohigherenergies,exploitingthedataoftheHighEnergy wasperformedin theperiodAugust17-19,2001(MJD52138- X-rayTimingExperiment(HEXTE;15-250keV)aboardRXTE, 52141),yieldingabout80ksgoodexposuretime.Next,amoni- andtoextendtheenergywindowtolowerenergiesbyanalysing toringcampaignstartedonMarch10,2003(MJD52343)which data from XMM-Newton.We will presentthe results from our endedon April23, 2003(MJD 52752).The total (good)expo- timing study exploiting only the multi-year PCA/RXTE moni- suretimeforthisperiodwasabout269ks.Asecondmonitoring toringdata,whichweperformedinparalleltotheworkreported round commenced on Feb. 28, 2004 and continued till March byLivingstoneetal.(2009).Ourtimingsolutionsareconsistent 18, 2006 (MJD 53063-53813)yielding a total (good)exposure with those of the latter authors, but our work revealed sharper time ofabout572ks. A summaryof allRXTE observationsof structuresin the PCA X-raypulseprofile.Furthermore,we de- PSRJ0205+6449isgiveninTable1.Thetotalgood-timeexpo- rivethespectralcharacteristicsoverthetotalX-rayband.Inthe sure(afterscreening;seeSect.3.1)amounts938.23ks. discussion we compare our findings with the characteristics of PSRJ0205+6449reportedintheradiobandandathigh-energy γ-rays,aswellaswiththetimingandspectralcharacteristicsof 2.2.XMM-Newton theCrabpulsar,PSRB1509-58andthemiddle-agedVelapulsar. WesearchedtheXMM-Newtonobservationdatabaseforobser- vationsofthefieldaroundPSRJ0205+6449inwhichtheEPIC- 2. Instrumentsandobservations PN camera (Stru¨deretal., 2001) operated in Small-Window (SW) mode. This mode (4.′4 × 4.′4 field of view) offers suffi- 2.1.RXTE cient time resolution (∼ 5.67 ms) to sample the pulse-profile In this study extensive use is made of data from monitoring of PSRJ0205+6449 over the ∼ 0.3-12 keV range. We found observationsofPSRJ0205+6449withthetwo non-imagingX- two observations (observation ids. 0004010101/0004010201) ray instrumentsaboard RXTE, the ProportionalCounter Array both performed on February 22, 2001 at 1.′2 offset from (PCA;2-60keV)andtheHighEnergyX-rayTimingExperiment PSRJ0205+6449 with durations of about 9.2 and 23.6 ks, re- (HEXTE;15-250keV).ThePCA (Jahodaetal.,1996)consists spectively. L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 3 Table2.Phase-coherentephemeridesforPSRJ0205+6449asderivedfromRXTEPCA(monitoring)data. Entry Start End t ,Epoch ν ν˙ ν¨ Φ3 Validityrange 0 0 # [MJD] [MJD] [MJD,TDB] [Hz] ×10−11Hz/s ×10−21Hz/s2 (days) 0 50721 50722 50721.0 15.230153381(92) -4.489(fixed) 0.0(fixed) 0.2931 2 1 52138 52141 52138.0 15.224659060(16) -4.489(16) 0.0(fixed) 0.5389 4 2 52343 52433 52343.0 15.223863557(3) -4.49605(13) +1.96(38) 0.6540 91 3 52433 52515 52433.0 15.223514035(4) -4.49086(20) -7.98(62) 0.7751 83 41 52639 52752 52639.0 15.2227187742(4) -4.51063(1) 0.0(fixed) 0.4147 114 5 53063 53173 53063.0 15.2211188258(7) -4.56381(2) 0.0(fixed) 0.4814 111 6 53173 53312 53173.0 15.2206851395(13) -4.55932(4) +5.80(8) 0.3170 140 7 53312 53401 53312.0 15.2201380229(35) -4.54739(19) +1.36(49) 0.3458 90 8 53401 53469 53401.0 15.2197884405(37) -4.54444(25) +12.0(9) 0.3273 69 9 53469 53546 53469.0 15.2195216777(26) -4.53041(15) +7.18(47) 0.1970 78 10 53546 53637 53546.0 15.2192204400(23) -4.52131(12) +1.85(32) 0.6030 92 11 53637 53726 53637.0 15.2188650817(24) -4.51951(12) +28.5(3) 0.1413 90 12 53726 53813 53726.0 15.2185183927(26) -4.50300(14) +16.8(4) 0.2436 88 132 53726 53764 53745.0 15.2184445054(20) -4.49904(15) -10.3(61) 0.1147 39 142 53750 53814 53782.0 15.2183007045(13) -4.49502(8) +29.1(16) 0.6055 65 1AglitchoccuredbetweenMJD52515and52571(seeLivingstoneetal.,2009,formoreinformation).Thisentrydescribes thelastpartoftheglitchrecoveryperiod.ItsvalidityisquestionablegiventhelownumberofTOA’s,namely4,translating to1degreeoffreedomintheTOAfitprocedure. 2EphemerisfromJodrellBankradiodata 3Φ isthephaseoffsettobeappliedtoobtainconsistentradio-alignment(seeEquation1inSect.3.4) 0 3. Timing The pulse frequency and its first two time derivatives (ν,ν˙,ν¨) were determined from PCA X-ray data solely1, demanding a 3.1.RXTEPCAtiminganalysis maximumRMSvalueofonly0.01periodinthetime-of-arrival (TOA)analysis.Thisrequirementresultedin13timingmodels The first step in the RXTE PCA data analysis was the screen- with validity intervals of typically 100 days. The ephemerides ingofthedata.Wegeneratedgood-timeintervals(GTI)foreach arelistedinTable2.IntheTOAanalysiswefollowedthesteps PCUseparately,becausethenumberofactivePCU’satanyin- outlinedinSection4ofKuiper&Hermsen(2009),inthiscase, stant was changing.Good time intervals have been determined however,we madea high-statisticscorrelationtemplate(show- foreachPCU byincludingonlytimeperiodswhenthePCU in ing clearly the two X-ray pulses) from the 80 ks observation questionison,andduringwhichthepointingdirectioniswithin duringrun60130.Ourmodelsarefullyconsistentwiththosede- 0◦.05 fromthe target,the elevationangle aboveEarth’s horizon rivedbyLivingstoneetal.(2009),whousedacombinationofX- isgreaterthan5◦,atimedelayof30minutessincethepeakofa ray(RXTEPCA)andradio(GBTandJBO)data.Also,wefound South-Atlantic-Anomalypassage holds, and a low background evidence for the presence of two timing glitches using solely level due to contaminating electrons is observed. These good X-ray data, one occuringsomewhere between MJD 52515 and time intervals have subsequently been applied in the screening 52571andamuchstrongeroneoccuringintheRXTEmonitor- processtothedatastreamsfromeachofthePCUs(e.g.seeTable inggapbetweenMJD52752and53063(seeLivingstoneetal., 1fortheresultingscreenedexposureofPCU-2perobservation 2009,formoredetailsontheseglitcheswhichtheyreporttohave run). fractionalmagnitudes∆ν/ν∼3.4×10−7and∆ν/ν∼3.8×10−6, Next, we selected event data from all three Xenon lay- respectively). The frequency evolution history over the RXTE ers of each PCU allowing us to better characterize the hard observationtimestretchMJD52138-53813isshowninFig.1. (> 10 keV) X-ray properties of PSRJ0205+6449. The TT (Terrestial Time) arrival times of the selected events (for each Themaindifferencebetweenourworkandthatperformedby sub-observation and for each PCU unit) have been converted Livingstoneetal.(2009)isthatwechoseforanaccurate(RMS to arrival times at the solar system barycenter (in TDB time <0.01)descriptionoftherotationbehaviourofthepulsarwithat scale)using1)theJPLDE200solarsystemephemeris,2)thein- most3timingparametersoveralimitedtimestretchinsteadof stantaneousspacecraftpositionand3)thesub-arcsecondceles- usingmanymoretimingparametersoveramuchwidertimein- tialpositionofPSRJ0205+6449.Thepositionusedis:(α,δ) = terval.Inthelatterapproachtheneedforthe(unphysical)higher (02h05m37s.92,+64◦49′42′.′8) for epoch J2000 (Slaneetal., ordertimingparametersreflectsthepresenceof(strong)timing 2002), which corresponds to (l,b)=(130.71931,3.08456) in noise. Galacticcoordinates. 3.2.Timingsolutions:ephemerides 1 X-ray timing data are not hampered by time-variable dispersion measure (DM) variations as is the case for the radio data, and there- We generated pulsar timing models (ephemerides) specifying foretheremainingscatterintheobtainedtimingsolutionsisless.This the rotationbehaviourof the pulsar overa certain time stretch. hasbeenverifiedfortheCrabpulsar. 4 L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 Fig.1. Evolution of the spin-frequency of PSRJ0205+6449 as Fig.2. High-statistics radio-aligned PCA pulse phase distribu- derived from RXTE PCA data over the period MJD 52138- tion in 180 bins for PHA range 5-44 (∼2-20 keV) combining 53813withrespecttothelineartrendofthephasecoherenttim- allavailableradio-alignedpulsephasedistributionsfromdiffer- ing model of period MJD 52433-52515 (entry #3 of Table 2). entdatasegments.Errorbarsrepresent1σuncertainties.The As solid lines the entries #1-12 of Table 2 are plotted, while best fit (χ2 = 199.47for 171 degreesof freedom)modelcom- for the period 52571-52752 also the linear fit to the incoher- posedoftwoasymmetricLorentziansplusbackgroundissuper- ent frequencymeasurementsis shown as solid line. Incoherent posed as dashed red line. The rising wings of the pulses are frequencymeasurementsovertheperiodMJD52544-52752are steeperthanthetrailingwings. shownasdatapoints.Notethepresenceof(atleast)twotiming glitches:oneintheperiod52515to52571andasecondstronger asshowninTable2.ProperX-ray/radiophasealignment,Φ(t), onebetween52752and53063(seetext). isobtainedbysubtractingΦ asshowninthefollowingformula: 0 1 1 Φ(t)=ν·(t−t )+ ν˙·(t−t )2+ ν¨·(t−t )3−Φ (1) 0 0 0 0 2 6 Combining the radio-aligned phase information for all PCA- 3.3.X-ray/radiopulseprofilephasealignment data coveredwith a proper ephemeris (see Table 2) yielded an event matrix N(Φ,E) of (180×256) elements. For this purpose TheJodrellBankobservatory(JBO)madeobservationsatara- webinnedthepulse-phaseinterval[0,1]into180phasebinsfor diofrequencyof1.4GHzfromMJD53725to54666,andthere- all 256 PCA PHA channels. From this matrix a high-statistics foreoverlapsforabout89dayswiththesecondRXTEmonitor- pulse-phasedistributionwasextractedforthePHAchannels5- ingcycleintheperiodMJD53725to53813.Fortwotimeseg- 44(∼2-20keV).ThisdistributionisshowninFig.2. mentsinthisinterval,MJD53726-53764(numberofTOAs,28) and MJD 53750-53814(numberof TOAs, 29), accurate (RMS < 0.01) timing models are constructed with 3 timing parame- 3.5.X-raypulseprofilecharacterization ters (see also Table 2). The 1.4 GHz single-pulse radio profile Initially, we fitted, analogous to Livingstoneetal. (2009), our (in 400 bins) is shown in Fig. 3a with a fiducial point (defin- high-statistics RXTE PCA pulse profile shown in Fig. 2 with ing radio-phase 0.0) corresponding to the centre of gravity of a modelconsisting of 2 Gaussians, each with free scale, width the single pulse (just before the pulse maximum). Folding the andposition,plusbackground.However,thismodelrendereda barycenteredX-raytimetagsfromperiodMJD53726to53813 poor/unacceptablefit (χ2 = 265.48for180- 7 degreesof free- uponthese radio-ephemeridesputthemainX-raypulse(pulse- dom).Next,wetriedadoublesymmetricLorentzianmodelplus 1)atphase0.089±0.001(statisticalerroronly),consistentwith background in order to give more weight to the wings of the the value quoted for the JBO-PCA offset in Livingstoneetal. pulses.Thismodelprovidedabetterdescriptionofthemeasured (2009),namely0.085±0.010.Next,wedeterminethroughcor- pulse-phase distribution (χ2 = 239.13 for 180 - 7 degrees of relationanalysisthephaseshiftstobeappliedtotheX-raypulse freedom), but is still poor. Finally, we abandoned the descrip- profilesfromthedataperiodsofentries0-12ofTable2toalign tionintermsofsymmetricfunctionsandusedacombinationof these to the radio-aligned X-ray profile of period MJD 53726- 2asymmetricLorentziansplusbackground.Thismodel(9free 53813.Theseshifts(Φ )aregiveninTable2. 0 parameters)isspecifiedbelow: 3.4.CombinedX-rayeventmatrixfromPCAobservations N(φ;B,p ,p )= B+N (φ;p )+N (φ;p ) (2) 1 2 1 1 2 2 BarycenteredPCAX-rayeventtimesarefinallyfoldeduponan In this formula p represents the 4 model parameters, 1 appropriatetiming modelcomposedof ν,ν˙,ν¨ and the epocht , (N ,φ ,Γ ,Γ ), of the first asymmetric Lorentzian, p the 0 1 1 1l 1r 2 L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 5 Table 3. X-ray pulse profile characterization of PSRJ0205+6449 from a fit involving two asymmetric Lorentziansplusbackground Parameter Value 1σ-error Pulse-1 Φa 0.0831 ± 0.0004 1 Γ 0.0175 ± 0.0009 1l Γ 0.0252 ± 0.0011 1r Pulse-2 Φ 0.5709 ± 0.0015 2 Γ 0.0214 ± 0.0036 2l Γ 0.0502 ± 0.0056 2r Derivedquantities Φ −Φ 0.488 ± 0.002 2 1 N /N 3.72 ± 0.23 1 2 Ib 0.688 ± 0.011 1 I 0.312 ± 0.014 2 R=I /I 2.2 ± 0.1 1 2 Γ =(Γ +Γ )/2 0.0214 ± 0.0007 1 1l 1r 1.41 ± 0.05ms Γ =(Γ +Γ )/2 0.0358 ± 0.0034 2 2l 2r 2.35 ± 0.22ms aStatisticalerroronly,thesystematicerrorisofthe orderof0.01(seeLivingstoneetal.,2009) bRelativecontributionoftheintegratedfluxinpulse-1 tothetotalpulsedflux equivalent parameters, (N ,φ ,Γ ,Γ ), describing the second 2 2 2l 2r asymmetric Lorentzian and B is the value of the background Fig.3. A comparison in absolute phase of the JBO radio (1.4 level. The first asymmetric Lorentzian is described by the fol- GHz), RXTE-PCA (∼2-20keV) and FermiLAT (> 100MeV) lowingexpression: pulseprofiles.NotethechangeintherelativecontributionsofP1 andP2intheX-rayandγ-raywindows.  N1 φ≤φ N1(φ;p1)= ((((φφ−−φφ11))//((NΓΓ111lr//22))))22++11 φ>φ11 (3) (L02.i40v90in±9ga0s).t0ou1ns±ien0egt.0Fa1el.2rmm(2ie0aL0sA9u)Tr,ebd>uat1t0ch0oignMhs-iesetVneenrdtgawytaγi.t-hTrahtyhesecbosyempApabaradritosiooenntaoolff. In this description N is the maximum value of pulse-1 the shapes and absolute phases of the JBO radio, our RXTE- 1 reached at φ , the location of the maximum of pulse-1, Γ /2 PCAX-rayandtheFermi-LATprofilesisshowninFig.3.The 1 1l is the width of the left wing of the pulse-1, and finally Γ /2 main X-ray pulse (P1) appears to be the sharpest pulse in this 1r is the width of the rightwing of the pulse-1.A similar expres- comparison. sion and equivalentdefinitionshold for the second asymmetric Lorentzian. Thiscompositemodelprovidedanexcellentfit,χ2 =199.47 3.6.X-raypulseprofilevariability for 171 degrees of freedom, with best-fit parameters and their WeinvestigatedthestabilityoftheX-raypulse-shapeasafunc- 1σerrorestimateslisted in Table 3 (see also the best-fitmodel tion of time. Therefore, we fitted the measured X-ray pulse- superposedonthedatainFig.2).Adescriptionintermsoftwo phase distribution (PHA range [4,27] ∼ 2-11 keV) for 15 time asymmetric Lorentzians plus background provides a 7.7σ im- periods in terms of a constant background and the shapes of provementoverthetwo-Gaussians-plus-backgroundmodeland pulse-1 and pulse-2, separately. The times of these data points a 6σ improvement over the two-Lorentzians-plus-background correspondtothoseoftheX-raytimingmodelsshowninTable model,takingintoaccountthetwo(=9-7)additionaldegreesof 2 (entries 0 to 11; 12 points), augmented with two measure- freedominbothcases.Therefore,ouranalysisdoesnotsupport ments during the last RXTE monitoring period, MJD 53726- theassumptionmadebyLivingstoneetal.(2009)ofanunderly- 53813,coveringentry #12 and finally, with a data point cover- ingdoubleGaussianshapefortheX-rayprofile.WefindtheX- ingthepost-glitch-1periodMJD52544-52607,yieldingeventu- raypulsestobesharper,especiallyforpulse-2.Forbothpulses ally15independentmeasurements.ThesplittingofperiodMJD therisingwingsaresignificantlysteeperthanthetrailingwings. The X-ray peak separation φ2 − φ1 derived in this work 2 Thefirsterrorspecifiesthestatisticalerrorandthesecondthesys- is 0.488(2), significantly smaller than the value estimated by tematicalerror(seeAbdoetal.,2009a,formoredetails) 6 L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 Fig.4. The ratio of the integrated flux in pulse-1 over pulse-2 asafunctionoftimeforthePCAenergyband∼2-11keV.One datapointattimeintervalMJD53736-53749(i.e.the“anomaly” period) deviates ∼ 3.5σ (single trial) from the time-averaged valueof2.2±0.1. Fig.5.ThepulseprofileofPSRJ0205+6449(60bins)inthe∼2- 11keVbandduringthe“anomaly”interval(MJD53736-53749; 53726-53813intotheintervalsMJD53736-53749(2RXTEsub- 2 RXTE sub-observations). Strongly enhanced P2 emission is observations)and MJD 53760-53813(5 sub-observations)was detected.Thebestfitmodel,composedofabackgroundplustwo drivenbythedetectionofa“timinganomaly”intheformerin- asymmetricLorentziansofthesameshapesasshowninFig.2, tervalduringthephase-coherenttiminganalysis.Atalaterstage issuperposedasdashedline. ofthisworkitturnedoutthatthis“anomaly”wascausedbyin- correctRXTE clock correctionsjust after the introductionof a leapsecondon2006,January1. timeshavesubsequentlybeenbarycenteredandfoldeduponthe The profile fitting procedureyields the flux ratio R = I /I 1 2 ephemerideslisted inTable 2takingintoaccountproperradio- (seeforthedefinitionTable3)foreachtimeinterval.Theresults, phase referencing. Thus, we obtained time-averaged HEXTE R(t) vs. t, are shown in Fig. 4 with superposed as long-dashed pulsephasedistributionsin256spectralchannels(15-250keV) line the P1/P2-flux ratio from the time-averaged high-statistics for the combinationofobservationslisted in Table 1. The total profile(R=2.2±0.1;seeTable3)alongwithits1-σerrorregion dead-timecorrectedexposuretime collected forclusters A and (shadedarea). One data point, correspondingto the “anomaly” B amounts, 400.6 ks and 426.3 ks, respectively. Pulse profiles period, deviates ∼ 3.5σ from the time-averaged value. Taking forthebands3,14.7-28and33.1-132.6keV,areshowninpanels into account the number of trials (15) its significance reduces canddofFig.6.Fittingamodel,comprisingthe(asymmetric) to 2.7σ, still indicating an interesting hint for variability. The Lorentziansshapesof Pulses 1 and 2 and a flat background,to pulse-phase distribution during the “anomaly” period is shown thesephasedistributionsyieldeddetectionsignificancesof7.8σ inFig.5.Inthisfigurewealsosuperposedasdottedlinethebest and3.8σforthe14.7-28and33.1-132.6keVbands,respectively fitmodelinwhichtheshapes(twoasymmetricLorentzians)for (2.9σfortheband,64.1-132.6keV).Therefore,pulsedemission eachofthetwopulsesareidenticaltothosederivedforthetime- of PSRJ0205+6449 has been detected up to ∼ 132 keV, well averagedprofileinFig.2anddetailedinTable3. abovethesensitivitybandofthePCA. Compared to the other measurements, where P2 is some- timeshardlyvisible,weseestronglyenhancedP2emissiondur- ing this period. From spectral analysis of the P1 and P2 emis- 3.8.XMM-Newtontiminganalysis sions during the “anomaly” period it turns out that the P1 flux TheXMM EPIC-PN data were screenedforsolar(softproton) iscomparabletoitstime-averagedvaluecontrarytotheP2flux, flares by creating a light curve for events with energies in ex- whichshowsaclearenhancementbyalmostafactor2. cess of 10 keV. From the resulting count rate distribution, as- Thisleadstotheconclusionthatweseeaninterestingindi- sumed to be Gaussian in absence of any flares, we could iden- cation for flux variability for P2 without a change of its pulse tify periods during which the rate exceeds its mean value plus shape.Finally,wecheckedtheJBOradioprofileassembleddur- three times the width of the distribution. These periods are ig- ingthe“anomaly”periodforpossiblemorphologychangese.g. nored in subsequent analysis. Next, we selected events from a theappearanceofanewfeature,butwefoundnone. sufficiently large circular region centered on PSRJ0205+6449 witharadiusof60′′toensurethatallpulsarcountsareincluded 3.7.RXTEHEXTEtiminganalysis and barycentered the event times of these events. Because the XMM-Newtonobservationshavebeenperformedbeforethe80 HEXTEoperatedinitsdefaultrockingmodeduringtheobserva- ksRXTEobservation(60130)novalidephemeriswasavailable tionslistedinTable1,allowingthecollectionofreal-timeback- fortheXMMdataperiod.Therefore,weperformedalimitedpe- grounddatafromtwoindependentpositions±1◦.5toeitherside riodicitysearch aroundthe predictedfrequencyvalue based on of the on-source position. For the timing analysis we selected only the on-source data from both clusters. Good-time inter- 3 Weignoredspectraldatafromtheband28-33.1keVbecauseofthe valshavebeendeterminedusingsimilarscreeningfiltersasused presenceofahuge background lineoriginatingfromtheactivationof in the case of the PCA. The selected on-source HEXTE event Iodine. L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 7 ous to our X-ray pulse profile variability study shown in Sect. 3.6)tothemeasuredpulse-phasedistribution,N(Φ),invarious user-selectedenergybands: N(Φ)=b+c ×T (Φ)+c ×T (Φ) (4) 1 1 2 2 Inthisformulabrepresentsthe(constant)unpulsed/DClevel,c 1 andc thescalesofthetwoasymmetricLorentziantemplates,T 2 1 andT (bothnormalizedto1),respectively(seeSect.3.5).This 2 model provided statistically good fits to all PCA and HEXTE profiles. Good fits could be derived for the EPIC-PN profiles after convolvingthe Lorentziantemplateswith the poorertime resolution. Foreachinstrumentthepulsedexcesscountsinthevarious energy bands for the first (P1) and the second pulse (P2) and the sum (=total pulsed, TP) can be translated to photon fluxes providedthatproperenergyresponsematricesareused. In the case of the PCA we constructed time-averaged en- ergyresponsematricesforeachPCU separatelytakingintoac- count the different (screened) exposure times of the involved PCU’s during the time period of interest. For this purpose we usedtheftoolsversion6.4programspcarspandaddrmf.Tocon- vert PHA channels to measured energy values, E , for PCU PHA combined/stackedproductswealsogeneratedaweightedPCU- combinedenergyresponsematrix. ForHEXTEweemployedclusterAandBenergy-response matrices separately, taking into account the different screened on-sourceexposuretimesandthereductioninefficiencyincase ofoff-axisobservations.Theon-sourceexposuretimesforboth clustershavebeencorrectedforconsiderabledead-timeeffects. Finally,wecreatedenergyresponsefiles(effectivearea(arf) andenergyredistributionmatrix(rmf))fortheEPICPNoperat- inginsmallwindowmodetakingintoaccountthereductionin effective area given the 15′′ source extraction radius used. For thispurposewe employedthe XMM SAS(vrs.7.1.0)software Fig.6. XMM-Newton EPIC-PN pulse profiles (30 bins) of PSRJ0205+6449 for the 0.5-3 and 3-12 keV energy bands toolsarfgen1.73.3andrmfgen1.55.1. (panels a,b). Panels c and d show the RXTE HEXTE profiles We assume simple power-law models in the form, Fγ = (60 bins) for the 14.7-28 and 33.1-132.8 keV energy bands. K · (Eγ/E0)−Γ with Γ the photon-index and K the normaliza- Significant pulsed emission is detected up to ∼ 130 keV and tion in ph/cm2s keV at the pivot energy E , for the underlying 0 downto∼0.95keV. photon spectra of P1, P2 and its sum TP. We fixed the absorb- ing interstellar Hydrogen column N to 3.4 × 1021 cm−2 (see H the“PL-modelforneutronstar”entryinTable2ofSlaneetal., entry-1 of Table 2. We found a ∼ 10σ signal right at the pre- 2004).Thesemodelshavebeenfitted ina forwardfoldingpro- dictedfrequencyusingonlyeventswithenergiesbetween4and cedureusingtheappropriateresponsematricestoobtaintheop- 12keV.Thefoldedpulseprofilewascompatiblewiththehigh- timumspectralparameters,KandΓ,andthereconstructedspec- statisticsPCAprofile(seeFig.2)takingintoaccounttheblurring tral flux points from the observed pulsed count rates. We veri- ofthepulseprofileduetothelimitedtimeresolutionof5.67ms fied that the measured high-statistics RXTE-PCA spectrum, as (=0.086inphaseunits).Forsubsequentstudieswe usedanex- well as the EPIC-PN spectrum and the total spectrum includ- tractionradiusof15′′ becausethesignal-to-noiseratiopeaksat ingalsoHEXTEdataarefullyconsistentwiththisnon-thermal thatvalue.Wecreatedpulse-phasedistributions,combiningboth simplepower-lawmodel.ThereisinthepulsedX-rayspectrum adjacent XMM observations, in 30 bins (i.e. oversampledby a above∼0.5keVnoindicationforathermalblack-bodycompo- factor of ∼ 3) for 585 energy intervals over the 0.3 to 12 keV nent, a conclusionalso reached for the total emission from the range,each0.02keVwide.The(radio-aligned)EPIC-PNpulse compact source by Slaneetal. (2002) and Slaneetal. (2004), profilesforthe0.5-3and3-12keVbandsareshowninthepanels whoreportedapower-lawspectralindexof∼1.7.Wenotethat aandbofFig.6andhavesignificancesof5.8and9.7σ(adopt- Kargaltsev&Pavlov (2008) in their Table I erroneously mark ingZ2-test;Buccherietal.,1983),respectively.Pulsedemission 7 thispulsartohaveablack-bodycomponent.Furthermore,inthis hasbeendetecteddownto∼0.95keV. work we only show the unabsorbed spectra i.e. the interstellar absorptionhasbeenmodeledout. 4. PulsedspectrafromRXTEPCA/HEXTEand InTable4thebestfitvaluesarelistedofthespectralparam- etersforthetotalpulsedemissionTP, andemissionsof P1 and XMM-Newtondata:Totalpulsed,P1andP2 P2 using PCA data only, and for TP using the EPIC PN, PCA From the pulse-phasedistributions N(Φ,E), derivedfor RXTE andHEXTEcombinationovertheextendedenergyband0.56to PCA,HEXTEandXMM-NewtonEPICPN,weextractedpulsed 267.5keV.Allspectrahaveaconsistentshapewithindex∼1.03. excesscountsbyfittingthefollowingmodelfunction(analogu- Wenoteforcomparison,thatforenergies>100MeVtheFermi 8 L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 Table 4. Best fit values for the photon flux spectra of the total tematicerrors)reportedforhigh-energyγ-raysabove100MeV pulsedemission(TP),thefirst(P1)andsecond(P2)pulseemis- (Abdoetal.,2009a). sions of PSRJ0205+6449assuming a power-law model of the – We find an indication for a flux increase by a factor ∼ 2, formF = K·(E /E )−Γ. ∼ 3.5σ above the time-averagedvalue, for the second, weaker γ γ 0 pulseduringatwo-weektimeinterval,whileitspulseshapedid not change. During this time window, the morphology of the Parameter TP P1 P2 JBO radioprofile of PSRJ0205+6449did notchange,notably, therewasnoindicationforasecondpulse. PCA (2.5-54.0keV) –Wedetectedthepulsedsignalsignificantlyforthefirsttime K(10−6ph/cm2skeV) 2.93±0.05 2.03±0.03 0.90±0.04 downto∼0.95keVwithXMM-NewtonEPICPN,andupto∼ Γ 1.06±0.03 1.04±0.03 1.10±0.08 130keVbyanalysingRXTEHEXTEdata.Themorphologiesof E (keV) 8.34 8.34 8.34 theEPICPN(takingintoaccountthecoarsertimingresolution) 0 F (10−13erg/cm2s) 10.67±0.16 7.43±0.11 3.24±0.13 andtheHEXTEprofilesareconsistentwiththatmeasuredwith 2−30 thePCA. XMM/PCA/HEXTE (0.56-267.5keV) – The spectrum of the pulsed X-ray emission is of non- K(10−6ph/cm2skeV) 2.85±0.04 thermalorigin,exhibitingapower-lawshapewithphotonindex Γ 1.03±0.02 Γ=1.06± 0.03,fittingjustthehigh-statisticsPCA data,andΓ E (keV) 8.49 0 = 1.03± 0.02,fitting overthe broaderenergybandfrom∼ 0.5 F (10−12erg/cm2s) 5.48±0.28 0.5−150 to ∼ 270keVbyincludingalso the EPIC-PN andHEXTEflux values.Thereisnoindicationforablack-bodycomponentinthe softX-rayspectrumabove0.5keV. –Wedonotseeaspectraldifferencebetweenthespectraof thetwoX-raypulsesinthePCA data.Bothspectralphotonin- LATmeasuresforTPamuchsofterspectrumwithspectralindex dicesarefullyconsistentwiththetimeaveragedvaluefortheto- 2.1withcutoffat∼3GeV(Abdoetal.,2009a),andthatP2ex- talpulsedemission(seeTable4).Notethattherelativestrengths hibitsathigh-energyγ-raysasignificantlyharderspectrumthan of P1 and P2 in the X-ray and high-energyγ-ray windows re- P1. verse(seeFig.3);thespectrumofP2hastohardensignificantly The photon spectrum (νF representation) over the 0.56 - with respectto thatof P1 betweena few hundredkeV and100 ν 267.5 keV energy band of the total pulsed emission combin- MeV. ingXMM-NewtonEPIC-PN,RXTE-PCAandHEXTEdata,as derived in this work, is shown in Fig. 7 in a much wider en- 6. DiscussionandConclusions ergy frame (0.1 keV-10 GeV) by including the best fit and its uncertaintyrange measured by Fermi for energies> 100 MeV In the introduction we noted that PSRJ0205+6449is now one (Abdoetal., 2009a). The luminosity of the pulsed emission of of onlythree young(< 10,000year old)pulsarswhichare de- PSRJ0205+6449 apparently reaches a maximum in the MeV tected in the classical X-ray band and at hard X-raysabove20 band.Forcomparisonare also shownthe totalpulsedemission keV, as well as at high-energy (> 100 MeV) γ-rays, the oth- spectraoftheCrab,PSRB1509-58aswellasthe“middle-aged” ersbeingtheCrabpulsarandPSRB1509-58.Fig.7showsthat Velapulsar. thesethreeyoungpulsarsreachtheirmaximumluminositiesbe- low 100 MeV, while the “middle-aged”Vela pulsar (character- istic age 11.4 kyr) reaches its maximum at GeV energies (for 5. Summary thelatestresultsontheVelapulsarforenergiesabove100MeV, seetheFermiresultsbyAbdoetal.,2009b).Thelatterspectrum In thispaperwe derivedforthe youngrotation-poweredpulsar is characteristicfor olderpulsarsreportedto be detected above PSRJ0205+6449thetimingandspectralcharacteristicsoverthe 100MeV(e.g.seethefirstFermiLargeAreaTelescopecatalog broadX-raybandfrom∼0.5to∼270keV,usingdatafromthe ofγ-raypulsarsbyAbdoetal.,2009c) RXTE PCA and HEXTE, and XMM-NewtonEPIC PN. These Comparing in more detail the high-energy spectra of the X-raycharacteristicscomplementourknowledgeaboutthispul- youngpulsars in Figure 7, we notice large differences. For en- sarintheradiodomainandthehigh-energyγ-raybandforener- ergiesbelow 10 keV the flux values of PSRJ0205+6449are ∼ giesabove100MeV. 4 orders of magnitude below those of the Crab, while around – Our phase-coherent ephemerides (see Table 2) are con- 10 MeV the difference is reduced to about a factor of 10. sistent with those derivedby Livingstoneetal. (2009) with the The X-ray spectrum of PSRJ0205+6449 is, thus, very much maindifferencethatweusedsolelyX-raydata(fromtheRXTE harder than that of the Crab. The total high-energy spectrum PCA) and fitted at most three timing parameters (ν,ν˙,ν¨) over of PSRJ0205+6449 appears to reach its maximum luminos- morelimitedtimeintervals. ity at MeV energies, like is the case for PSR B1509-58/PSR –TheX-raypulseprofileconsistsoftwosharppulseswhich J1513-5908.Thespectralbreakforthelatterspectrumbetween canbedescribedwith 2asymmetricLorentzians,eachwiththe 10 MeV and 100 MeV (see flux values in Figure 7) measured rising wing steeper than the trailing wing, and full-width-half- with COMPTEL and EGRET aboard the Compton Gamma- maximum 1.41 ± 0.05 ms and 2.35 ± 0.22 ms, respectively. RayObservatorybyKuiperetal.(1999)hasbeenconfirmedby These profiles are sharper than reported by Livingstoneetal. Pellizzonietal.(2009).TheseauthorsreportforPSRB1509-58 (2009). asofteningofthephotonindexΓfrom∼1.7to∼2.5goingfrom – The first X-ray pulse lags the single radio pulse in phase tenstohundredsofMeV(butdonotprovidepulsed-fluxvalues). by 0.089 ± 0.001 (statistical error); the phase separation be- Interestingly, the X-ray spectrum above 2 keV of tween the two X-ray pulses amounts0.488 ± 0.002,fully con- PSRJ0205+6449resembles that of the slightly older Vela pul- sistent with the value 0.49 ± 0.01 ± 0.01 (statistical and sys- sar (similar spectral index), but the L /L ratio for the pulsed X γ L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 9 Table5.Characteristicsofthethreeyoung(< 10kyr)X-rayandγ-rayemittingpulsarsincomparisonwiththemiddle-agedVela pulsar(PSRB0833-045).TheluminositiesofthepulsedemissionLarecalculatedas L = 4πd2Ff withvaluesforthedistanced Ω takenfromthetable,andthebeamingfraction f setto1.F representthepulsedflux. Ω Source d P τ L Fa Fb La ηa Lb ηb sd x γ x x γ γ [kpc] [ms] [ky] [erg/s] [erg/cm2s] [erg/cm2s] [erg/s] [erg/s] B0531+21 2.0 29.7 1.3 4.4E+38 (5.68±0.05)E-09 (1.3±0.1)E-09 (2.72±0.02)E+36 6.2E-3 (6.1±0.3)E+35 1.4E-3 B1509-58 5.8 151.5 1.6 1.7E+37 (1.46±0.02)E-10 (5.1±2.5)E-11c (5.88±0.08)E+35 3.5E-2 (2.1±1.0)E+35c 1.2E-2c J0205+6449 3.2 65.7 5.4 2.7E+37 (0.36±0.02)E-11 (6.7±0.5)E-11 (4.45±0.20)E+33 1.7E-4 (8.2±0.6)E+34 3.0E-3 B0833-045 0.287 89.3 11.4 6.9E+36 (0.88±0.29)E-11 (7.9±0.3)E-09 (8.67±2.85)E+31 1.3E-5 (7.8±0.3)E+34 1.1E-2 aLuminosities,fluxesandefficiencieslabeledwithxareevaluatedforthe2-100keVband. bLuminosities,fluxesandefficiencieslabeledwithγareevaluatedforthe0.1-10GeVband. cTheγ-rayenergyfluxofPSRB1509-58inthe0.1-10GeVbandhasbeenderivedfromthe(total)photonfluxvaluesforthe100-300and 300-1000MeVbandsasgiveninKuiperetal.(1999)assumingapower-lawshapewithphotonindexof2.5,andshouldbeconsideredas anupper-limittothepulsedfluxofPSRB1509-58inthe0.1-10GeVband. componentdiffersbyafactor∼50;higherforPSRJ0205+6449 (see Table 5, which is introduced below). The L /L ratio of X γ PSRJ0205+6449is in between those of Vela and PSR B1509- 58, namely, the L /L ratio for PSRJ0205+6449 is a factor X γ ∼50 smaller than that for PSR B1509-58. Note, that for the quoted flux ratios it is assumed that the beaming fractions in theX-rayandγ-raybandsarethesame.Weknow,however,that these are in many cases different. More importantly, in the X- rayspectrabelowe.g.2keVtherearenoindicationsforblack- body components in the spectra of Crab, PSR B1509-58 and PSRJ0205+6449. In contrast, the (pulsed) Vela spectrum ex- hibitsbelow2keVablack-bodypeak(notshowninFig.7;see e.g.Pavlovetal.,2001),whichischaracteristicformiddle-aged andolderrotationpoweredpulsars.Therefore,thespectralprop- erties of PSRJ0205+6449 confirm that we are dealing with a youngpulsar,andsuggestarealagebetweenthoseofVelaand PSR B1509-58,favouringits characteristic age of 5.4 kyr over thatofSN1181(828yr). Table5listsforthefourpulsarsdiscussedaboveinorderof characteristic age (τ = P/2P˙) the spin-down luminosities L sd and fluxes F and luminosities L in the X-ray 2-100 keV and gamma-ray0.1-10GeVbands,aswellasthecorrespondingeffi- Fig.7. Broad-band total-pulsed photon spectrum of cienciestoconvertspin-downenergyintoemissionintheseen- PSRJ0205+6449 (aqua colored) compared with the pulsed ergy bands. The luminosities are calculated as L = 4πd2Ff , spectra of PSR B0531+21 (Crab; red), PSR B0833-45 (Vela; Ω with the valuesforthe distance d takenfromthe table, andthe dark blue) and PSR B1509-58 (purple). The (hard) X-ray valuefor f ,whichisthebeamingfraction,setto1.Atfirstsight spectrum (0.56-267.5 keV) of PSRJ0205+6449 has been Ω onecouldarguethatthereisanevidentanticorrelationbetween derived in this work, and the best-fit power-law model (index characteristic age and X-ray luminosity, independentfrom dif- ∼ 1.03) has been superposed. The > 100 MeV spectrum of ferencesinthebeamingfractions,butthisbecomeslessobvious PSRJ0205+6449 is the model fit to the Fermi spectrum from whenweconsidertheX-rayefficienciesinsteadofluminosities. Abdoetal. (2009a). Also for Crab and Vela the best-model Inthegamma-raybandthereisnotanyindicationforacorrela- fits to the recently published Fermi spectra for energies > 100 tion. The listed gamma-rayefficiencies differ less than a factor MeVareshown(seeAbdoetal.,2009b,d,respectively).Forall ∼10, ignoring differences in beaming fraction, while the latter spectra the interstellar absorption has been modeled out (only differencescanbesubstantial. effectivebelow∼5keV). There are also large differences in the morphologiesof the pulse profiles of the three young pulsars. Comparing the pulse profiles detected for Crab and PSRJ0205+6449at X-ray ener- emissionbetweenthepulseshasbeendetectedintheFermipro- giesandhigh-energyγ-rays,thentherearealsosomesimulari- fileatthe5σlevel. ties:bothexhibittwopulseswithpeaksseparated∼0.5and∼0.4 Furthermore,the Crab main radiopulse is in generalphase inpulsephase,respectively,andtheX-rayandγ-raypulsesare coincidencewith thebroadX-ray/γ-raypulse.Thepeakofthis alignedinphase.However,thepulsesintheCrabprofilearesig- mainradiopulselagsthatofthefirstX-ray/γ-raypulseinphase nificantlybroaderthanthoseofPSRJ0205+6449 andemission by only ∼ 0.008 or 280 µs; see for consistent estimates from isalsodetectedbetweenthetwoCrabpulses.Thelatterisnotthe INTEGRAL,RXTEandEGRETKuiperetal.(2003),andfrom casefortheX-rayprofileofPSRJ0205+6449,but,interestingly, Fermi Abdoetal. (2009d). On the other hand, the Crab radio 10 L.Kuiperetal.:HardX-raycharacteristicsoftheenergeticpulsarPSRJ0205+6449in3C58 precursorpreceedsthefirst,mainX-ray/γ-raypulseinphaseby drawstrongconclusions,butitseemswarantedtostartsearching ∼0.09, or 3.2 ms, being located around the start of the leading for such variabilityin the emission fromthe increasingsample wingofthehigh-energypulse.InthecaseofPSRJ0205+6449, of rotation-powered pulsars emitting non-thermal high-energy thesingleradiopulseisalsopreceedingthefirstnarrowX-ray/γ- emission. raypulse in phaseby ∼ 0.083or 5.4ms, andis fullyseparated Inconclusion,weaccuratelymeasuredfortheyoungrotation in phase, the radio pulse being located just before the onset poweredpulsar PSRJ0205+6449the morphologyof the X-ray of the first high-energy pulse (see Fig. 3). This strongly sug- lightcurve and the spectrum overthe broadX-rayband ∼0.5 - gests that the analogue of the radio pulse of PSRJ0205+6449 ∼270 keV. The PSRJ0205+6449X-ray spectrum above 2 keV is the weak radio precursor of the Crab. Also, that there are has the same power-law shape (Γ ∼ 1.03) as the middle-aged no counterparts in the radio profile of PSRJ0205+6449 to the Vela pulsar,but the overallhigh-energyspectralshape, consid- twohigh-energypulsesofPSRJ0205+6449,contrarytothesit- ering also the Fermi γ-ray spectrum,resemblesmore the spec- uation for the Crab. This means that for this young pulsar ex- trumexpectedforayoungerpulsar,i.e.noevidenceforathermal hibiting sharp non-thermal high-energy pulses, we do not see black-bodycomponent,andmaximumluminosityatMeVener- evidence for radio emission originating from the same site in giesandnotatGeVenergies. themagnetosphere,e.g.inslotgaps(two-polecausticemission, Themorphologyofthedouble-pulsePSRJ0205+6449light Dyks&Rudak,2003)oroutergaps(outer-magnetosphereemis- curvecanbeexplainedinaconventionalouter-gapscenariofora sion,seeChengetal.,1986;Romani,1996;Hirotani,2006,from rotatingdipoleinvacuumassuminglow-altituderadioemission, a region close to the light cylinder). Possibly, this radio com- similartothecaseoftheCrabpulsarwhentakingtheCrabpre- ponent of PSRJ0205+6449 is just too weak to be detectable, cursorradiopulseasthecounterpartofthesingleradiopulsede- but might be revealed in a search for giant radio pulses in the tectedforPSRJ0205+6449.Thiscanbe verifiedinthe “Atlas” phaseintervalsofthehigh-energypulses.Namely,foranumber of model γ-ray light curves simulated by Wattersetal. (2009). ofyoungandmilli-secondradiopulsarsphasecoincidencesbe- However, see also the alternative Atlas by Bai&Spitkovsky tween the high-energypulses and giant radio pulses have been (2009a), who point out an inconsistency in the model calcu- reported.Two examples:the Crab forwhich the distributionof lations by Wattersetal. (2009) and in earlier reports, affecting giantradiopulsesisremarkablysimilartotheaverageemission particularly profile shapes calculated for the two-pole caustic profileoftheradiomainandinterpulse(Popovetal.,2006)and model. milli-second pulsar PSR B1937+21 for which Cusumanoetal. Furthermore, it should be realized that the sharp pulses in (2003)reportedthephasecoincidenceoftwosharphigh-energy the high-energy profile of this young pulsar PSRJ0205+6449 X-ray pulses with two phase intervals exhibiting giant radio do not have radio counterparts like we see for the Crab, and pulses, which trail the two normal radio pulses. The latter ex- we encourage a search for giant radio pulses in the phase in- amplemightberevealedforPSRJ0205+6449. tervals of these high-energy pulses. Recent model calculations The high-energypulse profile of PSR B1509-58 differs to- byBai&Spitkovsky(2009b)usingaforce-freefieldinsteadof tally from those of Crab and PSRJ0205+6449.At hardX-rays the vacuumdipolefield show thatalternativescenariossuch as and soft γ-rays below 10 MeV the profile consists of a single their annular-gap model are required to produce over a wide structured broad pulse, which can be explained as being com- range of parameterstwo sharp high-energypulses as exhibited posed of two Gaussian pulse profiles separated ∼0.14 in phase byPSRJ0205+6449.Moreextensive3-Dsimulationsincluding with different spectra (Kuiperetal., 1999; Cusumanoetal., thephysicsoftheproductionprocessesarerequiredformorede- 2001),thesecondbroaderpulsepeakingat∼0.35,withthemain tailedcomparisonswiththespectralandtimingcharacteristics. radio pulse at phase 0. Above 10 MeV, the COMPTEL pro- Acknowledgements. ThisresearchhasmadeuseofdataobtainedfromtheHigh file between 10 and 30 MeV and the EGRET profile between EnergyAstrophysicsScienceArchiveResearchCenter(HEASARC),provided 30 and 100 MeV suggest the presence of an additional high- by NASA’s Goddard Space Flight Center. We have extensively used NASA’s energy pulse at phase ∼0.85 (Kuiperetal., 1999). The latter Astrophysics Data System (ADS). JOU acknowledges the IAU Travel Grant seemsnowtobeconfirmedintheAGILEprofileofPSRB1509- that enabled him to visit SRON; and the support and hospitality of SRON 58Pellizzonietal.(2009),whichshowsthemainpulseforener- NetherlandsInsituteforSpaceResearch. giesabove100MeVatphase∼0.35,andasecondpossiblepulse at ∼0.85. It is now ambiguous what phase difference between References high-energypulsesofPSRB1509-58(∼0.14or∼0.5)shouldbe consideredforcomparisonwiththemorphologyofpulseprofiles Abdo,A.A,etal.2009a,ApJ,699,L102 Abdo,A.A.etal.2009b,ApJ,696,1084 oftheotheryoungpulsars. Abdo,A.A.etal.2009c,astro-ph,arXiv:0910.1608 Theaboveciteddifferentmodelsaimingtoexplainthepro- Abdo,A.A.etal.2010,ApJ,708,1254 duction of non-thermal high-energy emission in the magneto- Aliu,E.,Anderhub,H.,Antonelli,L.A.etal.(TheMAGICCollaboration)2008, spheres of rotation-powered pulsars do not address flux vari- Science,322,1221 Bai,X.-N.&Spitkovsky,A.,2009a,submittedtoApJ,arXiv:0910.5740 ability. Furthermore, there was also no observational evidence Bai,X.-N.&Spitkovsky,A.,2009b,submittedtoApJ,arXiv:0910.5741 for such variability till the magnetar-like outburst of the high- Bietenholz,M.F.2006,ApJ,645,1180 field pulsar PSR J1846-0258 (Gavriiletal., 2008), which de- Buccheri,R.,Bennett,K.,Bignami,G.,etal.1983,A&A,128,245 cayedwithan1/e-timeconstantof∼55days.Itwasshownby Camilo,F.,Stairs,I.H.,Lorimer,D.R.,etal.2002,ApJ,571,L41 Kuiper&Hermsen (2009) that the radiative outburst was trig- Cheng,K.S.,Ho,C.,&Ruderman,M.A.,1986,ApJ,300,522 Cusumano,G.,Mineo,T.,Massaro,E.,etal.,2001,A&A,375,379 gered by a major spin-up glitch, and that, most interestingly, Cusumano,G.,Hermsen,W.,Kramer,M.,etal.,2003,A&A,410,L9 the shape of the X-ray pulse profile did not change during the Dyks,J.,&Rudak,B.,2003,ApJ,598,1201 outburst. For the flux increase by a factor of ∼ 2 of the non- Fesen,R.,Rudie,G.,Hurford,A.,&Soto,A.2008,ApJS,174,379 thermal emission from the second pulse of PSRJ0205+6449 Gavriil,F.P.,Gonzales,M.E.,Gotthelf,E.V.,etal.,2008,Science,319,1802 Hirotani,K.,2006,ApJ,652,1475 during a two-week time period, we did not see a variation in Jahoda,K.,Swank,J.H.,Giles,A.B.,etal.1996,Proc.SPIE,2808,59 pulseshape,either.However,therewasnoindicationforglitch- Kargaltsev,O.&Pavlov,G.G.2008,AIPConf.Proc.983,171 ing activity.Thesignificance of the variabilityis insufficientto Kuiper,L.,Hermsen,W.,Krijger,J.M.etal.1999,A&A,351,119

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.