ebook img

Handwriting Recognition of Pitman's Shorthand - School of PDF

239 Pages·2009·4.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handwriting Recognition of Pitman's Shorthand - School of

Lexicon Organisation and Contextual Methods for Online Handwritten Pitman’s Shorthand Recognition by Swe Myo Htwe, BSc Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy School of Computer Science and Information Technology December 2006 To my parents and fiancé ii Abstract This research investigates innovations for the computer transcription of handwritten Pitman’s Shorthand as a rapid means of text entry (up to 100 words per minute) into today’s pen-based handheld devices. Two mathematical models are developed in this work. The first model deals with high level phonetic-based translation, while the second model is specifically concerned with low level primitive-based translation. Both models are closely related to the lexicon organization and contextual processing for online handwritten Pitman’s Shorthandrecognition. A number of research issues that arise from interpreting handwritten Pitman’s Shorthandstrokes of digital ink astextare addressed including: (a) a feasibility study into improving a conventional phonetic-based transliteration approach to advance word recognition; (b) an investigation into new Bayesian Networkmodelling of strokes and their relationships in order to solve the problem of geometric variations and vowel ambiguities of handwritten Pitman’s Shorthand; (c) generation of a new machine-readable Pitman’s Shorthand lexicon to facilitate the direct transcription of geometric features of Pitman’s Shorthand into English text; (d) analysis of the impact of statistical language modelling in handwriting phrase recognition; (e) and a discussion of the graphical user interface issues in relation to the development of a commercial prototype from the frame of reference of this research. The research has been carried out in close cooperation with Nanyang Technology University (NTU) in Singapore. The system is currently undergoing a final evaluation in terms of its recognition accuracy,as well as its potential to be introduced as a commercially viable fast text input system. iii Acknowledgements I would like to take this opportunity to express my sincere gratitude to my supervisor Dr. Colin Higgins for his valuable guidance and constant support since the day I had stepped into the School of Computer Science of the University of Nottingham till the day of the successful completion of this research. My sincere gratitude also goes to Professor Graham Leedham for his dedicated guidance and genuine assistance for keeping the close collaboration between the two participating teams of this research. My deepest thanks also go to Ma Yang for her heartfelt contribution and her immediate responses during the critical time of this collaborative research. My sincere thanks also go to Ms. Joyce Cox for her kind and professional help in proof reading the quality of English of the thesis. Also, from the bottom of my heart, I am very grateful to all participants who have helped me in the experiments of this research. Many thanks also go to my colleagues in the LTR Research group for their warm friendship that made me feel at home in our LTR lab. Also, my endless thanks to my uncle, Dr. Kyin Win for supporting me financially and emotionally to make my dream of participating in the doctorate research come true. My heartfelt thanks also go to the International Office and the School of Computer Science of the University of Nottingham for their enormous financial support for the development of this research. Also, my sincere love and thanks to my parents, fiancé, and all my friends in Nottinghamfor supporting me financially, emotionally and spiritually during the difficult days of my long residence in Nottingham. Last but not least, my sincere thanks to all the members of the School of Computer Science of the University of Nottingham for all their help and advice, given to me when I neededit most. Thank you all, Swe Myo Htwe. iv Table of contents ABSTRACT …………………………………………………………………………………………..II ACKNOWLEDGEMENTS…………………………………………………………………………III TABLE OF CONTENTS …………………………………………………………………………...IV LIST OF FIGURES ……………………………………………………………………………… LIST OF TABLES …………………………………………………………………………………. 1 LINGUISTIC POST PROCESSING OF HANDWRITTEN PITMAN’S SHORTHAND..1 CHAPTER 1 INTRODUCTION...................................................................................................2 1.1 BACKGROUND......................................................................................................................3 1.1.1 Collaboration.................................................................................................................3 1.1.2 Motivation......................................................................................................................4 1.1.3 Scope..............................................................................................................................5 1.2 BRIEF OVERVIEW.................................................................................................................7 1.2.1 General Objectives and Contributions...........................................................................7 1.3 SYNOPSIS OF THE DISSERTATION.......................................................................................12 2 BACKGROUND TO THE AUTOMATIC RECOGNITION OF HANDWRITTEN PITMAN’S SHORTHAND...............................................................................................................15 CHAPTER 2 INTRODUCTION.................................................................................................16 2.1 EVALUATION OF EXISTING TEXT INPUT SYSTEMSFOR HANDHELD DEVICES.......................16 2.1.1 On-screen keyboards vs. a handwritten Pitman’s Shorthandrecognizer.....................17 2.1.2 A cursive handwriting recognizer vs. a handwritten Pitman’s Shorthandrecognizer.17 2.1.3 Gesture based text entry systems vs. a handwritten Pitman’s Shorthandrecognizer...18 2.1.4 Speech recognition systems vs. a handwritten Pitman’s Shorthandrecognizer...........19 2.2 PITMAN’S SHORTHAND:A BRIEF OVERVIEW......................................................................20 2.3 AUTOMATIC RECOGNITIONOF HANDWRITTEN PITMAN’S SHORTHAND:AN OVERVIEW......23 2.4 HANDWRITING RECOGNITION ALGORITHMSTO IMPROVE A WORD LEVEL TRANSLITERATION 26 2.4.1 Hidden Markov Models (HMMs).................................................................................27 2.4.2 Neural Networks...........................................................................................................28 2.4.3 Bayesian Networks.......................................................................................................29 2.4.3.1 Conditional independence.................................................................................................30 2.4.3.2 Inference...........................................................................................................................32 2.4.3.3 Learning............................................................................................................................33 2.5 NATURAL LANGUAGE PROCESSING ALGORITHMS FOR HANDWRITTEN PHRASERECOGNITION 35 2.5.1 Statistical language modeling......................................................................................35 2.5.2 Viterbi algorithm..........................................................................................................36 2.6 PEN APPLICATION PROGRAMINTERFACES (APIS)..............................................................37 2.7 SUMMARY..........................................................................................................................38 3 EVALUATION OF PHONETIC BASED TRANSCRIPTION OF VOCALISED HANDWRITTEN PITMAN’SOUTLINES.....................................................................................39 CHAPTER 3 INTRODUCTION.................................................................................................40 3.1 SYSTEM OVERVIEW............................................................................................................41 3.2 TRANSCRIPTION OF VOCALIZED OUTLINES BASED ON A PHONETIC APPROACH...................43 3.3 LEXICON PREPARATION.....................................................................................................44 3.4 NEAREST NEIGHBOURHOOD QUERY (NNQ)......................................................................47 3.5 FEATURE TO PHONEME CONVERSION................................................................................49 3.6 PHONEME ORDERING.........................................................................................................51 3.7 EXPERIMENTAL RESULTS...................................................................................................54 3.7.1 Data Set........................................................................................................................54 3.7.2 Analysis of a phonetic lexicon......................................................................................55 v 3.7.3 Performance evaluation of the word level transcription..............................................57 3.8 DISCUSSION.......................................................................................................................58 4 BAYESIAN NETWORKBASED WORD TRANSCRIPTION...........................................61 CHAPTER 4 INTRODUCTION.................................................................................................62 4.1 SYSTEM OVERVIEW...........................................................................................................63 4.2 SUMMARY OF BAYESIAN NETWORKBASED WORD TRANSCRIPTION...................................64 4.3 LIFE CYCLE OF OUTLINE MODELS.....................................................................................65 4.4 OUTLINE MODEL ARCHITECTURE......................................................................................67 4.4.1 Nodes of an outline model............................................................................................68 4.4.2 Relationships between nodes........................................................................................73 4.5 INFERENCE.........................................................................................................................74 4.5.1 Message Initialization..................................................................................................75 4.5.2 Belief Updating............................................................................................................76 4.6 LEARNING OF OUTLINE MODELS.......................................................................................78 4.6.1 Learning of consonant primitives.................................................................................79 4.6.2 Learning of vowel primitives........................................................................................81 4.7 MODEL SELECTION............................................................................................................82 4.8 EXPERIMENTAL RESULT.....................................................................................................86 4.8.1 Data set........................................................................................................................87 4.8.2 Evaluation of the recognition engine............................................................................89 4.8.3 Evaluation of the word transcription accuracy............................................................93 4.8.4 Analysis of word transcription accuracy using the single consonant data set.............94 4.8.4.1 Analysis of the recognition accuracy vs. the transcription accuracy.................................94 4.8.4.2 Analysis of the accuracy of a result list............................................................................95 4.8.4.3 Analysis of the correction accuracy vs. the classification/vowel errors............................97 4.8.4.4 Analysis of factors influencing the accuracy of a result list..............................................98 4.8.5 Analysis of word transcription accuracy using stroke-combinationdata set...............99 4.8.5.1 Analysis of the recognition accuracy vs. the transcription accuracy.................................99 4.8.5.2 Analysis of the accuracy of a result list..........................................................................100 4.8.5.3 Analysis of the correction accuracy vs. the classification/vowel errors..........................101 4.8.5.4 Analysis of factors influencing the accuracy of a result list............................................102 4.8.6 Analysis of word transcription accuracy for the special-rule data set.......................103 4.8.6.1 Analysis of the recognition accuracy vs. the transcription accuracy...............................103 4.8.6.2 Analysis of the accuracy of the result list.......................................................................104 4.8.6.3 Analysis of the correction accuracy vs. the classification/vowel errors..........................105 4.8.6.4 Analysis of factors influencing the accuracy of a result list............................................106 4.9 DISCUSSION.....................................................................................................................107 5 GENERATION OF A MACHINE-READABLE PITMAN’S SHORTHANDLEXICON 110 CHAPTER 5 INTRODUCTION...............................................................................................111 5.1 OVERVIEW.......................................................................................................................112 5.1.1 Rule-based creation of the electronic Pitman’s Shorthandlexicon............................113 5.2 STRUCTURE OF THE ELECTRONIC PITMAN’S SHORTHANDLEXICON.................................114 5.2.1 Feature set..................................................................................................................114 5.2.2 Key..............................................................................................................................115 5.2.3 Lexicon layout............................................................................................................116 5.3 CONVERSION PROCEDURE................................................................................................118 5.3.1 The importance of algorithms of the presented rules.................................................119 5.3.2 Description of Rules...................................................................................................120 5.4 EXPERIMENTAL RESULTS.................................................................................................127 5.4.1 Data set......................................................................................................................127 5.4.2 Analysis of the accuracy of a machine readable Pitman’s Shorthandlexicon...........128 5.4.3 Analysis of the distribution of homophones in machine-readable Pitman’s Shorthand lexicons 134 5.5 DISCUSSION.....................................................................................................................136 6 PHRASE LEVEL TRANSCRIPTION OF ONLINE HANDWRITTEN PITMAN’S SHORTHANDOUTLINES............................................................................................................137 vi CHAPTER 6 INTRODUCTION...............................................................................................138 6.1 CONTEXTUAL REJECTION STRATEGY...............................................................................139 6.2 HANDWRITTEN PITMAN’S SHORTHANDPHRASE RECOGNITION........................................141 6.3 THE INTEGRATION OF A PITMAN’S SHORTHANDPHRASE RECOGNISER WITH APIS...........143 6.4 EXPERIMENTAL RESULTS.................................................................................................146 6.5 DISCUSSION.....................................................................................................................146 7 GRAPHICAL USER INTERFACES OF THE HANDWRITTEN PITMAN’S SHORTHANDRECOGNITION SYSTEM...................................................................................148 CHAPTER 7 INTRODUCTION...............................................................................................149 7.1 OVERVIEW.......................................................................................................................150 7.2 INK DATA COLLECTION IN THIS RESEARCH.......................................................................151 7.3 GENERAL TRAINING DATA COLLECTION TOOL.................................................................155 7.4 DEVELOPER GRAPHICAL USER INTERFACE......................................................................158 7.5 SHORTHAND DATA ENTRY GRAPHICAL USER INTERFACES................................................159 7.6 EXPERIMENTAL RESULTS.................................................................................................164 7.6.1 Analysis of the general distribution of user fondness for the presented prototypes...166 7.6.2 Analysis of the distribution of user fondness for the presented prototypes in the case of speed writing.............................................................................................................................167 7.6.3 Analysis of the distributionof user fondness for the presented prototypes in the case of a small amount of text entry into handheld devices..................................................................167 7.6.4 The comparison of the most favourite GUI of experienced shorthand writers and that of novice shorthand writers......................................................................................................168 7.7 DISCUSSION.....................................................................................................................169 8 CONCLUSION.......................................................................................................................171 CHAPTER 8 INTRODUCTION...............................................................................................172 8.1 RESEARCH WORK SUMMARY............................................................................................172 8.2 CONTRIBUTION................................................................................................................174 8.3 FUTURE WORK.................................................................................................................175 8.3.1 Improvement upon the overall system........................................................................175 8.3.2 Application of the presented system to the real life problems....................................177 8.4 DISSEMINATION...............................................................................................................177 REFERENCES.................................................................................................................................180 APPENDIX..........................................................................ERROR! BOOKMARK NOT DEFINED. vii FIGURE 1.1: SCOPE OFTHE THESIS...........................................................................................6 FIGURE 1.2: A HIGH LEVEL VIEW OF THE SCOPE OFTHE RECOGNITION ENGINE AND THE TRANSCRIPTION ENGINE...................................................................................9 FIGURE 2.1: ILLUSTRATION OF TEXT ENTRY USING SHARKSYSTEM (A) THE WORD “QUICK” IS WRITTEN USING ATOMIK KEYBOARDLAYOUT (B) THE WORD “QUICK” IS WRITTEN WITHOUT USING A TEMPLATE KEYBOARD...........................19 FIGURE 2.2: BASIC CONSONANTS OF PITMAN’S SHORTHANDAS ILLUSTRATED IN [OJ95].........................................................................................................................................21 FIGURE 2.3: /W/, /Y/, H/ CONSONANTS OF PITMAN’S SHORTHAND.....................................21 FIGURE 2.4: VOWELS, DIPHTHONGS AND DIPHONES OF PITMAN’S SHORTHAND..........21 FIGURE 2.5: ILLUSTRATION OF VOCALIZED OUTLINES........................................................22 FIGURE 2.6: (A) BASIC NOTATIONS OF PITMAN’S SHORTHAND(B) THE WORD “PLAY” IS WRITTEN PHONETICALLY USING BASIC NOTATIONS (C) THE WORD “PLAY” IS WRITTEN USING A SPECIAL RULE OF PITMAN’S SHORTHAND.................................22 FIGURE 2.7: (A) SAMPLES OF SHORT FORMS (B) SAMPLES OF PHRASES...........................23 FIGURE 2.8: A SAMPLEHMM MODEL FOR A SINGLE OUTLINE OF PITMAN’S SHORTHAND. AT EACH STATE I, Β PROBABILITY OF A PARTICULAR STROKE S I I TO BE TYPE T IS OBSERVED...............................................................................................27 I FIGURE 2.9: AN INDIVIDUAL CELL AOF NEURAL NETWORK, MODELLED FOR THE CLASSIFICATION OF HANDWRITTEN PITMAN’S SHORTHANDIN [LQ90]................28 FIGURE 2.10: ILLUSTRATION OF STROKE DEPENDENCIES IN PITMAN’S SHORTHAND (A) VOWEL DEPENDENCY (B) POSITIONAL DEPENDENCY OF THE FIRST CONSONANT PRIMITIVE......................................................................................................30 FIGURE 2.11: C IS CONDITIONALLY INDEPENDENT OF W GIVEN R....................................31 FIGURE 2.12: S IS CONDITIONALLY DEPENDENT ON R GIVEN AN OBSERVED DATA, W...................................................................................................................................31 FIGURE 2.13: ILLUSTRATION OF THE BAYES BALL ALGORITHM [SR98]. IF THERE IS NO FLOW OF A BALL FROM A TO B IN A GRAPH, A AND B ARE CONDITIONALLY INDEPENDENT GIVEN A SET OF OBSERVED OR HIDDEN VARIABLES X AND VICE VERSA.......................................................................................................................................32 FIGURE 3.1: AN ABSTRACT VIEW OF THE WHOLE SYSTEM..............................................42 FIGURE 3.2: DETAILEDVIEW OF A VOCALIZED OUTLINE INTERPRETER......................44 FIGURE 3.3: ILLUSTRATION OF SAMPLE WORDS IN NORMAL ENGLISH AND PITMAN’S SHORTHAND.......................................................................................................45 Consonant neighbourhoods vowel neighbourhood circle neighbourhood close circles at the beginning of an outline F, V T, D unclose circles P,B TH, th in the middle of an outline R S, Z hooks at the end of an outline FIGURE 3.4: SAMPLE NEIGHBOURHOODS PREDEFINED IN THE NEAREST NEIGHBOURHOOD QUERY APPROACH.........................................................................47 FIGURE 3.5: SAMPLE OUTPUT PRODUCED BY THE NEAREST NEIGHBOURHOOD QUERY......................................................................................................................................48 viii FIGURE 3.6: SAMPLE OF PHONEME TRANSLATION OF A DOUBLE LENGTH STROKE ....................................................................................................................................................51 FIGURE 3.7: (A) SAMPLE INPUT OF PHONEME ORDERING PROCESS (B)SAMPLE OUTPUT OF PHONEME ORDERING PROCESS.............................................................52 FIGURE 3.8: SAMPLE ELEMENT OF A PHONETICLEXICON IN A HASH TABLE.............54 FIGURE 3.9: SAMPLE COLLECTED OUTLINES........................................................................55 FIGURE 3.10: THE DISTRIBUTION OF HOMOPHONES IN DIFFERENT SIZED PHONETIC LEXICONS..........................................................................................................55 FIGURE 3.11: ILLUSTRATION OF THE INCIDENCE OF PHONEMEVARIATION DUE TO CONFUSION BETWEEN A CIRCLE AND A HOOK..........................................................59 FIGURE 3.12: ILLUSTRATIONOF THE INCIDENCE OF PHONEME VARIATION DUE TO LENGTH CONFUSION...........................................................................................................60 FIGURE 4.1: AN ABSTRACT VIEW OF THE WHOLE SYSTEM..............................................63 FIGURE4.2: ILLUSTRATION OF BAYESIAN NETWORKBASED WORD TRANSCRIPTION...................................................................................................................64 FIGURE 4.4ILLUSTRATION OF THREE PAIRS OF SIMILAR OUTLINES GROUPED IN AN OUTLINE MODEL....................................................................................................................66 FIGURE 4.5LIFE CYCLE OF OUTLINE MODELS........................................................................67 FIGURE 4.6ILLUSTRATION OF DIFFERENT CHRONOLOGICAL WRITING ORDER OF NORMAL ENGLISH AND PITMAN’S SHORTHAND..........................................................68 FIGURE 4.7 ILLUSTRATION OF UNIQUE NODES OF AN OUTLINE MODEL.........................69 FIGURE 4.8 ILLUSTRATION OF STEP BY STEP CREATION OF OUTLINE MODELS............71 FIGURE 4.9 SAMPLE TRAINING DATA FOR THE WORD “BAKE” PROCESSED BY THE RECOGNITION ENGINE; THE ITALIC TEXT ON THE RIGHT EXPLAINS WHAT EACH LINE OF DATA REPRESENTS...............................................................................................72 FIGURE 4.10 ILLUSTRATION OF CONDITIONAL DEPENDENCY OF VARIABLES IN AN OUTLINE MODEL USING THE BAYES BALL ALGORITHM [SR98]. IF THERE IS NO FLOW OF A BALL FROM A TO B IN A GRAPH, AAND B ARE CONDITIONALLY INDEPENDENT GIVEN A SET OF OBSERVED OR HIDDENVARIABLES X AND VICE VERSA.......................................................................................................................................74 FIGURE 4.11ILLUSTRATION OF OUTLINE MODEL SELECTION STRATEGIES...................86 ix FIGURE 4.12: SAMPLES OF THE STROKE COMBINATION DATA SET..............................87 FIGURE 4.13: TWO DIFFERENT SHORTHAND OUTLINES FOR THE WORD “AFTER”; (A) THE WORD “AFTER” IS WRITTEN ACCORDING TOTHE DIRECT CONVERSION OF PHONEMES INTO PRIMITIVES (B) THE WORD “AFTER”IS WRITTEN ACCORDING TO THE DOUBLE-LENGTH RULE OF PITMAN’S SHORTHAND.........88 FIGURE 4.14: SCREEN SHOT OF OUTLINES WRITTEN BY WRITER A.............................89 FIGURE 4.15: EVALUATION OF THE VOCALISED OUTLINE IDENTIFICATION OF THE RECOGNITION ENGINE........................................................................................................90 FIGURE 4.16: EVALUATION OF THE SEGMENTATION ACCURACY OF THE RECOGNITION ENGINE........................................................................................................92 FIGURE 4.17: EVALUATION OF THE CLASSIFICATION ACCURACY OF THE RECOGNITION ENGINE........................................................................................................93 FIGURE 4.18: ILLUSTRATION OF A RELATIONSHIP BETWEEN RECOGNITION ACCURACY AND TRANSCRIPTION ACCURACY OF THE SINGLE CONSONANT DATA SET.................................................................................................................................95 FIGURE 4.19: COMPARISON OF THE HANDWRITING OF TWO WRITERS.......................96 FIGURE 4.20: ILLUSTRATION OF THE WORD TRANSCRIPTIONACCURACY OF THE SINGLE CONSONANT DATA SET......................................................................................96 FIGURE 4.21: ILLUSTRATION OF THE CORRECTION ACCURACY IN COMPARISON WITH THE CLASSIFICATION OR VOWEL ERRORS OF THE SINGLE CONSONANT DATA SET.................................................................................................................................98 FIGURE 4.22: ILLUSTRATION OF ANAVERAGE DISTRIBUTIONOF FACTORS INFLUENCING THE ACCURACY OFA RESULT LIST (SINGLE CONSONANT DATA SET)...........................................................................................................................................99 FIGURE 4.23: ILLUSTRATION OF THE RELATIONSHIP BETWEEN RECOGNITION ACCURACY AND TRANSCRIPTION ACCURACY OF THE STROKE-COMBINATION DATA SET...............................................................................................................................100 FIGURE 4.24: ILLUSTRATION OF THE WORD TRANSCRIPTIONACCURACY OF THE STROKE-COMBINATION DATA SET................................................................................101 FIGURE 4.25: ILLUSTRATION OF THE CORRECTION ACCURACY INCOMPARISON WITH THE CLASSIFICATION/VOWEL ERRORS OF THE STROKE COMBINATION DATA SET...............................................................................................................................102 FIGURE 4.26: ILLUSTRATION OF ANAVERAGE DISTRIBUTIONOF FACTORS INFLUENCING THE ACCURACY OF A RESULT LIST(STROKE-COMBINATION DATA SET).............................................................................................................................103 FIGURE 4.27: RELATIONSHIP BETWEEN RECOGNITION ACCURACY AND TRANSCRIPTION ACCURACY OF THE SPECIAL-RULE DATA SET........................104 FIGURE 4.28: EVALUATION OF THE WORD TRANSCRIPTION ACCURACY OF THE SPECIAL-RULE DATA SET.................................................................................................105 FIGURE 4.29: ILLUSTRATION OF THE CORRECTION ACCURACY IN COMPARISON WITH CLASSIFICATION OR VOWEL ERRORS OF THE SPECIAL-RULE DATA SET ..................................................................................................................................................106 FIGURE 4.30: ILLUSTRATION OF ANAVERAGE DISTRIBUTIONOF FACTORS INFLUENCING THE ACCURACY OF A RESULT LIST (SPECIAL-RULE DATA SET) ..................................................................................................................................................107 FIGURE 5.1:(A) SAMPLE ENTRIES OF A CONVENTIONAL PITMAN’S SHORTHAND DICTIONARY AVAILABLEIN BOOK FORMAT (B) SAMPLE ENTRIES OF AN ELECTRONIC PITMAN’S SHORTHANDLEXICON........................................................112 FIGURE 5.2: SAMPLE KEYS OF THEELECTRONIC PITMAN’S SHORTHANDLEXICON; VOWELS ARE UNDERLINED.............................................................................................115 FIGURE 5.3: SAMPLE ENTRIES OF THE ELECTRONIC PITMAN’S SHORTHAND LEXICON.................................................................................................................................116 FIGURE 5.4: ILLUSTRATION OF THE CONVERSION PROCEDURE.................................119 FIGURE 5.5: ILLUSTRATION OF THE USE OF A DOT PRIMITIVE FOR THE SOUND COM AT THE BEGINNING OF A WORD....................................................................................123 FIGURE 5.6: ILLUSTRATION OF THE USE OF NEGATIVE PREFIX IR-IN A VOCALISED OUTLINE.................................................................................................................................124 FIGURE 5.7: ILLUSTRATION OF THE USE OF PL HOOK IN A VOCALISED OUTLINE..125 FIGURE 5.8: ILLUSTRATION OF A ONE SYLLABLE HALF-LENGTH OUTLINE...............126

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.