ebook img

Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal ... PDF

693 Pages·2007·38.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal ...

Nuclear Science ISBN 978-92-64-99002-9 OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-bismuth Eutectic Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies 2007 Edition © OECD 2007 NEA No. 6195 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. * * * This work is published on the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Organisation or of the governments of its member countries. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full member. NEA membership today consists of 28 OECD member countries: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities also takes part in the work of the Agency. The mission of the NEA is: (cid:1) to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes, as well as (cid:1) to provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and sustainable development. Specific areas of competence of the NEA include safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides nuclear data and computer program services for participating countries. In these and related tasks, the NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has a Co-operation Agreement, as well as with other international organisations in the nuclear field. © OECD 2007 No reproduction, copy, transmission or translation of this publication may be made without written permission. Applications should be sent to OECD Publishing: [email protected] or by fax (+33-1) 45 24 99 30. Permission to photocopy a portion of this work should be addressed to the Centre Français d’exploitation du droit de Copie (CFC), 20 rue des Grands-Augustins, 75006 Paris, France, fax (+33-1) 46 34 67 19, ([email protected]) or (for US only) to Copyright Clearance Center (CCC), 222 Rosewood Drive Danvers, MA 01923, USA, fax +1 978 646 8600, [email protected]. FOREWORD Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) was established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flow sheets, development and performance of fuels and materials, and accelerators and spallation targets. The WPFC has different subgroups to cover the wide range of scientific fields in the nuclear fuel cycle. Created in 2002, the Working Group on Lead-bismuth Eutectic (WG-LBE) technology is a WPFC subsidiary group which co-ordinates and guides LBE research in participating organisations while enhancing closer and broader-based collaboration. The aim is to develop a set of requirements and standards as well as consistent methodology for experimentation, data collection and data analyses. It was agreed to publish the results in the form of a handbook. Due to a rising interest in the Pb-cooled option in the Generation IV International Forum, the WG-LBE also decided to include data and technology aspects of both LBE and Pb. The current edition of the handbook is a state-of-the-art, critical review of existing data and discrepancies, open points and perspectives for both Pb and LBE technological development. The reader may wish to note that the publication of a revised edition of the handbook is foreseen towards 2009 in order to integrate more experimental results from the various national and international research programmes currently being carried out on heavy liquid metal technology. Acknowledgements The NEA Secretariat expresses its sincere gratitude to C. Fazio (FZK, Germany), Chair of the working group, for her devotion and excellent leadership, and to the chapter authors and contributors who devoted their time and effort to this handbook preparation. Special thanks are conveyed to the peer reviewers: H.U. Borgstedt (FZK, Germany), C. Latgé (CEA, France), R. Ballinger (MIT, USA) and H. Katsuta (JAEA, Japan), whose work was essential for improving the quality of the handbook. K. Pasamehmetoglu (INL, USA) and J.U. Knebel (FZK, Germany) are thanked for the initiation of this work. 3 TABLE OF CONTENTS Foreword............................................................................................................................................ 3 Chapter 1 INTRODUCTION..................................................................................................... 15 Chapter 2 THERMOPHYSICAL AND ELECTRIC PROPERTIES.................................... 25 2.1 Introduction........................................................................................................ 25 2.2 Pb-Bi alloy phase diagram................................................................................. 26 2.3 Normal melting point......................................................................................... 29 2.3.1 Lead...................................................................................................... 29 2.3.2 Bismuth................................................................................................. 29 2.3.3 LBE....................................................................................................... 31 2.4 Volume change at melting and solidification.................................................... 32 2.5 Latent heat of melting at the normal melting point............................................ 35 2.5.1 Lead...................................................................................................... 35 2.5.2 Bismuth................................................................................................. 36 2.5.3 LBE....................................................................................................... 36 2.6 Normal boiling point.......................................................................................... 37 2.6.1 Lead...................................................................................................... 37 2.6.2 Bismuth................................................................................................. 37 2.6.3 LBE....................................................................................................... 37 2.7 Heat of vaporisation at the normal boiling point............................................... 39 2.7.1 Lead...................................................................................................... 39 2.7.2 Bismuth................................................................................................. 39 2.7.3 LBE....................................................................................................... 41 2.8 Saturation vapour pressure................................................................................. 41 2.8.1 Lead...................................................................................................... 42 2.8.2 Bismuth................................................................................................. 42 2.8.3 LBE....................................................................................................... 44 2.9 Surface tension................................................................................................... 47 2.9.1 Lead...................................................................................................... 47 2.9.2 Bismuth................................................................................................. 48 2.9.3 LBE....................................................................................................... 49 2.10 Density............................................................................................................... 52 2.10.1 Lead...................................................................................................... 52 2.10.2 Bismuth................................................................................................. 54 2.10.3 LBE....................................................................................................... 56 2.11 Thermal expansion............................................................................................. 58 2.12 Sound velocity and compressibility................................................................... 59 2.12.1 Lead...................................................................................................... 60 2.12.2 Bismuth................................................................................................. 60 2.12.3 LBE....................................................................................................... 62 5 2.13 Heat capacity...................................................................................................... 63 2.13.1 Lead...................................................................................................... 64 2.13.2 Bismuth................................................................................................. 65 2.13.3 LBE....................................................................................................... 66 2.14 Critical constants and equation of state............................................................. 69 2.14.1 Critical parameters................................................................................ 69 2.14.1.1 Lead...................................................................................... 69 2.14.1.2 Bismuth................................................................................ 70 2.14.1.3 LBE...................................................................................... 71 2.14.2 Equation of state................................................................................... 72 2.15 Viscosity............................................................................................................ 73 2.15.1 Lead...................................................................................................... 74 2.15.2 Bismuth................................................................................................. 75 2.15.3 LBE....................................................................................................... 76 2.16 Electrical resistivity........................................................................................... 77 2.16.1 Lead...................................................................................................... 79 2.16.2 Bismuth................................................................................................. 80 2.16.3 LBE....................................................................................................... 81 2.17 Thermal conductivity and thermal diffusivity................................................... 82 2.17.1 Lead...................................................................................................... 83 2.17.2 Bismuth................................................................................................. 84 2.17.3 LBE....................................................................................................... 85 2.18 Conclusions........................................................................................................ 88 Chapter 3 THERMODYNAMIC RELATIONSHIPS AND HEAVY LIQUID METAL INTERACTION WITH OTHER COOLANTS...................................... 101 3.1 Introduction........................................................................................................ 101 3.2 Enthalpies, entropies (solid and liquid state) – free energy and entropy of mixing............................................................................................... 101 3.3 Purity requirements............................................................................................ 104 3.4 Solubility data of metallic and non-metallic impurities in LBE and Pb............ 105 3.4.1 Solubility data of some metallic elements in pure Pb and liquid eutectic Pb-Bi........................................................................................ 105 3.4.2 Solubility data of oxygen in pure Pb and LBE..................................... 108 3.5 Diffusivity.......................................................................................................... 110 3.5.1 Diffusivity data of some metallic elements.......................................... 110 3.5.2 Oxygen diffusion coefficient................................................................ 113 3.6 Chemical interactions and ternary phase diagrams............................................ 114 3.7 Lead and LBE-water interaction........................................................................ 116 3.7.1 Literature survey................................................................................... 116 3.7.2 Related risks.......................................................................................... 118 3.7.3 Numerical codes................................................................................... 118 3.8 Lead or LBE and sodium interaction................................................................. 119 3.9 LBE and Pb and organic compounds interaction............................................... 122 Chapter 4 CHEMISTRY CONTROL AND MONITORING SYSTEMS............................. 129 4.1 Introduction........................................................................................................ 129 4.2 Oxygen control in lead and LBE systems.......................................................... 130 4.2.1 Upper limit for the oxygen for operational control............................... 130 4.2.2 Lower limit for the oxygen for operational control.............................. 131 4.2.3 Specifications for active oxygen control............................................... 135 4.2.4 Policy for a nuclear system................................................................... 137 6 4.2.5 Oxygen control systems........................................................................ 139 4.2.6 The oxygen homogeneity issue............................................................. 141 4.3 Characterisation of impurities and requirements for control............................. 143 4.3.1 Impurity sources................................................................................... 143 4.3.2 Behaviour of impurities and requirements for purification.................. 145 4.3.3 Active impurities................................................................................... 148 4.3.4 Production rates assessment.................................................................. 148 4.3.5 Consequences on operations................................................................. 150 4.4 Instruments for chemical monitoring................................................................. 151 4.4.1 On-line electrochemical oxygen sensor................................................ 151 4.4.1.1 Principle................................................................................ 153 4.4.1.2 Theory.................................................................................. 155 4.4.1.3 Calibration............................................................................ 160 4.4.1.4 Characteristics of the oxygen sensors................................... 162 4.4.1.5 Conclusions.......................................................................... 164 4.4.2 Development of sampling systems and analytical methods.................. 165 4.4.2.1 Dip sampler validation......................................................... 165 4.4.2.2 Chemical analysis of lead-bismuth eutectic......................... 167 4.4.2.3 Radioactive nuclides chemical analysis............................... 169 4.4.2.4 Conclusions.......................................................................... 170 4.5 Conclusions........................................................................................................ 170 Chapter 5 PROPERTIES OF IRRADIATED LBE AND Pb.................................................. 179 5.1 Introduction......................................................................................................... 179 5.2 Theoretical considerations................................................................................... 180 5.2.1 Evaporation characteristics of polonium................................................... 180 5.2.2 Volatilisation pathways of polonium......................................................... 182 5.2.3 Evaluation of thermochemical data for binary polonium containing systems by means of the semi-empirical Miedema model........................ 188 5.2.4 Analysis of thermochemical relations of iodine within a liquid LBE spallation target................................................................................. 191 5.3 Investigations on irradiated LBE......................................................................... 206 5.3.1 Release of volatile radionuclides............................................................... 206 5.3.1.1 Polonium vaporisation.......................................................... 207 5.3.1.2 Evaporation characteristics of polonium and its lighter homologues selenium and tellurium from liquid Pb-Bi eutecticum............................................................................. 210 5.3.2 Thermal release behaviour of mercury and thallium from liquid eutectic lead-bismuth alloy........................................................................ 212 5.3.3 Release of volatile radionuclides in abnormal operating conditions......... 214 5.4 Irradiation effects................................................................................................. 216 5.4.1 Measurement of gas and volatile element production rates in a proton-irradiated molten lead-bismuth target in the ISOLDE facility...... 216 5.4.1.1 ISOLDE facility and proton beam........................................ 216 5.4.1.2 ISOLDE target...................................................................... 217 5.4.1.3 Measurement techniques...................................................... 217 5.4.1.4 Data analysis......................................................................... 218 5.4.1.5 First results........................................................................... 221 5.4.1.6 Conclusions and outlook...................................................... 224 7 5.4.2 Irradiation experiments.............................................................................. 224 5.4.2.1 Pb and LBE irradiated in the STIP experiments using the Swiss Spallation Neutron Source (SINQ)....................... 224 5.4.2.2 LBE irradiated in the LiSoR experiment.............................. 225 Chapter 6 COMPATIBILITY OF STRUCTURAL MATERIALS WITH LBE AND Pb: STANDARDISATION OF DATA, CORROSION MECHANISM AND RATE............................................................ 231 6.1 Introduction......................................................................................................... 231 6.2 Fundamentals....................................................................................................... 231 6.2.1 Corrosion................................................................................................... 231 6.2.2 Oxidation................................................................................................... 233 6.3 Summary and critical review of the data............................................................. 238 6.4 Conclusions and further data needed................................................................... 245 6.5 Recommendations on corrosion tests procedure (standardisation)...................... 245 6.5.1 Pre-test preparation.................................................................................... 246 6.5.1.1 Liquid metal: LBE and Pb.................................................... 246 6.5.1.2 Material................................................................................ 246 6.5.2 Test conditions.......................................................................................... 246 6.5.2.1 Static (no flow) tests............................................................. 246 6.5.2.2 Dynamic tests....................................................................... 247 6.5.3 Post-test analysis....................................................................................... 248 Chapter 7 EFFECT OF LBE AND LEAD ON MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS.......................................................................... 275 7.1 Introduction......................................................................................................... 275 7.2 Liquid metal embrittlement................................................................................. 277 7.2.1 Wetting: From ideal to real metallic systems............................................ 277 7.2.2 Definition and criteria of occurrence of LME........................................... 281 7.3 Environment-assisted cracking............................................................................ 284 7.3.1 Definition of EAC..................................................................................... 284 7.3.2 Phenomenological criteria of occurrence of EAC..................................... 284 7.4 Tensile behaviour of austenitic and ferritic/martensitic steels in contact with lead, LBE and other liquid metals............................................................... 285 7.4.1 Definitions................................................................................................. 285 7.4.2 Tensile behaviour of smooth, rough and notched martensitic steel specimens in HLMs.......................................................................... 285 7.4.2.1 Tensile behaviour of smooth and rough T91 steel specimens in lead, LBE and tin............................................ 285 7.4.2.2 Tensile behaviour of T91 steel specimens in LBE, in the presence of flaws........................................................ 286 7.4.2.3 Tensile behaviour of MANET II and T91 steels after pre-exposure to LBE............................................................. 286 7.4.2.4 Tensile behaviour of T91 in air, at room temperature after pre-exposure to LBE.................................................... 286 7.4.2.5 Tensile behaviour of T91 in conditions of direct contact with Pb-Bi............................................................................. 287 7.4.2.6 Tensile behaviour and embrittlement of martensitic steels in contact with Li and Pb-17Li................................... 287 8 7.4.3 Experimental results that may be interpreted as LME effects: Case of T91 in contact with LBE or lead.................................................. 287 7.4.3.1 Role of the bulk metallurgical state...................................... 288 7.4.3.2 Role of wetting..................................................................... 289 7.4.3.3 Role of surface flaws............................................................ 292 7.4.3.4 Role of traces of impurities.................................................. 294 7.4.4 Main requirements to prevent LME effects............................................... 294 7.4.5 Experimental results that may be interpreted as EAC effects................... 295 7.4.5.1 Case of some ferritic/martensitic steels in contact with Li and Pb-17Li.............................................................. 295 7.4.5.2 Case of T91 steel in contact with LBE................................. 296 7.5 Fatigue behaviour of austenitic steel of type 316 and ferritic/martensitic steel of type T91 in contact with lead and LBE................................................... 296 7.5.1 Definition.................................................................................................. 296 7.5.2 Low-cycle fatigue behaviour of ferritic/martensitic steels in contact with LBE....................................................................................... 299 7.5.2.1 Role of LBE on cyclic accommodation................................ 299 7.5.2.2 Role of LBE on fatigue resistance........................................ 300 7.5.3 Influence of hold time on fatigue behaviour of T91 in LBE..................... 301 7.5.4 Influence of preliminary exposure to LBE on fatigue behaviour of T91........................................................................................................ 301 7.5.5 Influence of LBE on fatigue crack growth of T91 and MANET II........... 302 7.5.6 Influence of LBE on fatigue fracture surface morphology of T91............ 303 7.5.7 Influence of LBE on fatigue crack initiation in T91 and MANET II........ 305 7.5.8 Low-cycle fatigue behaviour of 316L type stainless steel in contact with lead alloys, in comparison with lithium and sodium......................... 307 7.6 Creep properties: Definition and state of the art concerning the austenitic steel of type 316 and the ferritic/martensitic steel of type T91 in contact with lead and LBE............................................................................................... 308 7.6.1 Definition.................................................................................................. 308 7.6.2 Creep properties of martensitic and austenitic stainless steels in air or liquid metals other than lead or LBE.................................................... 308 7.6.3 Creep and creep crack growth of both austenitic and ferritic/ martensitic steels in lead or LBE............................................................... 309 7.6.4 Liquid metal accelerated creep (LMAC)................................................... 309 7.6.5 Accelerated plastic strain of T91 steel in contact with lead...................... 309 7.6.6 Creep crack growth on T91 and 316L in contact with LBE or lead.......... 310 7.7 Fracture mechanics: Case of both austenitic steel of type 316 and ferritic/ martensitic steel of type T91 in contact with lead and LBE................................ 310 7.8 Recommendations for testing procedures............................................................ 311 7.8.1 ASTM standards useful for mechanical tests in LBE................................ 311 7.8.2 Adaptation of experimental installations for HLMs.................................. 313 7.8.3 Recommendations for testing procedures................................................. 314 7.9 Conclusions......................................................................................................... 315 Chapter 7 Annex................................................................................................................................ 329 Chapter 8 IRRADIATION EFFECTS ON COMPATIBILITY OF STRUCTURAL MATERIALS WITH LEAD-BISMUTH EUTECTIC (LBE)............................... 359 8.1 Introduction........................................................................................................ 359 9 8.2 Irradiation of ferritic-martensitic steel with protons and neutrons in LBE (PSI)....................................................................................................... 360 8.2.1 LiSoR...................................................................................................... 360 8.2.2 Irradiation................................................................................................ 360 8.2.3 Surface analyses...................................................................................... 362 8.2.4 Tensile tests............................................................................................. 366 8.2.5 Proton irradiation of pre-oxidised HT9 in the presence of LBE at the LANSCE WNR facility (Los Alamos).......................................... 366 8.3 Irradiation with neutrons in BR2 (SCK(cid:1)CEN)................................................... 368 8.3.1 Material................................................................................................... 368 8.3.2 Tensile tests............................................................................................. 369 8.3.3 LBE conditioning.................................................................................... 369 8.3.4 Effect of irradiation and liquid Pb-Bi eutectic on AISI 316L irradiated to 1.7 dpa................................................................................. 369 8.3.5 Effect of irradiation and liquid Pb-Bi eutectic on T91 irradiated up to 4.36 dpa.......................................................................................... 370 8.3.6 Effect of irradiation and liquid Pb-Bi eutectic on EM10 irradiated up to 4.36 dpa.......................................................................... 371 8.3.7 Effect of irradiation and liquid Pb-Bi eutectic on HT9 irradiated up to 4.36 dpa.......................................................................... 373 8.4 Irradiation with proton and neutron spectrum in SINQ targets at PSI................ 374 8.4.1 Mechanical tests on irradiated specimens in LBE................................... 374 8.5 Future irradiation programmes (DEMETRA programme)................................. 375 Chapter 9 Pb AND LBE CORROSION PROTECTION AT ELEVATED TEMPERATURES.................................................................................................... 379 9.1 Introduction........................................................................................................ 379 9.2 Methods of surface protection............................................................................ 380 9.2.1 Alloying of stable oxide formers............................................................. 380 9.2.1.1 Alloying by the GESA process................................................ 381 9.2.1.2 Diffusion alloying processes.................................................... 382 9.2.2 Corrosion-resistant coatings.................................................................... 384 9.2.2.1 FeCrAlY coatings.................................................................... 384 9.2.2.2 Coatings with resistant metals................................................. 385 9.2.2.3 Oxide, carbide and nitride coatings......................................... 386 9.2.3 Corrosion inhibitors in LBE.................................................................... 386 9.3 Corrosion examinations on alloys and coatings................................................. 387 9.3.1 Surface alloys.......................................................................................... 387 9.3.2 Bulk alloys............................................................................................... 387 9.3.3 Coatings................................................................................................... 388 9.4 Concluding remarks............................................................................................ 389 Chapter 10 LOW PRANDTL NUMBER THERMAL-HYDRAULICS.................................. 399 10.1 Introduction........................................................................................................ 399 10.2 Specific features of liquid metals....................................................................... 400 10.3 The conservation equations................................................................................ 403 10.4 Laminar momentum exchange........................................................................... 406 10.4.1 Channel or tube flow............................................................................... 406 10.4.2 Boundary layer equations........................................................................ 408 10.4.3 Summary and comments......................................................................... 410 10.5 Laminar energy exchange................................................................................... 411 10.5.1 Types of laminar duct flow..................................................................... 412 10

Description:
Apr 20, 1972 Page 1 Thermal-hydraulics and Technologies seek answers to common problems, identify good practice and work to regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, . 2.4 Volume change at melting and solidification . 6.2 Fundamentals.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.