ebook img

Handbook of solid state diffusion volume 2 Diffusion Analysis inMaterial Applications PDF

478 Pages·2017·25.622 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of solid state diffusion volume 2 Diffusion Analysis inMaterial Applications

Handbook of Solid State Diffusion Diffusion Analysis in Material Applications Volume 2 Edited by Aloke Paul and Sergiy Divinski HANDBOOK OF SOLID STATE DIFFUSION: VOLUME 2 This page intentionally left blank HANDBOOK OF SOLID STATE DIFFUSION: VOLUME 2 Diffusion Analysis in Material Applications Editedby ALOKEPAUL SERGIYDIVINSKI Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright©2017ElsevierInc.Allrightsreserved Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfrom anyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-804548-0 ForinformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com Publisher:MatthewDeans AcquisitionEditor:ChristinaGifford EditorialProjectManager:JenniferPierce ProductionProjectManager:JasonMitchell Designer:MarkRogers TypesetbyVTeX CONTENTS Biographies xi Preface xix Acknowledgment xxi 1. DiffusionMeasurementsinNanostructures 1 1.1. AnalyticalSolutions 2 1.2. Simulations 5 1.3. AtomProbeTomography 17 1.4. AtomicTransportKineticMeasurements 22 Conclusion 29 References 31 2. Diffusion-ControlledPhaseTransformationsinOpenSystems 37 2.1. GeneralReviewofFlux-DrivenTransformations 37 2.1.1. Flux-DrivenRipeningofCu6Sn5ScallopsDuringReactionCu/LiquidSolder 39 2.1.2. “Anti-Ripening”:Stirring-DrivenDissolution-RecrystallizationWithFormationof Nanobelts 41 2.1.3. Flux-DrivenAnti-PhaseDomainsCoarseningDuringReaction 42 2.1.4. Flux-DrivenCellularPrecipitationofPorousLamellarStructuresinCu–SnReactions 42 2.1.5. Flux-DrivenCrystallizationofAmorphousNiPDuringReactionWithTin-Based Solders 43 2.1.6. NucleationinSharpConcentrationGradients 44 2.1.7. Flux-DrivenNucleationatInterfaces(FDN) 48 2.1.8. Flux-DrivenSelf-RegulatedRepeatingNucleationinSiliconNanowiresDuring Point-ContactReactionWithMetallicNanowiresorNanoparticles 49 2.1.9. Flux-DrivenOrdering 49 2.1.10. Self-OrganizationofTwo-PhaseStructuresUnderElectromigrationand Thermomigration 50 2.1.11. HollowNanostructuresFormationandCollapseDrivenbyKirkendallEffect 51 2.1.12. DiffusionInducedBifurcationsandInstabilitiesofKirkendallPlanes 53 2.1.13. Flux-DrivenGrainGrowthDuringDeposition 55 2.1.14. SevereDeformationInducedFormationofLow-Viscosity“Phase”inKOBOProcess 56 2.1.15. ElectromigrationInducedGrainRotationUnderElectronWindinAnisotropic ConductingBeta-Tin 57 2.2. StandardModeloftheSimultaneous,Diffusion-ControlledPhaseLayersGrowthinthe DiffusionCouple 58 2.2.1. TheStandardModelforanArbitraryNumberofIntermediatePhases 58 2.2.2. TheStandardModelforSingleIntermediatePhase(N=1) 63 2.2.3. TheStandardModelfortheCaseofTwoIntermediatePhases(N=2) 65 2.3. Flux-DrivenRipeningofCu6Sn5ScallopsDuringReactionofCuSubstrateWithLiquid Tin-BasedSolder 66 v vi HandbookofSolidStateDiffusion 2.3.1. SimplifiedModelofMonosizedHemispheres 68 2.3.2. TheoreticalPredictionofLiquidChannelWidth 70 2.3.3. AccountofSizeDistribution–BasicEquations 72 2.4. Flux-DrivenLamellarPrecipitationofCu6Sn5intoPorousCu3SnStructure 75 2.4.1. GeneralRemarks 75 2.4.2. ExperimentalObservations 76 2.4.3. ThermodynamicAnalysisofPossibleTransformations 77 2.4.4. KineticModeloftheEutectoid-LikePorousZoneFormationinOpenSystem 79 2.5. Flux-DrivenNucleationDuringReactiveDiffusion 86 2.5.1. GeneralRemarks 86 2.5.2. ExternalFluxDivergenceinOpenSystem–IdeaofFlux-DrivenNucleation(FDN) 88 2.5.3. NucleationandGrowthofSingleIntermediatePhaseatα/βMeta-Equilibrium Interface 89 2.5.4. NucleationofSingleIMCatanInterfaceinCompetitionWithDiffusionin NeighboringSolidSolutions 92 2.5.5. Flux-DrivenNucleationoftheSecondIMCattheInterfacetoPureB 95 2.6. Summary 97 References 98 3. Thermodynamic-KineticMethodonMicrostructuralEvolutionsinElectronics 101 3.1. Introduction 101 3.2. ThermodynamicEvaluationofPhaseEquilibria 101 3.2.1. DifferentTypesofEquilibria 103 3.2.2. DifferentThermodynamicDiagramTypes 107 3.3. KineticConsiderations 117 3.4. Thermodynamic-KineticMethod 121 3.5. UtilizationoftheT-KMethodinMicrosystemsTechnology 123 3.5.1. BinaryAu–SnSystem 124 3.5.2. Au–Cu–SnTernarySystem 130 3.5.3. Au–Ni–SnSystem 138 Conclusions 144 References 145 4. MicrostructuralEvolutionbyReaction–Diffusion:Bulk,ThinFilm,and Nanomaterials 149 4.1. MathematicalFormulationsforEstimationoftheDiffusionCoefficientsUtilizing PhysicochemicalModel 149 4.2. EstimationoftheDiffusionParametersFollowingPhysicochemicalApproach 156 4.2.1. GrowthofaSingleProductPhaseinanInterdiffusionZoneBetweenTwoOther Compounds 158 4.2.2. GrowthofaSingleProductPhaseinanInterdiffusionZoneBetweenTwo End-MembersofaDiffusionCoupleWithPhaseMixture 159 4.2.3. SimultaneousGrowthoftheProductPhasesinanInterdiffusionZoneandtheUse ofPhysicochemicalApproach 161 Contents vii 4.3. EvolutionofMicrostructureDependingontheLocationofKirkendallMarkerPlane 166 4.4. AFewExamplesofMorphologicalEvolutionsandIndicationsofDiffusionRatesof Components 168 References 171 5. ElectromigrationinMetallicMaterialsandItsRoleinWhiskering 173 5.1. IntroductiontoElectromigration 173 5.1.1. FundamentalGoverningEquationsforElectromigration 175 5.1.2. PerformingElectromigrationExperimentsinLab 177 5.1.3. StressGenerationduetoElectromigration 180 5.1.4. ElectromigrationinLiquidMetals 182 5.1.5. ElectromigrationinAlloysorMultielementMaterialSystems 183 5.1.6. EffectofElectromigrationonReactionKinetics 184 5.1.7. CouplingBetweenElectromigrationandThermomigration 185 5.2. IntroductiontoWhiskeringinTinCoatings 189 5.2.1. FundamentalsofWhiskeringPhenomenon 190 5.2.1.1.RegenerationofCompressiveStress 190 5.2.1.2.MassTransportFromBulktoWhiskerRoot 191 5.2.1.3.IdentificationofLocationofWhiskerGrain 191 5.2.1.4.EffectofServiceConditionsonWhiskerGrowth 192 5.2.1.5.RoleofStressandStressGradient 193 5.2.2. SuppressionofWhiskeringPhenomenon 193 5.3. RoleofElectromigrationinWhiskering 197 5.3.1. CriticalLengthforElectromigration-InducedWhiskerGrowth 198 5.3.2. MinimizingElectromigration-InducedWhiskeringThroughGrainBoundary Engineering 198 5.4. Summary 200 Acknowledgements 202 References 202 6. DiffusionCoupleTechnique:AResearchToolinMaterialsScience 207 6.1. Introduction 207 6.2. BasicExperimentalProceduresUsedinDiffusionCoupleMethod 208 6.2.1. PreparationofDiffusionCouples 208 6.2.2. AnalyticalTechniquesandSpecimenPreparation 210 6.3. DerivationofKineticDataFromDiffusionCoupleExperiments 213 6.3.1. GeneralConsiderations:AcquisitionofDiffusionDataforBinarySolidSolution Systems 213 6.3.2. RelationsBetweenThermodynamicStabilitiesandGrowthKineticsofaBinary StoichiometricCompound 224 6.3.3. DeficienciesoftheProposedMethod 233 6.4. TheDiffusionCoupleTechniqueinPhaseDiagramDetermination–Revisited 240 6.4.1. GeneralPrinciples 240 6.4.2. VariationsoftheDiffusionCoupleMethod 242 viii HandbookofSolidStateDiffusion 6.4.3. ErrorSourcesEncounteredintheDiffusionCoupleExperiments 251 6.5. ADiffusionCoupleApproachinStudyingComposition–Structure–PropertyRelationships inSolidSolutionAlloySystems 262 6.5.1. InterdiffusionCoefficientsandHardnessProfilesintheNi–Co–PtSystemat1200°C 262 6.5.2. ScreeningofCompositionDependentShapeMemoryEffectintheTiNi–TiPd System 268 6.5.3. ConcludingRemarks 271 References 272 7. Diffusion-ControlledInternalPrecipitationReactions 277 7.1. Introduction 277 7.2. BasicExperimentalProceduresUsedinResearchonSolid-StateInternalReactions 279 7.2.1. ThermodynamicActivityofanOxidantSpeciesImposedbyAmbientEnvironment ontheMetalSurfaceDuringHigh-TemperatureInteraction 280 7.2.2. InvestigationofReactionKinetics 284 7.2.3. ExaminationofReactionProductsandPrecipitationZoneMicrostructure 285 7.3. DiversityofFormsandVariationsofMicrostructuresGeneratedbyInternalPrecipitation Reactions–SelectedExperimentalResults 287 7.4. Thermodynamic-DiffusionKineticsApproachinEvaluatingInternalSolid-StateReactions 294 7.5. KineticAnalysisoftheInternalPrecipitationReactionsinBinaryAlloys 301 7.5.1. SimplifiedTreatmentofthePrecipitationKinetics 301 7.5.2. Wagner’sTreatmentofInternalOxidation 304 7.5.3. AnalysisoftheEffectofSupersaturationRequirementsonInternalPrecipitation Kinetics 308 7.5.4. VariationinNumberDensityandSizeofPrecipitatesThroughtheZoneofInternal Reaction 310 7.5.5. InternalReactionsInvolvingLowStabilityPrecipitatingCompounds 312 7.5.6. TransitionFromInternaltoExternalOxidation 318 7.6. InternalPrecipitationReactionsasa“ResearchTool”forEvaluatingInterstitialTransportin Metals 320 7.7. DeformationPhenomenaAccompanyingInternalPrecipitationReactionsinMetals 328 7.8. ConcludingRemarks 334 References 335 8. DiffusioninNuclearMaterials 339 8.1. DiffusioninNuclearFuels 340 8.1.1. DifficultiesinDiffusionExperiments 340 8.1.2. DiffusioninMetallicFuels 341 8.1.3. DiffusioninCeramicFuels 344 8.1.3.1.DiffusioninOxideBasedFuels 345 8.1.3.2.DiffusioninCarbideBasedFuels 347 8.1.3.3.DiffusioninNitrideBasedFuels 349 8.1.4. DiffusionofFissionGases 350 8.2. DiffusioninCladMaterials 352 8.2.1. DiffusioninAluminium 353 Contents ix 8.2.2. DiffusioninZirconiumandItsAlloys 356 8.2.2.1.Self-andImpurityDiffusioninZirconium 356 8.2.2.2.DiffusioninZirconiumBasedAlloys 360 8.3. DiffusioninStructuralMaterials 364 8.3.1. Self-DiffusioninIron 364 8.3.2. ImpurityDiffusioninIron 365 8.3.2.1.DiffusionofChromiuminIron 365 8.3.2.2.DiffusionofNickelinIron 366 8.3.2.3.DiffusionofMolybdenumandManganeseinIron 366 8.3.3. DiffusioninIron–NickelSystem 366 8.3.4. DiffusioninFerriticStainlessSteels 367 8.3.5. DiffusioninAusteniticStainlessSteels 367 8.3.6. DiffusioninNickel 368 8.3.6.1.Self-DiffusioninNickel 368 8.3.6.2.ImpurityDiffusioninNickel 369 8.3.6.3.DiffusioninNickelBasedAlloys 369 References 372 9. TheGrowthofSilicidesandGermanides 379 9.1. Introduction 379 9.2. ExperimentalProcedure 381 9.3. GrowthofSilicides:BulkDiffusionCoupleVersusThinFilm 383 9.3.1. GrowthofSilicideinDiffusionCouple 383 9.3.2. LinkBetweenSilicideGrowthinDiffusionCoupleandinThinFilms 384 9.4. MechanismsofFormationofNiSilicidesandGermanides 392 9.4.1. LateralGrowth 393 9.4.2. NormalGrowth 398 9.4.3. SequentialVersusSimultaneousGrowth 404 9.4.4. StressDuringtheFormationofSilicide 413 9.4.5. TransientPhase 418 9.4.6. TextureinSilicidesandGermanides 421 9.5. AlloyElements 421 9.5.1. RoleofPtontheNucleationofNiSi2 423 9.5.2. RoleofPtontheKineticsofFormation 424 9.5.3. RoleofPtontheFormationSequence 427 9.5.4. RoleoftheIntermixedLayerontheFirstPhase 429 9.6. DopantandSilicide 432 9.6.1. DiffusionofAsinδ-Ni2Si 433 9.6.2. PrecipitationofAsinθ-Ni2Si 434 9.7. FormationofSilicideinTransistors 437 9.8. Conclusion 439 Acknowledgements 439 References 439 Index 447

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.