ebook img

Handbook of mathematics for engineers and scientists PDF

1543 Pages·2006·9.468 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of mathematics for engineers and scientists

HANDBOOK OF MATHEMATICS FOR ENGINEERS AND SCIENTISTS C5025_C000a.indd 1 10/16/06 2:53:21 PM C5025_C000a.indd 2 10/16/06 2:53:21 PM HANDBOOK OF MATHEMATICS FOR ENGINEERS AND SCIENTISTS Andrei D. Polyanin Alexander V. Manzhirov C5025_C000a.indd 3 10/16/06 2:53:21 PM Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487‑2742 © 2007 by Taylor & Francis Group, LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid‑free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number‑10: 1‑58488‑502‑5 (Hardcover) International Standard Book Number‑13: 978‑1‑58488‑502‑3 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa‑ tion storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that provides licenses and registration for a variety of users. For orga‑ nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com C5025_C000a.indd 4 10/16/06 2:53:22 PM CONTENTS Authors .................................................................. xxv Preface ...................................................................xxvii MainNotation ............................................................. xxix PartI. Definitions,Formulas,Methods,andTheorems 1 1. ArithmeticandElementaryAlgebra ......................................... 3 1.1. RealNumbers ........................................................... 3 1.1.1. IntegerNumbers ................................................... 3 1.1.2. Real,Rational,andIrrationalNumbers ................................. 4 1.2. EqualitiesandInequalities. ArithmeticOperations. AbsoluteValue ................ 5 1.2.1. EqualitiesandInequalities ........................................... 5 1.2.2. AdditionandMultiplicationofNumbers ................................ 6 1.2.3. RatiosandProportions .............................................. 6 1.2.4. Percentage ....................................................... 7 1.2.5. AbsoluteValueofaNumber(ModulusofaNumber) ...................... 8 1.3. PowersandLogarithms ................................................... 8 1.3.1. PowersandRoots .................................................. 8 1.3.2. Logarithms ....................................................... 9 1.4. BinomialTheoremandRelatedFormulas ..................................... 10 1.4.1. Factorials. BinomialCoefficients. BinomialTheorem ..................... 10 1.4.2. RelatedFormulas .................................................. 10 1.5. ArithmeticandGeometricProgressions. FiniteSumsandProducts ................. 11 1.5.1. ArithmeticandGeometricProgressions ................................ 11 1.5.2. FiniteSeriesandProducts ........................................... 12 1.6. MeanValuesandInequalitiesofGeneralForm ................................. 13 1.6.1. ArithmeticMean,GeometricMean,andOtherMeanValues. Inequalitiesfor MeanValues ...................................................... 13 1.6.2. InequalitiesofGeneralForm ......................................... 14 1.7. SomeMathematicalMethods .............................................. 15 1.7.1. ProofbyContradiction .............................................. 15 1.7.2. MathematicalInduction ............................................. 16 1.7.3. ProofbyCounterexample ........................................... 17 1.7.4. MethodofUndeterminedCoefficients .................................. 17 ReferencesforChapter1 ...................................................... 18 2. ElementaryFunctions ..................................................... 19 2.1. Power,Exponential,andLogarithmicFunctions ................................ 19 2.1.1. PowerFunction: y =xα ............................................ 19 2.1.2. ExponentialFunction: y =ax ........................................ 21 2.1.3. LogarithmicFunction: y =log x ..................................... 22 a 2.2. TrigonometricFunctions .................................................. 24 2.2.1. TrigonometricCircle. DefinitionofTrigonometricFunctions ............... 24 2.2.2. GraphsofTrigonometricFunctions .................................... 25 2.2.3. PropertiesofTrigonometricFunctions ................................. 27 v vi CONTENTS 2.3. InverseTrigonometricFunctions ............................................ 30 2.3.1. Definitions. GraphsofInverseTrigonometricFunctions ................... 30 2.3.2. PropertiesofInverseTrigonometricFunctions ........................... 33 2.4. HyperbolicFunctions ..................................................... 34 2.4.1. Definitions. GraphsofHyperbolicFunctions ............................ 34 2.4.2. PropertiesofHyperbolicFunctions .................................... 36 2.5. InverseHyperbolicFunctions .............................................. 39 2.5.1. Definitions. GraphsofInverseHyperbolicFunctions ...................... 39 2.5.2. PropertiesofInverseHyperbolicFunctions .............................. 41 ReferencesforChapter2 ...................................................... 42 3. ElementaryGeometry .................................................... 43 3.1. PlaneGeometry ......................................................... 43 3.1.1. Triangles ......................................................... 43 3.1.2. Polygons ......................................................... 51 3.1.3. Circle ........................................................... 56 3.2. SolidGeometry ......................................................... 59 3.2.1. StraightLines,Planes,andAnglesinSpace ............................. 59 3.2.2. Polyhedra ........................................................ 61 3.2.3. SolidsFormedbyRevolutionofLines ................................. 65 3.3. SphericalTrigonometry ................................................... 70 3.3.1. SphericalGeometry ................................................ 70 3.3.2. SphericalTriangles ................................................ 71 ReferencesforChapter3 ...................................................... 75 4. AnalyticGeometry ....................................................... 77 4.1. Points,Segments,andCoordinatesonLineandPlane ........................... 77 4.1.1. CoordinatesonLine ................................................ 77 4.1.2. CoordinatesonPlane ............................................... 78 4.1.3. PointsandSegmentsonPlane ........................................ 81 4.2. CurvesonPlane ......................................................... 84 4.2.1. CurvesandTheirEquations .......................................... 84 4.2.2. MainProblemsofAnalyticGeometryforCurves ......................... 88 4.3. StraightLinesandPointsonPlane .......................................... 89 4.3.1. EquationsofStraightLinesonPlane ................................... 89 4.3.2. MutualArrangementofPointsandStraightLines ........................ 93 4.4. Second-OrderCurves ..................................................... 97 4.4.1. Circle ........................................................... 97 4.4.2. Ellipse .......................................................... 98 4.4.3. Hyperbola ........................................................ 101 4.4.4. Parabola ......................................................... 104 4.4.5. TransformationofSecond-OrderCurvestoCanonicalForm ................ 107 4.5. Coordinates,Vectors,Curves,andSurfacesinSpace ............................ 113 4.5.1. Vectors. CartesianCoordinateSystem ................................. 113 4.5.2. CoordinateSystems ................................................ 114 4.5.3. Vectors. ProductsofVectors ......................................... 120 4.5.4. CurvesandSurfacesinSpace ........................................ 123 CONTENTS vii 4.6. LineandPlaneinSpace ................................................... 124 4.6.1. PlaneinSpace .................................................... 124 4.6.2. LineinSpace ..................................................... 131 4.6.3. MutualArrangementofPoints,Lines,andPlanes ........................ 135 4.7. QuadricSurfaces(Quadrics) ............................................... 143 4.7.1. Quadrics(CanonicalEquations) ...................................... 143 4.7.2. Quadrics(GeneralTheory) .......................................... 148 ReferencesforChapter4 ...................................................... 153 5. Algebra ................................................................. 155 5.1. PolynomialsandAlgebraicEquations ........................................ 155 5.1.1. PolynomialsandTheirProperties ..................................... 155 5.1.2. LinearandQuadraticEquations ....................................... 157 5.1.3. CubicEquations ................................................... 158 5.1.4. Fourth-DegreeEquation ............................................. 159 5.1.5. AlgebraicEquationsofArbitraryDegreeandTheirProperties .............. 161 5.2. MatricesandDeterminants ................................................ 167 5.2.1. Matrices ......................................................... 167 5.2.2. Determinants ..................................................... 175 5.2.3. EquivalentMatrices. Eigenvalues ..................................... 180 5.3. LinearSpaces ........................................................... 187 5.3.1. ConceptofaLinearSpace. ItsBasisandDimension ...................... 187 5.3.2. SubspacesofLinearSpaces .......................................... 190 5.3.3. CoordinateTransformationsCorrespondingtoBasisTransformationsinaLinear Space ........................................................... 191 5.4. EuclideanSpaces ........................................................ 192 5.4.1. RealEuclideanSpace ............................................... 192 5.4.2. ComplexEuclideanSpace(UnitarySpace) .............................. 195 5.4.3. BanachSpacesandHilbertSpaces .................................... 196 5.5. SystemsofLinearAlgebraicEquations ....................................... 197 5.5.1. ConsistencyConditionforaLinearSystem ............................. 197 5.5.2. FindingSolutionsofaSystemofLinearEquations ....................... 198 5.6. LinearOperators ........................................................ 204 5.6.1. NotionofaLinearOperator. ItsProperties .............................. 204 5.6.2. LinearOperatorsinMatrixForm ...................................... 208 5.6.3. EigenvectorsandEigenvaluesofLinearOperators ........................ 209 5.7. BilinearandQuadraticForms .............................................. 213 5.7.1. LinearandSesquilinearForms ....................................... 213 5.7.2. BilinearForms .................................................... 214 5.7.3. QuadraticForms ................................................... 216 5.7.4. BilinearandQuadraticFormsinEuclideanSpace ........................ 219 5.7.5. Second-OrderHypersurfaces ......................................... 220 5.8. SomeFactsfromGroupTheory ............................................ 225 5.8.1. GroupsandTheirBasicProperties .................................... 225 5.8.2. TransformationGroups ............................................. 228 5.8.3. GroupRepresentations .............................................. 230 ReferencesforChapter5 ...................................................... 233 viii CONTENTS 6. LimitsandDerivatives .................................................... 235 6.1. BasicConceptsofMathematicalAnalysis .................................... 235 6.1.1. NumberSets. FunctionsofRealVariable ............................... 235 6.1.2. LimitofaSequence ................................................ 237 6.1.3. LimitofaFunction. Asymptotes ...................................... 240 6.1.4. InfinitelySmallandInfinitelyLargeFunctions ........................... 242 6.1.5. ContinuousFunctions. DiscontinuitiesoftheFirstandtheSecondKind ....... 243 6.1.6. ConvexandConcaveFunctions ....................................... 245 6.1.7. FunctionsofBoundedVariation ...................................... 246 6.1.8. ConvergenceofFunctions ........................................... 249 6.2. DifferentialCalculusforFunctionsofaSingleVariable .......................... 250 6.2.1. DerivativeandDifferential,TheirGeometricalandPhysicalMeaning ......... 250 6.2.2. TableofDerivativesandDifferentiationRules ........................... 252 6.2.3. TheoremsaboutDifferentiableFunctions. L’HospitalRule ................. 254 6.2.4. Higher-OrderDerivativesandDifferentials. Taylor’sFormula ............... 255 6.2.5. ExtremalPoints. PointsofInflection ................................... 257 6.2.6. QualitativeAnalysisofFunctionsandConstructionofGraphs .............. 259 6.2.7. ApproximateSolutionofEquations(Root-FindingAlgorithmsforContinuous Functions) ....................................................... 260 6.3. FunctionsofSeveralVariables. PartialDerivatives .............................. 263 6.3.1. PointSets. Functions. LimitsandContinuity ............................ 263 6.3.2. DifferentiationofFunctionsofSeveralVariables ......................... 264 6.3.3. DirectionalDerivative. Gradient. GeometricalApplications ................ 267 6.3.4. ExtremalPointsofFunctionsofSeveralVariables ........................ 269 6.3.5. DifferentialOperatorsoftheFieldTheory .............................. 272 ReferencesforChapter6 ...................................................... 272 7. Integrals ................................................................ 273 7.1. IndefiniteIntegral ........................................................ 273 7.1.1. Antiderivative. IndefiniteIntegralandItsProperties ....................... 273 7.1.2. TableofBasicIntegrals. PropertiesoftheIndefiniteIntegral. Integration Examples ........................................................ 274 7.1.3. IntegrationofRationalFunctions ..................................... 276 7.1.4. IntegrationofIrrationalFunctions ..................................... 279 7.1.5. IntegrationofExponentialandTrigonometricFunctions ................... 281 7.1.6. IntegrationofPolynomialsMultipliedbyElementaryFunctions ............. 283 7.2. DefiniteIntegral ......................................................... 286 7.2.1. BasicDefinitions. ClassesofIntegrableFunctions. GeometricalMeaningofthe DefiniteIntegral ................................................... 286 7.2.2. PropertiesofDefiniteIntegralsandUsefulFormulas ...................... 287 7.2.3. GeneralReductionFormulasfortheEvaluationofIntegrals ................ 289 7.2.4. GeneralAsymptoticFormulasfortheCalculationofIntegrals ............... 290 7.2.5. MeanValueTheorems. PropertiesofIntegralsinTermsofInequalities. ArithmeticMeanandGeometricMeanofFunctions ...................... 295 7.2.6. GeometricandPhysicalApplicationsoftheDefiniteIntegral ............... 299 7.2.7. ImproperIntegralswithInfiniteIntegrationLimit ......................... 301 7.2.8. GeneralReductionFormulasfortheCalculationofImproperIntegrals ........ 304 7.2.9. GeneralAsymptoticFormulasfortheCalculationofImproperIntegrals ....... 307 7.2.10. ImproperIntegralsofUnboundedFunctions ............................ 308 7.2.11. Cauchy-TypeSingularIntegrals ...................................... 310 CONTENTS ix 7.2.12. StieltjesIntegral .................................................. 312 7.2.13. SquareIntegrableFunctions ........................................ 314 7.2.14. Approximate(Numerical)MethodsforComputationofDefiniteIntegrals .... 315 7.3. DoubleandTripleIntegrals ................................................ 317 7.3.1. DefinitionandPropertiesoftheDoubleIntegral .......................... 317 7.3.2. ComputationoftheDoubleIntegral ................................... 319 7.3.3. GeometricandPhysicalApplicationsoftheDoubleIntegral ................ 323 7.3.4. DefinitionandPropertiesoftheTripleIntegral ........................... 324 7.3.5. ComputationoftheTripleIntegral. SomeApplications. IteratedIntegralsand AsymptoticFormulas ............................................... 325 7.4. LineandSurfaceIntegrals ................................................. 329 7.4.1. LineIntegraloftheFirstKind ........................................ 329 7.4.2. LineIntegraloftheSecondKind ...................................... 330 7.4.3. SurfaceIntegraloftheFirstKind ..................................... 332 7.4.4. SurfaceIntegraloftheSecondKind ................................... 333 7.4.5. IntegralFormulasofVectorCalculus .................................. 334 ReferencesforChapter7 ...................................................... 335 8. Series .................................................................. 337 8.1. NumericalSeriesandInfiniteProducts ....................................... 337 8.1.1. ConvergentNumericalSeriesandTheirProperties. Cauchy’sCriterion ....... 337 8.1.2. ConvergenceCriteriaforSerieswithPositive(Nonnegative)Terms .......... 338 8.1.3. ConvergenceCriteriaforArbitraryNumericalSeries. AbsoluteandConditional Convergence ...................................................... 341 8.1.4. MultiplicationofSeries. SomeInequalities ............................. 343 8.1.5. SummationMethods. ConvergenceAcceleration ......................... 344 8.1.6. InfiniteProducts ................................................... 346 8.2. FunctionalSeries ........................................................ 348 8.2.1. PointwiseandUniformConvergenceofFunctionalSeries .................. 348 8.2.2. BasicCriteriaofUniformConvergence. PropertiesofUniformlyConvergent Series ........................................................... 349 8.3. PowerSeries ............................................................ 350 8.3.1. RadiusofConvergenceofPowerSeries. PropertiesofPowerSeries .......... 350 8.3.2. TaylorandMaclaurinPowerSeries .................................... 352 8.3.3. OperationswithPowerSeries. SummationFormulasforPowerSeries ........ 354 8.4. FourierSeries ........................................................... 357 8.4.1. Representationof2π-PeriodicFunctionsbyFourierSeries. MainResults ..... 357 8.4.2. FourierExpansionsofPeriodic,Nonperiodic,Odd,andEvenFunctions ....... 359 8.4.3. CriteriaofUniformandMean-SquareConvergenceofFourierSeries ......... 361 8.4.4. SummationFormulasforTrigonometricSeries ........................... 362 8.5. AsymptoticSeries ....................................................... 363 8.5.1. AsymptoticSeriesofPoincare´Type. FormulasfortheCoefficients ........... 363 8.5.2. OperationswithAsymptoticSeries .................................... 364 ReferencesforChapter8 ...................................................... 366 9. DifferentialGeometry ..................................................... 367 9.1. TheoryofCurves ........................................................ 367 9.1.1. PlaneCurves ..................................................... 367 9.1.2. SpaceCurves ..................................................... 379

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.