Astronomy&Astrophysicsmanuscriptno.kasparova07 (cid:13)c ESO2008 February5,2008 Hard X-ray Spectra and Positions of Solar Flares observed by RHESSI: photospheric albedo, directivity and electron spectra JanaKasˇparova´1,EduardP.Kontar2,andJohnC.Brown2 1 Astronomical Institute, Academy of Sciences of the Czech Republic, Fricˇova 298, 251 65 Ondˇrejov, Czech Republic e-mail: [email protected] 7 2 DepartmentofPhysicsandAstronomy,UniversityofGlasgow,G128QQ,UK 0 e-mail:eduard,[email protected] 0 Received*,2006;accepted*,2006 2 n ABSTRACT a J Aims.WeinvestigatethesignatureofthephotosphericalbedocontributioninsolarflarehardX-rayspectra,theeffectoflowenergy 0 cutoffsinelectronspectra,andthedirectivityofhardX-rayemission. 3 Methods.UsingRamatyHighEnergySolarSpectroscopicImager(RHESSI)flaredataweperformastatisticalanalysisofspatially integratedspectraandpositionsofsolarflares. 1 Results.Wedemonstrateclearcentre-to-limbvariationofphotonspectralindicesinthe15-20keVenergyrangeandaweakerdepen- v dencyinthe20-50keVrangewhichisconsistentwithphotosphericalbedoasthecause.Theresultsalsosuggestthatlow-energycut- 1 offssometimesinferredinmeanelectronspectraareanartefactofalbedo.Wealsoderivetheanisotropy(ratioofdownward/observer 7 directedphotons)ofhardX-rayemissioninthe15-20keVrangeforvariousheliocentricangles. 8 Keywords.Sun:flares,Sun:X-rays,Sun:particleemission,Scattering,Techniques:spectroscopic 1 0 7 0 1. Introduction found, contrary to above mentioned works based on hard X- / ray occurrence, significant centre-to-limb spectral variation in h The successful operation of the Ramaty High Energy Solar p the 10- 100keV rangeandattributedit to anisotropyof X-ray Spectroscopic Imager RHESSI (Linetal. 2002) since February - emission. Then, Vestrandetal. (1987) demonstrated that Solar o 2002 has providedus with a substantial database of solar hard MaximumMission(SMM)GRSdatainthe25-200keVrange r X-rayflaresthatcanbeusedfordetailedspectroscopicanalysis. andabove300keV,showsignificantspectralhardeningofevents t s Thehighaccuracyofthespectroscopicdata,incombinationwith nearthelimb.SimilarresultswerereportedbyBogovalovetal. a thepositionsofsolarflares,allowsustodeterminethecentre-to- (1985) from Venera13 data in the 50 - 100 keV range andby : v limbspectralvariationsinvariousenergyranges. McTiernan&Petrosian(1991)inthe0.3-1MeVrange. i Variation of hard X-ray flare occurrence and spectral in- X dex with solar position of the sources have been of great in- It has been known for a while that X-ray photons can be r terestforseveraldecades.As suggestede.g. byElwert&Haug effectively backscattered by photosphere atoms and electrons a (1971); Brown (1972); Petrosian (1973); Leach&Petrosian (Tomblin1972;Bai&Ramaty1978).Thus,atenergiesnotdom- (1983), centre-to-limb variations could provide essential infor- inatedbyabsorptionthebackscatteredalbedofluxmustbeseen mation on directivity of X-ray emission and hence acceler- virtuallyin everysolarflarespectrum,the degreeofthealbedo ated electrons. Most earlier analyses concentrated on centre- contribution depending on the directivity of the primary X-ray to-limb variation of flare occurrence. Ohki (1969) and Pinte´r flux (Kontaretal. 2006). The solar flare photonsbackscattered (1969) reported significant centre-to-limb variation at energies by the solar photosphere can contribute significantly (the re- above 10 keV although they did not correct the hard X-ray flectedfluxis50-90%oftheprimaryinthe30-50keVrange flareoccurrenceforHαflarelongitudedistribution.Subsequent forisotropicsources)tothetotalobservedphotonspectrum.For works(Drake1971;Catalano&vanAllen1973;Phillips1973; thesimplecaseofapower-law-likeprimarysolarflarespectrum Datloweetal.1974;Kane1974)coveringvariousenergyranges (withoutalbedo),thephotonsreflectedbythephotospherepro- from1-10keVclaimednocentre-to-limbvariationofhardX- duceabroad‘hump’component.Photosphericalbedomakesthe rayoccurrence.Datloweetal.(1977)concludedthatanisotropy observedspectrum flatter below ∼ 35 keV and slightly steeper in the 10 - 100 keV range was so low that it ruled out the above,incomparisonwiththeprimaryspectrum.Theamountof downward-beamed thick target model due to lack of limb backscatteredphotonsisgivenbythescatteringcross-section brightening predicted e.g. by (Brown 1972). Theoretical mod- and is roughly dependent on the projected area of the albedo els (Petrosian 1973; Langer&Petrosian 1977; Bai&Ramaty patch, which makes the photospheric albedo stronger for so- 1978) predicted that at hard X-ray energies, above 15 keV, lar centre events. Photospheric albedo has been treated using centre-to-limb variations of spectral properties should be sen- MonteCarlosimulationstocalculatetheobservedspectrumfor sitive to electron directivity. Although such studies were not anassumedprimarypower-lawspectrum(Bai&Ramaty1978). verycommon,Datloweetal.(1974)andRoy&Datlowe(1975) Kontaretal. (2006) developeda new approachto photospheric albedobasedontheGreen’sfunctionsofMagdziarz&Zdziarski Sendoffprintrequeststo:JanaKasˇparova´ (1995) that produces the correction for any solar flare X-ray 2 JanaKasˇparova´etal.:Photosphericalbedoanddirectivity However,applyingthemodel-independentalbedocorrection method of Kontaretal. (2006) to the August 20, 2002 flare, Kasˇparova´etal. (2005) have clearly demonstrated that such a high value of low-energy cutoff is removed by albedo correc- tion for an isotropic source.Equally,the albedocorrectedpho- ton spectra do not require a gap in the inverted electron spec- trum(Kasˇparova´etal.2005;Kontar&Brown2006a).Usingthe presentsurvey,wecanpotentiallyfindmanyflareswithsuchlow spectralindicesthattheymighthaveclearlow-energycutoffap- pearingasagapbetweenthermalandnon-thermaldistributions. The spectrum-independent photospheric albedo correction method is introducedin Section 2. Data selection and analysis are discussed in Section 3. In Section 4, our surveyshows that the centre-to-limb variations of spectral indices are consistent with photospheric albedo. Moreover, we find limits on the X- rayspectraldirectivityforvariousheliosphericangles.Section5 confirmsthepredictionthatthelow-energycutoffinF¯(E)isre- movedwhenthespectraarealbedocorrectedforalleventswith lowspectralindexfoundinthesurvey.Lastly,Section6reviews theresultsobtainedandtheirconsequencesfortheangulardis- tributionofX-rayemittingelectrons. 2. Photosphericalbedoandspectralindex Thealbedocontributionproducessubstantialchangeto the ob- served spectrum in the range between 10 and 100 keV. It be- comes negligible for energies below 10 keV due to the photo- electricabsorptionbyatomswhilephotonsabove100keVpen- etratedeepintohighdensitylayersofthesolaratmosphereand Fig.1. Photon spectrum I(ǫ) (upper panel) and spectrum in- donotescapeback.Therefore,thereflectivityofthephotosphere dexγ(ǫ)(lowerpanel)foramodelledprimaryphotonspectrum hasabroadmaximuminthe30-50keVrange.Thetotalspec- Ip(ǫ) ∼ ǫ−3 foranisotropicsourcelocatedatµ = 0.8.Primary trumintheobserverdirectionµ(µ=cosθ,whereθisthehelio- I (ǫ) and γ (ǫ) are plotted with a dashed line and the observed p p centricangle)canbeexpressedas I (ǫ)andγ (ǫ)withasolidline.Horizontallinesindicatespec- o o tral indices γ , γ , and γ obtained by single power-law fits in I (ǫ,µ)=I (ǫ,µ)+I (ǫ,µ) 0 1 2 o p A the15-20,20-35,and35-50keVenergyranges,respectively. I (ǫ,µ)=G(ǫ,ǫ′,µ)I (ǫ′,µ)α(µ), (1) A p where I (ǫ,µ) is the primary photon spectrum of the flare, spectrumandcanbeusedbothforforwardandinversespectrum p I (ǫ,µ)isthespectrumreflectedintotheobserverdirection,Gis calculations.Theinfluenceofalbedowasnottakenintoaccount A theGreen’smatrix(Kontaretal.2006)accountingforCompton forspectralcentre-to-limbvariationinearlieranalysesanditwas backscattering and photoelectric absorption, and α(µ) is a pa- wrongly dismissed (Datloweetal. 1974) as being unimportant rameterofemissionanisotropy,roughlytheratioofthefluxto- in the 20 - 50 keV range. However, Bai&Ramaty (1978) and wardtheSunI (ǫ,µ < 0) = α(µ)I (ǫ,µ)andthefluxtowardthe Vestrandetal.(1987)pointedoutthattheDatlowe’sresultsare p p observer I (ǫ,µ). We simplify the problemhere by considering consistent with an albedo contribution to the observed photon p onlyα(µ)independentofǫ (cfAlexander&Brown2006). spectrum. Using the Bai&Ramaty (1978) results, the impor- Thephotonspectrum,I (ǫ,µ),backscatteredtowardtheob- tanceofalbedoinelectronspectruminferencewasfirstincluded A serverstronglydependsonthreeparameters:thespectralindex by Johns&Lin (1992) and analysed by Alexander&Brown of the primary spectrum, the location of the flare on the solar (2002). disc, andthedirectivityofX-rayemission(anisotropyparame- On the other hand, it has been long believed that the mean electron flux distribution F¯(E) defined by (Brown ter α(µ)). The contribution of the albedo to the observed spec- trum is greater for flatter primaryspectra (low γ) and for solar 1971; Brownetal. 2003) can exhibit low-energy cutoff – e.g. discflares(largeµ).Further,themoreX-raysarebeameddown- Nittaetal. (1990) showed that photon spectra of the impulsive wardsα(µ)>1,thelargeristhecontributionofthealbedotothe componentflattentowardlowenergiesandsuggestedthatalow- observedspectrum. energycutoffofthe electronspectrumaround50keV couldbe Theenergydependentspectralindex responsible.Fa´rn´ıketal.(1997),usingYohkohdata,observeda flarewithaflatspectrumbelow33keV(photonspectralindexas ǫ dI(ǫ) dln(I(ǫ)) low as 1.98).Morerecently,Kasˇparova´etal. (2005) reporteda γ(ǫ)≡− =− (2) I(ǫ) dǫ dln(ǫ) clearlow-energycutoffinferredfromtheobservedphotonspec- tra of the August 20, 2002 flare, neglecting albedo. Using a for the primary spectrum γ (ǫ) substantially differs from that p regularised inversion technique, Kontar&Brown (2006a) re- (γ (ǫ))ofthetotalI (ǫ,µ)towardtheobserver(includingalbedo) o o portthreeflareswithasimilarfeature–anabsenceofelectrons –see Figure1forthecaseofγ = 3.Intherange10-25keV p around20- 30 keV betweenpossiblythermaland non-thermal thephotonspectrumbecomesflatter,γ <γ ,whiletheobserved o p component. spectralindexishigheratenergiesabove35keV,γ >γ . o p JanaKasˇparova´etal.:Photosphericalbedoanddirectivity 3 Using a single power-law fit in various energy ranges (Figure 1), we can estimate the local spectral index assuming itisconstantineachenergyrange.(Notethatgenerallyfora photon spectrum I(ǫ) ∼ ǫ−c(ǫ), c(ǫ) = γ(ǫ) only for c = const (Conwayetal.2003).) Hence, as a result of heliocentric angle dependent albedo, thespectralshapeofphotonspectrashouldvaryasafunctionof theirpositiononthesolardisc,i.e.acentre-to-limbvariationof spectralindicesisexpectedandthedegreeofthespectralindex variationwithheliocentricanglecouldusefullyprovideuswith the directivity of hard X-ray sources, i.e. the anisotropycoeffi- cientα(µ). 3. Dataselectionandanalysis In our analysis we used the whole RHESSI flare list (from February 12, 2002 until April 18, 2006) to search for any evi- denceofcentre-to-limbvariationinphotonspectra. RHESSI has 9 detectors on board with FWHM resolution about ∼ 1 keV. For X-ray spectroscopy analysis we use the six front segments of the detectors ignoring detector 2, 5 and 7 due to either low resolution or the segmentation problem (Smithetal.2002). To handle such a large set of data, we set up an automatic procedure which selects suitable events and retrieves the flare Fig.2. Example of the flare spectrum for July 30, 2002 flare, photonspectra.Tobechosenforfurtheranalysistheeventshad 17:37:36–17:37:48UT.Theupperpanelcorrespondstothereg- tomeetthefollowingmajorcriteria: ularisedphotonspectrum,thelowerpanelshowsthecountspec- – Thespectraoftheeventsshouldbeobservedabove25keV. trum. Observed spectrum is plotted with thin crosses, back- Thus,wehaveselectedflaresflaggedasobservedabovethat groundsubtractedflare spectrumwith thick crosses. The back- energyfromthe RHESSI flare list andhavedeterminedthe groundis displayedasa histogram.Horizontalsizes of crosses timeofpeakfluxinthe25-50keVrange.Theeventsflagged andwidthofthehistogrambinscorrespondtowidthsofenergy asparticleeventswereignored.Thisledusto∼1500events. bands,while verticalsizesrepresent1σstatistical uncertainties – Countratesexceedingabout2×103countspersecondperde- oftheflux. tectorcausepulsepile-upinthedetectorsthatrequirestrou- blesomecorrection(Smithetal.2002).Toavoidthepile-up issues,wehavethrownawayeventswithcorrectedlivetime counter < 90%. We disregarded also weak events (back- Theregularisedinversionofacountfluxspectrumgaveusanon- groundsubtractedcountratelowerthan5countspersecond parametricphotonspectrumanditsuncertainties. inthe25-50keVrange)andeventspossiblyaffectedbyX- rayabsorptioninEarth’satmosphere(peaktimecloserthan 3.1.Photonspectraofselectedevents 60 s to RHESSI eclipse time). This reduces our survey to ∼800events. As discussed in Section 2, addition of the albedo contribution – We have used CLEANed images in the range 10 - 20 and changes the shape of the primary spectra. To describe its ef- 20-50keVtocheckfortruesolareventsandtofindtheirpo- fects,theregularisedphotonspectrahavebeenfittedwithasin- sitions.Finally,thetotalnumberoftheselectedflareevents glepower-lawin threeseparateenergyranges15-20,20- 35, dropsto703. and 35 - 50 keV thus obtaining correspondingspectral indices γ ,γ ,andγ ,respectively. RHESSI isan instrumentwith highbackgroundthatmakes 0 1 2 background subtraction an important step in the data analysis Notethatspectrainthe15-20keVenergyrangemaybe (Schwartzetal.2002).Thecodesearchesfortwotimeintervals, affectedbythermalcomponent(s)whichcouldbecompara- one before and one after the flare peak, where count rates are ble to or dominate the non-thermal emission and masking less than 0.01 of the peak count rate in 15 - 50 keV range and the albedo contribution. Considering a widely used isother- 0.1above50keV.Thebackgroundtimeintervalsaredetermined malapproximation,valueofγ0insuchflareswouldbehigher for several energy bands separately and the background at the in comparison with events without strong thermal compo- peak is estimated by a linear fit (Schwartzetal. 2002). See the nent. flareexampleinFigure2. Since the countflux decreases with energywhile the back- Thecountspectra[countssec−1 keV−1 cm−2]wereaccumu- ground level does not (Figure 2), naturally not all 703 events latedin12stimeintervalswithaquasi-logarithmicenergybin- have significant flux above background at all three energy ning from 10 to 100 keV to improve the signal-to-noise ratio ranges. For γ and γ analysis we accepted only those events 0 1 (SNR) at higher energies (Figure 2). After background sub- withcountfluxsignal-to-noiseratio(SNR)>3atallthreeen- traction, theresultingpeakcountflux(onespectrumperflare) ergyranges.Furthermore,theGreen’smatricesandthereforethe and the detector response matrix (DRM) for the instrument at correctedDRMarenon-diagonalatγ energies,thephotonflux 2 thistimeintervalwereusedasaninputfortheregularisedinver- at this energyrangedependingon the signalat higherenergies sion routine (Scullionetal. inpreparation; Kontaretal. 2004). andmakingγ unreliableforflareswithlowSNRabove50keV. 2 4 JanaKasˇparova´etal.:Photosphericalbedoanddirectivity Thus, forγ analysisadditionalconditionSNR > 3 in the 50 - 2 66keVenergyrangewasrequired. Hence, the aboveconditionsselect only eventswith signif- icant flux above the roughly estimated backgroundin energies higherthan theenergyrangewherethe spectralindicesarede- termined.Thisreducedoursetto398eventsforγ andγ analy- 0 1 sisandto123eventsforγ analysis–seeFigure3.Notethatthe 2 eventsarenotuniformlydistributedoverµ. Themainreasonis thatactiveregionsandflaresarelocatedinarathersmallrange oflatitudes.Thusfewereventsperunitµare observedclose to the limb than at the disc centre. This also puts a constraint on thewidthofµbinsforanisotropyanalysis–seeSection4.1and Table2. We also apply an isotropic (α(µ) = 1) albedo correction using Equation (1) and the approach discussed in Kontaretal. (2006)todeterminespectralindicesofalbedocorrectedspectra. The relative occurrenceof spectral indices of observed spectra andofthosecorrectedforisotropicalbedoisshowninFigure3. Notetheexcessofeventswithγ <2whichisremovedafterthe 0 isotropicalbedocorrection.Theexcessofγ >7correspondsto 0 eventswithverysteepspectra. 4. Centre-to-limbvariation The resulting spectral indices γ , γ , and γ of the flares are 0 1 2 shown Figure 4. There is no clear upper bound on γ val- ues (primary and observed spectral index can be arbitrar- ily large) andthe albedo contributionto the observed spec- trum becomes negligible for steep primary spectrum - see Section 2. On the contrary, the primary spectral index for bremsstrahlungemissioncannotbelowerthan1.Therefore, fordisplaypurposesonlyvaluesupto3(3.5forγ )areshown; 2 eventswithlargerspectralindicesfillthewholerangeofµ. Thespectralindexγ showssignificantcentre-to-limbvaria- 0 tion(seeFigure4).Lowervaluesofγ tendtobelocatedcloser 0 to disc centre,formingan edge in the γ (µ) distribution.There 0 arenoflareswithγ < 2locatedatµ < 0.5(θ > 60o),allsuch 0 beingatµ≥0.5.Wedonotseesimilarpatternathigherenergies (spectralindicesγ andγ )andthe Figure4 showsnocorrela- 1 2 tionwiththepositionofflaresintheseenergyranges. As one can see from our albedo model with α , α(ǫ) (Figure 1), the strongest centre-to-limbvariation due to photo- sphericalbedoisexpectedatlowerenergies,i.e.forγ ,andal- 0 mostnodependencyisexpectedonflarepositionathigherener- gies.Thecorrespondingtheoreticalmodelforsinglepower-law primaryspectraisshownbyvariouslinesinFigure4. Figure 4 also shows that anisotropyplays a significantrole incentre-to-limbspectralvariationonlyatγ energies.Although 0 wehavenoinformationabouttheprimaryspectraanddistribu- tion of primary spectral indices of analysed events, it is clear fromthefigurethatthealbedomodelpredictions,assumingsin- gle power-law primary spectra, are consistent with the general variationsoftheobservedspectralindiceswithµ.Inordertoput further constraint on the model, particularly at energies above 20 keV, spectral indices need to be determinedwith uncertain- ties smaller than the predicted centre-to-limb variation – see Fig.3. Top: Positions of selected flares. Crosses indicate 398 Figure4. flares used for the centre-to-limb analysis of γ and γ , small Following previous results (Vestrandetal. 1987; 0 1 circlescorrespondto 123flaresforthe γ analysis(seetextfor Datloweetal. 1974, 1977), and to assess the change of 2 details).Largecirclesindicateregionsofµ = 0.2,0.4,0.6,and spectralindices with µ, we divide the sample into two subsets; µ<0.5,andµ≥0.5andforeachintervalwecalculatethemean 0.8. Middle and bottom: Relative occurrence of γ0 (solid), γ1 (dashed),and γ (dotted)from observedspectra and those cor- values of γ , γ , and γ of observed and isotropic albedo cor- 2 0 1 2 rectedforisotropicalbedo,respectively. rectedphotonspectra.WethenapplytheKolmogorov-Smirnov (K-S) test (Pressetal. 1992) to calculate the probability that JanaKasˇparova´etal.:Photosphericalbedoanddirectivity 5 the distributions of spectral indices at µ < 0.5 and µ ≥ 0.5 are drawn from the same parent distribution. The mean values and the probabilities(see Table 1) show the trend expected for isotropic albedo. The mean γ¯ value of γ increases after the 0 0 albedo correction is applied as one would expect. The mean spectral indices γ¯, γ¯ with and without albedo correction do 1 2 not differ significantly – i.e. are within the uncertainties of the mean values. The K-S probabilities show a similar trend, the distributions with the albedo component removed show larger probabilities of being drawn from the same dataset. However, theprobabilityvaluesforobservedindicesaretoolargetoreject the null hypothesis, partly because the albedo contribution is smearedovertoobroadarangeofµ,∆µ=0.5. Better results can be achievedby taking two more extreme distinct sets of flares; one close to the limb with µ < 0.1 (θ > 84◦),wherethealbedoisnegligible,anddisccentreeventswith µ ≥ 0.9 (θ ≤ 25◦) where the albedo should be strongest. The valueofK-Sprobabilityfortheγ distributionsdropsto 0.9%, 0 allowingustorejectthenullhypothesisat0.05and0.01sig- nificantlevelsandconcludethattheγ distributionsare‘sig- 0 nificantlydifferent’. After applying the isotropic albedo correction, the γ dis- 0 tributions can no longer be considered as being different – see Table1andtheγ distributionsinFigure5.However,thesame 0 conclusion cannot be reached for γ and γ – see Table 1. It 1 2 shouldbepointedoutthatthenumberofeventsforγ analysis 2 for those µ bins is rather low – see Table 1 – so a larger set of eventswillbeneededtoreachanyconclusion. 4.1.DirectivityofX-rayemission Theintensityofphotonsbackscatteredfromthephotosphereis determinedbythedownwarddirectedprimaryphotonspectrum. The largerthe downwarddirectivityof the source,the stronger isthealbedocontributiontotheobservedspectrum(seethepre- dictions for α = 1,2,4 and the model of a single power-law primaryspectruminFigure4).We describethedownwardver- sustowardobserverfluxratiobytheanisotropyparameterα(µ), seeEquation1(whichwetaketobeindependentofenergy). InordertoassesstherangeofprimaryX-raydirectivitycon- sistent with the data, we have assumed limb spectra, I (ǫ,µ < o 0.1), to be true primary spectra toward the observer, I (ǫ,µ) ≡ p I (ǫ,µ<0.1),andaddedtothesethealbedocomponentforvar- o ious α(µ). Using Equation (1), the modelled spectra I in the M observerdirectionµtaketheform I (ǫ,µ)=(cid:2)1+α(µ)G(ǫ,ǫ′,µ)(cid:3)I (ǫ′,µ<0.1). (3) M o Thisapproachdoesnotdecreasethesignal-to-noiseratioof photon flux as in the case of albedo subtraction which reduces the photon flux but keeps the corresponding uncertainty at the samelevel(uncertaintyonthealbedocontributionissettozero.). The K-S test was then applied to distributions of spectral Fig.4. Spectralindicesγ , γ , andγ versuscosine µ of helio- 0 1 2 indices of the modelled I and observed I spectra in several centricangleθ.Verticalerrorbarsindicateaverageuncertainties M o rangesofµ. The widthofthe µbinswaschosento containap- on the values as determined from single power-law fits. Lines proximatelythesamenumberofevents.Duetothenon-uniform show the predicted dependency for single power-law primary distributionofeventswithµ,seeFigure3,thewidthoftheµbins spectra with γ = 2.0,2.5and for α(µ) = 1,2,4(solid, dashed, p increasestowardsthelimb(smallerµ).Weregardthedirectivity anddottedlinesrespectively),seealsoSection4.1.Highvalues α(µ) as consistent with the data if the K-S probabilityis larger of spectral indices are not shown to emphasize their lower than0.05or0.01significancelevel,i.e.whenthenullhypothesis bounds. Crosses represent flares for which F¯(E) was deter- that two distributions of observed and modelled spectral index mined fromthe totalspectra. Flares with a dip in F¯(E) are for given α(µ) are drawn from the same distribution cannot be denotedasstars(seeSection5). rejected.Intheγ energyrangewefindtherangesofallowable 0 directivitytobe0.5<α(µ)<4and0.2<α(µ)<5,respectively 6 JanaKasˇparova´etal.:Photosphericalbedoanddirectivity albedocorr. µ γ¯ (N) γ¯ (N) γ¯ (N) 0 1 2 none µ<0.5 4.6±0.1(157) 4.2±0.1(157) 3.61±0.09(45) none µ≥0.5 4.3±0.1(241) 4.07±0.06(241) 3.88±0.09(78) K-Sprob. 0.2 0.2 0.2 α(µ)=1 µ<0.5 4.8±0.1(157) 4.3±0.1(157) 3.5±0.1(45) α(µ)=1 µ≥0.5 4.8±0.1(241) 4.12±0.06(241) 3.6±0.1(78) K-Sprob. 1.0 0.2 0.5 none µ<0.1 4.7±0.2(49) 4.4±0.2(49) 3.5±0.2(13) none µ>0.9 4.2±0.2(81) 4.1±0.1(81) 3.9±0.1(29) K-Sprob. 0.009 0.4 0.4 α(µ)=1 µ<0.1 4.8±0.2(49) 4.4±0.2(49) 3.4±0.2(13) α(µ)=1 µ>0.9 4.8±0.2(81) 4.2±0.1(81) 3.6±0.1(29) K-Sprob. 0.4 0.4 0.8 Table1.Meanspectralindicesγ¯,γ¯ andγ¯ forallselectedeventsatselectedrangesofµ.K-Sprob.correspondstoprobabilitythat 0 1 2 apairofdistributionscomesfromthesameparentdistribution.Thenumberofeventsineachµbinisindicatedinbrackets. Fig.5. Distributions of γ for ‘centre’ (µ > 0.9, dashed line) and ‘limb’(µ < 0.1, solid line) flares. The left plot correspondsto 0 observedγ ,therightplotisforspectracorrectedforisotropicalbedo,i.e.withdirectivityα=1. 0 – see Table 2 and Figure 6. The results are also consistent the hypothesis that α(µ) does not vary significantly with µ for the 0.05and0.01significancelevels. In the energy range of γ no conclusions about anisotropy 1 canbedrawnbecausehighvaluesoftheK-Sprobabilitiesforthe distributionofγ do notpermitusto distinguishthem,though, 1 theresultsarenotinconsistentwiththealbedomodelwhichdoes notpredictsignificantvariationofγ withµandαinthisenergy 1 range–seeFigure4. Finally, the small number of suitable events at high energy prevented us from analysing γ . On the basis of the albedo 2 model,seeFigure4,wedonotexpecttofindasignificantinflu- enceoftheanisotropyintheγ energyrange,butthisprediction 2 isnottestedbythepresenteddata. 5. Low-energycutoffin F¯(E)demandedbythedata Fig.6. Directivity at different µ determined from the distribu- tions of γ at the limb and a given range of µ. Cross-hatched 0 Thesurveypresentedinthethispaperisalsosuitableforanalysis areasshowthedirectivityforwhichthehypothesisthattheob- offlareswherethehardX-rayspectrummayindicatesuspicious serveddistributionatagivenrangeofµ,andthedistributionI featuresinF¯(E). atthelimbwithaddedalbedocontribution,aredrawnfromthMe Usingaregularisedinversiontechnique(Kontaretal.2004; same parent distribution cannot be rejected at the 0.05 signif- Scullionetal.inpreparation),wedeterminedthemeanelectron icance level; crossed areas correspond to the 0.01 significance fluxdistributionF¯(E)fromcountspectraofseveraleventswhich level.SeealsoTable2.Thedashedlineshowstheisotropiccase, had either flat photon spectra or a large change in local spec- i.e.α(µ)=1. tral index with energy.Such spectral behaviour is expected for JanaKasˇparova´etal.:Photosphericalbedoanddirectivity 7 K-Sprob.forα(µ) µ N 10 5 4 2 1 0.5 0.25 0.2 0.1−0.4 80 3×10−3 0.03 0.07 0.2 0.07 0.02 8×10−3 6×10−3 0.4−0.7 88 9×10−6 4×10−4 1×10−3 0.02 0.4 0.1 0.03 0.02 0.7−0.9 100 7×10−6 2×10−4 4×10−4 0.02 0.3 0.04 7×10−3 7×10−3 0.9−1.0 81 2×10−3 9×10−3 0.04 0.2 0.5 0.06 0.01 4×10−3 Table2.K-Sprob.forseveralvaluesofdirectivitiesatdifferentrangesofµ(Nisthenumberofeventsinthatrange).Thevalues correspondtoprobabilitythattheobserveddistributionofγ atagivenrangeofµandthemodelleddistributionI ofγ determined 0 M 0 from the eventsat the limb (µ < 0.1) with added albedo contributionfor the given µ and directivity α are drawn from the same parentdistribution. photon spectra either affected by the albedo – see Figure 1 – (whichappliesfora primarypower-lawphotonspectrum).The or producedby F¯(E) with an absence of electrons in same en- inferredanisotropyratio,0.2 < α(µ) < 5,(Figure6)inthe15- ergyrange.We foundseveralnew cases which exhibita statis- 20 keV range, and especially its large spread, allows no clear tically significant dip in F¯(E) – e.g. Figure 7 (left). The posi- conclusion about the anisotropy. Moreover, at these energies tionsandspectralindicesofeventswithsuchadipareindicated anisotropyofelectronbeamemissioncanbemaskedbyisotropic inFigure4.However,whentheisotropicalbedocorrectionwas thermalemission, thus making the determinationof anisotropy applied (i.e. α(µ) = 1), all such dips in F¯(E) were removed - fromspatiallyintegratedspectradifficult. e.g.Figure7(right).OursetofeventsincludestheSep17,2002 The value of anisotropy ratio obtained is consistent with (Kontaretal. 2006) and Apr 25, 2002 flares (Kontar&Brown the predictions of hard X-ray emission of downward colli- 2006a) for which a statistically significantdip in F¯(E) at ener- matedbeamandcannotrejectevenquitestronglybeamedcases. giesbelow30keVhasbeenreported,neglectingalbedo. For example, the detailed model of Leach&Petrosian (1983, The albedo contribution in events close to the limb should Fig.4) predicts α <∼ 3 at 22 keV for disc centre events. On benegligible.Therefore,featuresinF¯(E)foreventstherecould the other hand, the determined anisotropy α(µ) is also con- notbeascribedtothedistortionofthephotonspectrabyalbedo. sistent with isotropic X-ray emission and lends support to F¯(E) was determined for a number of events close to the limb quite isotropic electron distribution when puttogether with the which showed flattening of the photon spectra. None of these Kontar&Brown(2006b)analysisofdetailedspectraofindivid- events close to the solar limb (µ < 0.5) was found to have a ualevents.Theanisotropyparameterα(µ)wasalsofoundnotto statisticallysignificantdipinF¯(E),butrevealedonlysomeflat- needsignificantdependenceonµ–seeFigure6–indicatingthat teningofF¯(E).AlleventswithdeterminedF¯(E)areindicated the beam X-rayemission neednotstronglyvaryin the upward inFigure4. hemisphere(differentvaluesofµprobedifferentviewingangles of upward emission). We stress that with α(µ) we measure the anisotropyofdownwarddirectedphotonsratherthanupwarddi- 6. Discussionandconclusions rectedphotonsatdifferentanglesaswasdoneinmostprevious studiesofsolarflaredirectivities. ThehighenergyresolutionofRHESSIdownto∼ 1keVanda largedatabasehaveallowedus to studystatistically 398events Thedataanalysedinthepaper,aswellaspreviouspublished notaffectedby pulse pile-upbuthavingsufficientcountrate to results (Nittaetal. 1990; Fa´rn´ıketal. 1997; Kasˇparova´etal. measure local spectral indices in three different energy bands. 2005; Kontar&Brown 2006a) describe events with observed Combiningthesewithflarepositionmeasurementsweanalysed photon spectra which are flat at low energies. Such behaviour centre-to-limb variation of hard X-ray flare spectra. The data suggests a low-energycutoff in the mean electron spectrum as clearly show a distinct variation of low energyspectral indices derived from such observed photon spectra. We show that all with heliocentric angle. This dependencyis strong for spectral such flares were located close to the solar disc centre (µ > 0.5 index in the range 15 - 20 keV but very weak for higher ener- (θ<60◦)),wherethealbedocomponentmustbeproperlytaken gies. The mean values of low energy index γ are decreasing intoaccount.Nittaetal.(1990)reportedthattwoflaresobserved 0 for larger µ (smaller heliocentric angles). We have compared with SMM on 15 October 1981 at 4:43 UT and on 29 March centre-to-limbspectralvariationswiththepredictionsofalbedo 1980at9:18UThadγ∼2andγ=1.9,respectively,bothflares induced spectral index change (Kontaretal. 2006) for primary being located not far from disc centre (µ ≥ 0.6). Fa´rn´ıketal. spectra assumed to be power-law and found the behaviour of (1997)observedafewflareswithveryflatobservedhardX-ray meanspectralindexesγ¯ ,γ¯ ,andγ¯ (energyranges15-20keV, photonspectrafromthesameactiveregionnearthedisccentre 0 1 2 20-35keV,and35-50keV)tobeconsistentwiththespectral (µ=1.0).WenotethatZhang&Huang(2003,2004)studiedthe changeduetoComptonbackscatteringalbedo.Forγ andγ at combinedeffectofthelow-energycutoffandalbedocontribution 1 2 higherenergiesthere is verylittle constraintinformationin the toexplainveryflatphotonspectraobservedbyYohkoh/HXTand data. concludedthatbotheffectcouldcauseflatteningofphotonspec- Theintensityofbackscatteredphotonsisdeterminedbyin- tra.However,toaccountforalbedotheyusedintegralreflectivity tensityofdownwardbeamedphotons,sowecanestimatethera- (angle-averaged)whichisnotapplicabletocentre-to-limbstud- tio of downward/observerdirected photons. Although our data ies. set contains large number of events of photon spectra with Wehaveappliedanisotropicalbedocorrectiontotheflares high energy resolution, it can be only used to test the hard X- inoursurveyandhavefoundthismakestheallegedlow-energy ray anisotropy below 20 keV. Even for an anisotropic primary cutoff (or a ‘dip’) in electron spectra statistically insignificant. source, the albedo induced spectral change and centre-to-limb Thissurveystronglysuggeststhehypothesisthatthelow-energy variationaresignificantonlybelow20keV–seeFigure1and4 cutoffinferredinthemeanelectronfluxdistributionisanartefact 8 JanaKasˇparova´etal.:Photosphericalbedoanddirectivity Fig.7.F¯(E)correspondingtothetotal(left)andprimary(right)flarephotonspectrumforaneventclosetothedisccentre(19Jul 2004).Verticalerrorbarscorrespondto3σuncertainties,horizontallinesshowtheFWHMofenergyresolutiondeterminedfrom regularisedinversion. of the photosphericalbedo.Hence, we can confidentlyconfirm Kontar,E.P.,MacKinnon,A.L.,Schwartz,R.A.,&Brown,J.C.2006,A&A, our earlier conclusion(Kontaretal. 2006) that low energycut- 446,1157 off is a feature connectedwith albedoand nota physicalprop- Kontar,E.P.,Piana,M.,Massone,A.M.,Emslie,A.G.,&Brown,J.C.2004, Sol.Phys.,225,293 erty of the mean electron distribution. This result can substan- Langer,S.H.&Petrosian,V.1977,ApJ,215,666 tially change the estimated flux and total number of electrons Leach,J.&Petrosian,V.1983,ApJ,269,715 accelerated in a flare. Therefore, we strongly suggest that the Lin,R.P.,Dennis,B.R.,Hurford,G.J.,etal.2002,Sol.Phys.,210,3 albedocomponentmustbeconsideredindeterminationofelec- Magdziarz,P.&Zdziarski,A.A.1995,MNRAS,273,837 McTiernan,J.M.&Petrosian,V.1991,ApJ,379,381 tronbeampropertiesfromspatiallyintegratedsolar hardX-ray Nitta,N.,Dennis,B.R.,&Kiplinger,A.L.1990,ApJ,353,313 spectra. Ohki,K.-I.1969,Sol.Phys.,7,260 Petrosian,V.1973,ApJ,186,291 Phillips,K.J.H.1973,TheObservatory,93,17 Acknowledgements. WearegratefultoH.S.HudsonandC.M.Johns-Krull Pinte´r,Sˇ.1969,Sol.Phys.,8,142 fortheirvaluablecomments.JKacknowledgesthefinancialsupportofaRoyal Press,W.,Teukolsky,S.,Vetterling,W.,&Flannery,B.1992,Numericalrecepies Society Incoming ShortVisitgrantandaPPARCRAposttovisit University inC:theartofscientificcomputing,2ndedn.(CambridgeUniversityPress) ofGlasgowin2005and2006,andofgrants205/04/0358and205/06/P135of Roy,J.-R.&Datlowe,D.W.1975,Sol.Phys.,40,165 theGrantAgencyoftheCzechRepublic,andofresearchplanAV0Z10030501 Schwartz,R.A.,Csillaghy,A.,Tolbert,A.K.,etal.2002,Sol.Phys.,210,165 oftheAstronomicalInstituteASCR.EPKandJCBacknowledgethefinancial Scullion,E.,Kontar,E.P.,&Kasˇparova´,J.inpreparation supportofaPPARCAdvancedFellowshipandRollingGrantrespectively.This Smith,D.M.,Lin,R.P.,Turin,P.,etal.2002,Sol.Phys.,210,33 workwasalsosupportedbytheVisitingScienceProgramatInternationalSpace Tomblin,F.F.1972,ApJ,171,377 ScienceInstitute,Bern,Switzerland. Vestrand,W.T.,Forrest,D.J.,Chupp,E.L.,Rieger,E.,&Share,G.H.1987, ApJ,322,1010 Zhang,J.&Huang,G.L.2003,ApJ,592,L49 References Zhang,J.&Huang,G.L.2004,Sol.Phys.,219,135 Alexander,R.C.&Brown,J.C.2002,Sol.Phys.,210,407 Alexander,R.C.&Brown,J.C.2006,inpreparation Bai,T.&Ramaty,R.1978,ApJ,219,705 Bogovalov,S.V.,Kotov,Y.D.,Zenchenko,V.M.,etal.1985,SovietAstronomy Letters,11,322 Brown,J.C.1971,Sol.Phys.,18,489 Brown,J.C.1972,Sol.Phys.,26,441 Brown,J.C.,Emslie,A.G.,&Kontar,E.P.2003,ApJL,595,L115 Catalano,C.P.&vanAllen,J.A.1973,ApJ,185,335 Conway,A.J.,Brown,J.C.,Eves,B.A.C.,&Kontar,E.2003,A&A,407,725 Datlowe,D.W.,Elcan,M.J.,&Hudson,H.S.1974,Sol.Phys.,39,155 Datlowe,D.W.,O’Dell,S.L.,Peterson,L.E.,&Elcan,M.J.1977,ApJ,212, 561 Drake,J.F.1971,Sol.Phys.,16,152 Elwert,G.&Haug,E.1971,Sol.Phys.,20,413 Fa´rn´ık,F.,Hudson,H.,&Watanabe,T.1997,A&A,320,620 Johns,C.M.&Lin,R.P.1992,Sol.Phys.,137,121 Kane,S.R.1974,inIAUSymp.57:CoronalDisturbances,ed.G.A.Newkirk, 105 Kasˇparova´, J.,Karlicky´, M., Kontar, E.P.,Schwartz, R. A.,& Dennis, B.R. 2005,Sol.Phys.,232,63 Kontar, E. P. & Brown, J. C. 2006a, Advances in Space Research, 38, 945, http://arxiv.org/astro-ph/0508418 Kontar, E. P. & Brown, J. C. 2006b, ApJL, 653, L149, http://arxiv.org/astro- ph/0611170