ebook img

Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems PDF

1487 Pages·2018·11.86 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems

“K16435’ — 2017/9/28 — 9:43 — #1 Handbook of Ordinary Differential Equations Exact Solutions, Methods, and Problems “K16435’ — 2017/9/28 — 9:43 — #2 “K16435’ — 2017/9/28 — 9:43 — #3 Handbook of Ordinary Differential Equations Exact Solutions, Methods, and Problems Andrei D. Polyanin Valentin F. Zaitsev “K16435’ — 2017/9/28 — 9:43 — #4 MATLAB• is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB• software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB• software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20170928 International Standard Book Number-13: 978-1-4665-6937-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com “K16435’ — 2017/9/28 — 15:05 — #1 CONTENTS Preface xxiii Authors xxv BasicNotationandRemarks xxvii PartI. Methods forOrdinary Differential Equations 1 1 MethodsforFirst-OrderDifferentialEquations 3 1.1 GeneralConcepts. CauchyProblem. Uniqueness andExistenceTheorems .... 3 1.1.1 Equations SolvedfortheDerivative ................................ 3 1.1.2 Equations NotSolvedfortheDerivative ............................ 7 1.2 Equations SolvedfortheDerivative. SimplestTechniquesofIntegration ...... 8 1.2.1 Equations withSeparableVariablesandRelatedEquations ............ 8 1.2.2 Homogeneous andGeneralized Homogeneous Equations ............. 9 1.2.3 LinearEquationandBernoulli Equation ............................ 10 1.2.4 DarbouxEquationandOtherEquations ............................ 11 1.3 ExactDifferential Equations. Integrating Factor ........................... 12 1.3.1 ExactDifferential Equations ...................................... 12 1.3.2 Integrating Factor ............................................... 13 1.4 RiccatiEquation ...................................................... 13 1.4.1 General Riccati Equation. Simplest Integrable Cases. Polynomial Solutions ....................................................... 13 1.4.2 UseofParticularSolutionstoConstruct theGeneralSolution ......... 15 1.4.3 SomeTransformations ........................................... 16 1.4.4 SpecialRiccatiEquation ......................................... 17 1.5 AbelEquationsoftheFirstKind ........................................ 18 1.5.1 General FormofAbelEquations oftheFirstKind. SimplestIntegrable Cases .......................................................... 18 1.5.2 SomeTransformations ........................................... 19 1.6 AbelEquationsoftheSecondKind ...................................... 20 1.6.1 GeneralFormofAbelEquationsoftheSecondKind. SimplestIntegrable Cases .......................................................... 20 1.6.2 SomeTransformations ........................................... 21 1.6.3 UseofParticular Solutions toConstruct Self-Transformations andthe GeneralSolution ................................................ 22 1.7 Classification andSpecificFeaturesofSomeClassesofSolutions ............ 25 1.7.1 StableandUnstableSolutions. Equilibrium Points ................... 25 1.7.2 Blow-UpSolutions .............................................. 28 1.7.3 SpaceLocalization ofSolutions ................................... 33 1.7.4 CauchyProblemsAdmittingNon-UniqueSolutions .................. 36 1.8 Equations NotSolvedfortheDerivativeandEquations DefinedParametrically 37 1.8.1 Methodof“Integration byDifferentiation” forEquations NotSolvedfor theDerivative ................................................... 37 1.8.2 Equations NotSolvedfortheDerivative. SpecificEquations .......... 38 1.8.3 Equations DefinedParametrically andDifferential-Algebraic Equations 40 v “K16435’ — 2017/9/28 — 15:05 — #2 vi CONTENTS 1.9 ContactTransformations ............................................... 42 1.9.1 GeneralFormofContactTransformations. MethodfortheConstruction ofContactTransformations ....................................... 42 1.9.2 ExamplesofContactTransformations .............................. 43 1.10 PfaffianEquations .................................................... 44 1.10.1 PreliminaryRemarks .......................................... 44 1.10.2 CompletelyIntegrable PfaffianEquations ......................... 45 1.10.3 PfaffianEquationsNotSatisfying theIntegrability Condition ........ 48 1.11 ApproximateAnalyticMethodsforSolutionofODEs ..................... 49 1.11.1 MethodofSuccessiveApproximations (PicardMethod) ............ 49 1.11.2 Newton–Kantorovich Method ................................... 50 1.11.3 MethodofSeriesExpansion intheIndependent Variable ........... 53 1.11.4 MethodofRegularExpansionintheSmallParameter .............. 56 1.12 DifferentialInequalities andSolutionEstimates .......................... 57 1.12.1 TwoTheoremsonSolutionEstimates ............................ 57 1.12.2 Chaplygin’s TheoremandItsApplications (BilateralEstimatesofthe CauchyProblemSolution) ...................................... 58 1.13 StandardNumericalMethodsforSolvingOrdinaryDifferential Equations ... 61 1.13.1 Single-StepMethods. Runge–Kutta Methods ..................... 61 1.13.2 Multistep Methods ............................................ 68 1.13.3 Predictor–Corrector Methods ................................... 70 1.13.4 ModifiedMultistep Methods(Butcher’sMethods) ................. 72 1.13.5 StabilityandConvergence ofNumericalMethods .................. 72 1.13.6 Well-andIll-Conditioned Problems .............................. 73 1.14 SpecialNumericalMethods ............................................ 74 1.14.1 SpecialMethodsBasedonAuxiliaryEquations ................... 74 1.14.2 Numerical Integration ofEquations ThatContain FixedSingular Points ....................................................... 76 1.14.3 Numerical Integration of Equations Defined Parametrically or Implicitly .................................................... 79 1.14.4 NumericalSolutionofBlow-UpProblems ........................ 81 1.14.5 NumericalSolutionofProblemswithRootSingularity ............. 89 2 MethodsforSecond-OrderLinearDifferential Equations 93 2.1 Homogeneous LinearEquations ......................................... 93 2.1.1 FormulasfortheGeneralSolution. Wronskian Determinant ........... 93 2.1.2 Factorization andSomeTransformations ........................... 95 2.2 Nonhomogeneous LinearEquations ..................................... 96 2.2.1 Existence Theorem. Kummer–LiouvilleTransformation .............. 96 2.2.2 FormulasfortheGeneralSolution ................................. 96 2.3 Representation ofSolutionsasaSeriesintheIndependent Variable .......... 97 2.3.1 Equation Coefficients areRepresentable intheOrdinary PowerSeries Form .......................................................... 97 2.3.2 EquationCoefficientsHavePolesatSomePoint ..................... 98 2.4 AsymptoticSolutions .................................................. 99 2.4.1 Equations NotContaining y ..................................... 100 x′ 2.4.2 Equations Containing y ......................................... 102 x′ “K16435’ — 2017/9/28 — 15:05 — #3 CONTENTS vii 2.5 Boundary ValueProblems. Green’sFunction .............................. 103 2.5.1 First,Second,Third,andSomeOtherBoundaryValueProblems ....... 103 2.5.2 SimplificationofBoundaryConditions. Self-AdjointFormofEquations 106 2.5.3 Green’s andModifiedGreen’sFunctions. Representation Solutionsvia Green’sorModifiedGreen’sFunctions ............................. 107 2.6 Eigenvalue Problems .................................................. 110 2.6.1 Sturm–Liouville Problem ......................................... 110 2.6.2 GeneralPropertiesoftheSturm–Liouville Problem(2.6.1.1),(2.6.1.2) . 111 2.6.3 ProblemswithBoundaryConditions oftheFirstKind ................ 112 2.6.4 ProblemswithBoundaryConditions oftheSecondKind ............. 113 2.6.5 ProblemswithBoundaryConditions oftheThirdKind ............... 114 2.6.6 ProblemswithMixedBoundaryConditions ......................... 114 2.7 TheoremsonEstimatesandZerosofSolutions ............................ 115 2.7.1 TheoremonEstimatesofSolutions ................................ 115 2.7.2 SturmComparison TheoremonZerosofSolutions .................. 115 2.7.3 QualitativeBehavior ofSolutionsasx ........................ 116 →∞ 2.8 NumericalMethods ................................................... 116 2.8.1 Numerov’sMethod(CauchyProblem) ............................. 116 2.8.2 ModifiedShooting Method(Boundary ValueProblems) .............. 117 2.8.3 SweepMethod(Boundary ValueProblems) ......................... 118 2.8.4 MethodofAccelerated Convergence inEigenvalue Problems ......... 119 2.8.5 Well-Conditioned andIll-Conditioned Problems ..................... 120 3 MethodsforSecond-OrderNonlinearDifferentialEquations 123 3.1 GeneralConcepts. CauchyProblem. Uniqueness andExistenceTheorems .... 123 3.1.1 Equations SolvedfortheDerivative. GeneralSolution ................ 123 3.1.2 CauchyProblem. Existence andUniquenessTheorem ................ 123 3.2 SomeTransformations. EquationsAdmittingReductionofOrder ............ 124 3.2.1 Equations NotContaining y orxExplicitly. RelatedEquations ........ 124 3.2.2 Homogeneous Equations ......................................... 125 3.2.3 Generalized Homogeneous Equations .............................. 126 3.2.4 Equations Invariant underScaling–Translation Transformations ....... 126 3.2.5 ExactSecond-Order Equations .................................... 127 3.2.6 Nonlinear EquationsInvolving LinearHomogeneous DifferentialForms 128 3.2.7 Reduction ofQuasilinear EquationstotheNormalForm .............. 129 3.2.8 Equations DefinedParametrically andDifferential-Algebraic Equations 129 3.3 Boundary ValueProblems. Uniqueness andExistenceTheorems. Nonexistence Theorems ............................................................ 133 3.3.1 Uniqueness andExistenceTheoremsforBoundary ValueProblems .... 134 3.3.2 Reduction ofBoundary ValueProblemstoIntegral Equations. Integral Identity. Jentzch Theorem ........................................ 137 3.3.3 Theorem onNonexistence ofSolutions tothe FirstBoundary Value Problem. TheoremsonExistenceofTwoSolutions .................. 139 3.3.4 ExamplesofExistence, Nonuniqueness, andNonexistence ofSolutions toFirstBoundary ValueProblems ................................. 142 3.3.5 Theorems on Nonexistence of Solutions for the Mixed Problem. TheoremsonExistenceofTwoSolutions ........................... 145 3.3.6 ExamplesofExistence, Nonuniqueness, andNonexistence ofSolutions toMixedBoundaryValueProblems ............................... 148 3.3.7 TheoremsonExistence ofTwoSolutionsfortheThirdBoundary Value Problem ........................................................ 151 “K16435’ — 2017/9/28 — 15:05 — #4 viii CONTENTS 3.3.8 Boundary Value Problems for Linear Equations with Nonlinear Boundary Conditions ............................................ 152 3.4 MethodofRegularSeriesExpansions withRespecttotheIndependent Variable 154 3.4.1 MethodofExpansion inPowersoftheIndependent Variable .......... 154 3.4.2 Pade´ Approximants .............................................. 156 3.5 MovableSingularities ofSolutionsofOrdinaryDifferential Equations. Painleve´ Equations ............................................................ 157 3.5.1 PreliminaryRemarks. SingularPointsofSolutions .................. 157 3.5.2 FirstPainleve´ Equation .......................................... 158 3.5.3 SecondPainleve´ Equation ........................................ 160 3.5.4 ThirdPainleve´ Equation .......................................... 162 3.5.5 FourthPainleve´ Equation ......................................... 165 3.5.6 FifthPainleve´ Equation .......................................... 167 3.5.7 SixthPainleve´ Equation .......................................... 169 3.6 Perturbation MethodsofMechanicsandPhysics ........................... 171 3.6.1 PreliminaryRemarks. SummaryTableofBasicMethods ............. 171 3.6.2 MethodofRegular(Direct)ExpansioninPowersoftheSmallParameter 173 3.6.3 MethodofScaledParameters(Lindstedt–Poincare´ Method) ........... 174 3.6.4 Averaging Method(VanderPol–Krylov–Bogolyubov Scheme) ........ 175 3.6.5 MethodofTwo-ScaleExpansions (Cole–Kevorkian Scheme) ......... 177 3.6.6 MethodofMatchedAsymptoticExpansions ........................ 178 3.7 GalerkinMethodandItsModifications (Projection Methods) ................ 181 3.7.1 Approximate SolutionforaBoundaryValueProblem ................ 181 3.7.2 GalerkinMethod. GeneralScheme ................................ 182 3.7.3 Bubnov–Galerkin, Moment,andLeastSquaresMethods .............. 182 3.7.4 Collocation Method ............................................. 183 3.7.5 MethodofPartitioning theDomain ................................ 184 3.7.6 LeastSquaredErrorMethod ...................................... 185 3.8 Iteration andNumericalMethods ........................................ 185 3.8.1 MethodofSuccessiveApproximations (CauchyProblem) ............ 185 3.8.2 Runge–Kutta Method(CauchyProblem) ........................... 186 3.8.3 Reduction toaSystemofEquations (CauchyProblem) ............... 186 3.8.4 Predictor–Corrector Methods(CauchyProblem) ..................... 186 3.8.5 ShootingMethod(Boundary ValueProblems) ....................... 187 3.8.6 NumericalMethods forProblemswithEquations DefinedImplicitly or Parametrically .................................................. 190 3.8.7 NumericalSolutionBlow-UpProblems ............................ 192 4 MethodsforLinearODEsofArbitraryOrder 197 4.1 LinearEquations withConstantCoefficients .............................. 197 4.1.1 Homogeneous LinearEquations. GeneralSolution ................... 197 4.1.2 Nonhomogeneous LinearEquations. GeneralandParticularSolutions .. 198 4.2 LinearEquations withVariableCoefficients ............................... 200 4.2.1 Homogeneous LinearEquations. General Solution. OrderReduction. LiouvilleFormula ............................................... 200 4.2.2 Nonhomogeneous LinearEquations. General Solution. Superposition Principle ....................................................... 201 4.2.3 Nonhomogeneous LinearEquations. CauchyProblem. Reduction to IntegralEquations ............................................... 202 “K16435’ — 2017/9/28 — 15:05 — #5 CONTENTS ix 4.3 LaplaceTransformandtheLaplaceIntegral. Applications toLinearODEs .... 204 4.3.1 LaplaceTransformandtheInverseLaplaceTransform ............... 204 4.3.2 MainProperties oftheLaplaceTransform. Inversion FormulasforSome Functions ...................................................... 205 4.3.3 LimitTheorems. Representation ofInverse TransformsasConvergent SeriesandAsymptoticExpansions ................................ 207 4.3.4 Solution oftheCauchyProblem forConstant-Coefficient LinearODEs. Applications toIntegro-Differential Equations ...................... 209 4.3.5 Solution ofLinearEquations withPolynomial Coefficients Usingthe LaplaceTransform .............................................. 211 4.3.6 Solution ofLinearEquations withPolynomial Coefficients Usingthe LaplaceIntegral ................................................. 212 4.4 AsymptoticSolutions ofLinearEquations ................................ 213 4.4.1 Fourth-OrderLinearDifferential Equations ......................... 213 4.4.2 Higher-Order LinearDifferential Equations ......................... 214 4.5 Collocation Method ................................................... 215 4.5.1 StatementoftheProblem. ApproximateSolution .................... 215 4.5.2 Convergence Theorem ........................................... 215 5 MethodsforNonlinearODEsofArbitraryOrder 217 5.1 GeneralConcepts. CauchyProblem. Uniqueness andExistenceTheorems .... 217 5.1.1 Equations SolvedfortheDerivative. GeneralSolution ................ 217 5.1.2 SomeTransformations ........................................... 218 5.2 Equations AdmittingReduction ofOrder ................................. 218 5.2.1 Equations NotContaining y orxExplicitly ......................... 218 5.2.2 Homogeneous Equations ......................................... 219 5.2.3 Generalized Homogeneous Equations .............................. 220 5.2.4 Equations Invariant underScaling-Translation Transformations ........ 220 5.2.5 OtherEquations ................................................. 220 5.3 MethodforConstruction ofSolvableEquationsofGeneralForm ............ 222 5.3.1 Description oftheMethod ........................................ 222 5.3.2 Illustrative Examples ............................................ 223 5.4 NumericalIntegration ofn-orderEquations ............................... 224 5.4.1 NumericalSolutionoftheCauchyProblemforn-orderODEs ......... 224 5.4.2 NumericalSolutionofEquations DefinedImplicitlyorParametrically .. 224 6 MethodsforLinearSystemsofODEs 227 6.1 SystemsofLinearConstant-Coefficient Equations ......................... 227 6.1.1 Systems ofFirst-Order Linear Homogeneous Equations. General Solution ........................................................ 227 6.1.2 Systems ofFirst-Order Linear Homogeneous Equations. Particular Solutions ....................................................... 228 6.1.3 Nonhomogeneous SystemsofLinearFirst-OrderEquations ........... 230 6.1.4 Homogeneous LinearSystemsofHigher-OrderDifferential Equations . 231 6.1.5 NormalCoordinates andNaturalOscillations ....................... 232 6.1.6 Nonhomogeneous Higher-OrderLinearSystems. D’Alembert’sMethod 233 6.1.7 Usage of the Laplace Transform for Solving Linear Systems of Equations ...................................................... 234 6.1.8 Classification of Equilibrium Points of Two-Dimensional Linear Systems ........................................................ 235

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.