Handbook of Statistical Distributions with Applications K. Krishnamoorthy University of Louisiana at Lafayette U.S.A. Boca Raton London New York © 2006 by Taylor & Francis Group, LLC Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 1-58488-635-8 (Hardcover) International Standard Book Number-13: 978-1-58488-635-8 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Krishnamoorthy, K. (Kalimuthu) Handbook of statistical distributions with applications / K. Krishnamoorthy. p. cm. -- (Statistics, a series of textbooks & monographs ; 188) Includes bibliographical references and index. ISBN 1-58488-635-8 1. Distribution (Probability theory)--Handbooks, manuals, etc. I. Title. II. Series: Statistics, textbooks and monographs ; v. 188. QA273.6.K75 2006 519.5--dc22 2006040297 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2006 by Taylor & Francis Group, LLC T&F_LOC_G_Master.indd 1 6/13/06 2:54:01 PM STATISTICS: Textbooks and Monographs Recent Titles Statistics for the 21st Century: Methodologies for Applications of the Future, edited by C. R. Rao and Gábor J. Székely Probability and Statistical Inference, Nitis Mukhopadhyay Handbook of Stochastic Analysis and Applications, edited by D. Kannan and V. Lakshmikantham Testing for Normality, Henry C. Thode, Jr. Handbook of Applied Econometrics and Statistical Inference, edited by Aman Ullah, Alan T. K. Wan, and Anoop Chaturvedi Visualizing Statistical Models and Concepts, R. W. Farebrother and Michaël Schyns Financial and Actuarial Statistics: An Introduction, Dale S. Borowiak Nonparametric Statistical Inference, Fourth Edition, Revised and Expanded, Jean Dickinson Gibbons and Subhabrata Chakraborti Computer-Aided Econometrics, edited by David E.A. Giles The EM Algorithm and Related Statistical Models, edited by Michiko Watanabe and Kazunori Yamaguchi Multivariate Statistical Analysis, Second Edition, Revised and Expanded, Narayan C. Giri Computational Methods in Statistics and Econometrics, Hisashi Tanizaki Applied Sequential Methodologies: Real-World Examples with Data Analysis, edited by Nitis Mukhopadhyay, Sujay Datta, and Saibal Chattopadhyay Handbook of Beta Distribution and Its Applications, edited by Arjun K. Gupta and Saralees Nadarajah Item Response Theory: Parameter Estimation Techniques, Second Edition, edited by Frank B. Baker and Seock-Ho Kim Statistical Methods in Computer Security, edited by William W. S. Chen Elementary Statistical Quality Control, Second Edition, John T. Burr Data Analysis of Asymmetric Structures, Takayuki Saito and Hiroshi Yadohisa Mathematical Statistics with Applications, Asha Seth Kapadia, Wenyaw Chan, and Lemuel Moyé Advances on Models, Characterizations and Applications, N. Balakrishnan, I. G. Bairamov, and O. L. Gebizlioglu Survey Sampling: Theory and Methods, Second Edition, Arijit Chaudhuri and Horst Stenger Statistical Design of Experiments with Engineering Applications, Kamel Rekab and Muzaffar Shaikh Quality by Experimental Design, Third Edition, Thomas B. Barker Handbook of Parallel Computing and Statistics, Erricos John Kontoghiorghes Statistical Inference Based on Divergence Measures, Leandro Pardo A Kalman Filter Primer, Randy Eubank Introductory Statistical Inference, Nitis Mukhopadhyay Handbook of Statistical Distributions with Applications, K. Krishnamoorthy © 2006 by Taylor & Francis Group, LLC STATISTICS: Textbooks and Monographs D. B. Owen Founding Editor, 1972–1991 Associate Editors Statistical Computing/ Multivariate Analysis Nonparametric Statistics Professor Anant M. Kshirsagar Professor William R. Schucany University of Michigan Southern Methodist University Quality Control/Reliability Probability Professor Edward G. Schilling Professor Marcel F. Neuts Rochester Institute of University of Arizona Technology Editorial Board Applied Probability Statistical Process Improvement Dr. Paul R. Garvey Professor G. Geoffrey Vining The MITRE Corporation Virginia Polytechnic Institute Economic Statistics Stochastic Processes Professor David E. A. Giles Professor V. Lakshmikantham University of Victoria Florida Institute of Technology Experimental Designs Survey Sampling Mr. Thomas B. Barker Professor Lynne Stokes Rochester Institute of Southern Methodist University Technology Time Series Multivariate Analysis Sastry G. Pantula Professor Subir Ghosh North Carolina State University University of California, Riverside Statistical Distributions Professor N. Balakrishnan McMaster University © 2006 by Taylor & Francis Group, LLC Contents INTRODUCTION TO STATCALC 0.1 Introduction.......................................................1 0.2 Contents of StatCalc...............................................4 1 PRELIMINARIES 1.1 Random Variables and Expectations...............................9 1.2 Moments and Other Functions....................................12 1.2.1 Measures of Central Tendency.............................12 1.2.2 Moments..................................................12 1.2.3 Measures of Variability....................................13 1.2.4 Measures of Relative Standing.............................14 1.2.5 Other Measures ........................................... 14 1.2.6 Some Other Functions.....................................15 1.3 Some Functions Relevant to Reliability ........................... 15 1.4 Model Fitting .................................................... 16 1.4.1 Q–Q Plot..................................................17 1.4.2 The Chi-Square Goodness-of-Fit Test......................17 1.5 Methods of Estimation ........................................... 18 1.5.1 Moment Estimation.......................................18 1.5.2 Maximum Likelihood Estimation .......................... 19 1.6 Inference.........................................................19 1.6.1 Hypothesis Testing........................................19 1.6.2 Interval Estimation........................................23 1.7 Random Number Generation ..................................... 24 1.8 Some Special Functions...........................................25 © 2006 by Taylor & Francis Group, LLC 2 DISCRETE UNIFORM DISTRIBUTION 2.1 Description.......................................................29 2.2 Moments ........................................................ 30 3 BINOMIAL DISTRIBUTION 3.1 Description.......................................................31 3.2 Moments.........................................................32 3.3 Computing Table Values..........................................34 3.4 Test for the Proportion...........................................36 3.4.1 An Exact Test.............................................36 3.4.2 Power of the Exact Test...................................36 3.5 Confidence Intervals for the Proportion...........................38 3.5.1 An Exact Confidence Interval..............................38 3.5.2 Computing Exact Limits and Sample Size Calculation.....39 3.6 A Test for the Difference between Two Proportions...............40 3.6.1 An Unconditional Test.....................................40 3.6.2 Power of the Unconditional Test...........................41 3.7 Fisher’s Exact Test...............................................42 3.7.1 Calculation of p-Values....................................43 3.7.2 Exact Powers..............................................44 3.8 Properties and Results............................................45 3.8.1 Properties.................................................45 3.8.2 Relation to Other Distributions............................45 3.8.3 Approximations...........................................46 3.9 Random Number Generation ..................................... 46 3.10 Computation of Probabilities.....................................48 4 HYPERGEOMETRIC DISTRIBUTION 4.1 Description.......................................................51 4.2 Moments.........................................................52 4.3 Computing Table Values..........................................54 4.4 Point Estimation.................................................56 4.5 Test for the Proportion...........................................57 4.5.1 An Exact Test.............................................57 4.5.2 Power of the Exact Test...................................58 4.6 Confidence Intervals and Sample Size Calculation.................59 © 2006 by Taylor & Francis Group, LLC 4.6.1 Confidence Intervals.......................................59 4.6.2 Sample Size for Precision..................................60 4.7 A Test for the Difference between Two Proportions...............62 4.7.1 The Test..................................................62 4.7.2 Power Calculation.........................................63 4.8 Properties and Results............................................64 4.8.1 Recurrence Relations......................................64 4.8.2 Relation to Other Distributions............................64 4.8.3 Approximations...........................................64 4.9 Random Number Generation ..................................... 65 4.10 Computation of Probabilities.....................................66 5 POISSON DISTRIBUTION 5.1 Description.......................................................71 5.2 Moments.........................................................72 5.3 Computing Table Values..........................................74 5.4 Point Estimation.................................................75 5.5 Test for the Mean ................................................ 75 5.5.1 An Exact Test.............................................75 5.5.2 Powers of the Exact Test..................................76 5.6 Confidence Intervals for the Mean ................................ 77 5.6.1 An Exact Confidence Interval..............................77 5.6.2 Sample Size Calculation for Precision......................78 5.7 Test for the Ratio of Two Means..................................78 5.7.1 A Conditional Test........................................78 5.7.2 Powers of the Conditional Test ............................ 80 5.8 Confidence Intervals for the Ratio of Two Means..................81 5.9 A Test for the Difference between Two Means.....................81 5.9.1 An Unconditional Test.....................................82 5.9.2 Powers of the Unconditional Test..........................83 5.10 Model Fitting with Examples.....................................84 5.11 Properties and Results............................................86 5.11.1 Properties................................................86 5.11.2 Relation to Other Distributions...........................86 5.11.3 Approximations..........................................87 5.12 Random Number Generation ..................................... 87 5.13 Computation of Probabilities.....................................88 © 2006 by Taylor & Francis Group, LLC 6 GEOMETRIC DISTRIBUTION 6.1 Description.......................................................93 6.2 Moments.........................................................94 6.3 Computing Table Values..........................................94 6.4 Properties and Results............................................95 6.5 Random Number Generation ..................................... 96 7 NEGATIVE BINOMIAL DISTRIBUTION 7.1 Description.......................................................97 7.2 Moments.........................................................98 7.3 Computing Table Values.........................................100 7.4 Point Estimation................................................101 7.5 A Test for the Proportion ....................................... 101 7.6 Confidence Intervals for the Proportion..........................103 7.7 Properties and Results...........................................103 7.7.1 Properties................................................103 7.7.2 Relation to Other Distributions...........................104 7.8 Random Number Generation....................................104 7.9 A Computational Method for Probabilities.......................106 8 LOGARITHMIC SERIES DISTRIBUTION 8.1 Description......................................................107 8.2 Moments........................................................109 8.3 Computing Table Values.........................................109 8.4 Inferences.......................................................112 8.4.1 Point Estimation.........................................112 8.4.2 Interval Estimation.......................................112 8.5 Properties and Results...........................................113 8.6 Random Number Generation....................................113 8.7 A Computational Algorithm for Probabilities....................114 9 UNIFORM DISTRIBUTION 9.1 Description......................................................115 9.2 Moments........................................................116 9.3 Inferences.......................................................116 © 2006 by Taylor & Francis Group, LLC 9.4 Properties and Results...........................................117 9.5 Random Number Generation....................................117 10 NORMAL DISTRIBUTION 10.1 Description.....................................................119 10.2 Moments.......................................................123 10.3 Computing Table Values ....................................... 123 10.4 One-Sample Inference..........................................127 10.4.1 Point Estimation.......................................127 10.4.2 Test for the Mean and Power Computation.............128 10.4.3 Interval Estimation for the Mean.......................130 10.4.4 Test and Interval Estimation for the Variance...........132 10.5 Two-Sample Inference..........................................134 10.5.1 Inference for the Ratio of Variances.....................135 10.5.2 Inference for the Difference between Two Means when the Variances Are Equal..........................136 10.5.3 Inference for the Difference between Two Means ....... 140 10.6 Tolerance Intervals.............................................142 10.6.1 Two-Sided Tolerance Intervals..........................142 10.6.2 One-Sided Tolerance Limits.............................143 10.6.3 Equal-Tail Tolerance Intervals..........................145 10.6.4 Simultaneous Hypothesis Testing for Quantiles..........146 10.6.5 Tolerance Limits for One-Way Random Effects Model...147 10.7 Properties and Results.........................................149 10.8 Relation to Other Distributions.................................150 10.9 Random Number Generation...................................151 10.10 Computing the Distribution Function...........................152 11 CHI-SQUARE DISTRIBUTION 11.1 Description.....................................................155 11.2 Moments.......................................................156 11.3 Computing Table Values ....................................... 157 11.4 Applications....................................................157 11.5 Properties and Results.........................................158 11.5.1 Properties..............................................158 11.5.2 Relation to Other Distributions.........................159 11.5.3 Approximations........................................160 11.6 Random Number Generation...................................161 11.7 Computing the Distribution Function...........................161 © 2006 by Taylor & Francis Group, LLC 12 F DISTRIBUTION 12.1 Description.....................................................163 12.2 Moments.......................................................165 12.3 Computing Table Values ....................................... 165 12.4 Properties and Results.........................................166 12.4.1 Identities...............................................166 12.4.2 Relation to Other Distributions.........................166 12.4.3 Series Expansions.......................................167 12.4.4 Approximations........................................168 12.5 Random Number Generation...................................168 12.6 A Computational Method for Probabilities ..................... 169 13 STUDENT’S t DISTRIBUTION 13.1 Description.....................................................171 13.2 Moments.......................................................172 13.3 Computing Table Values ....................................... 173 13.4 Distribution of the Maximum of Several |t| Variables ........... 173 13.4.1 An Application.........................................174 13.4.2 Computing Table Values................................175 13.4.3 An Example............................................175 13.5 Properties and Results.........................................176 13.5.1 Properties..............................................176 13.5.2 Relation to Other Distributions.........................176 13.5.3 Series Expansions for Cumulative Probability...........177 13.5.4 An Approximation ..................................... 178 13.6 Random Number Generation...................................178 13.7 A Computational Method for Probabilities ..................... 178 14 EXPONENTIAL DISTRIBUTION 14.1 Description.....................................................179 14.2 Moments.......................................................180 14.3 Computing Table Values ....................................... 180 14.4 Inferences......................................................181 14.5 Properties and Results.........................................182 14.5.1 Properties..............................................182 14.5.2 Relation to Other Distributions.........................182 14.6 Random Number Generation...................................183 © 2006 by Taylor & Francis Group, LLC
Description: